用户名: 密码: 验证码:
锆基块体金属玻璃合金化及半固态处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体金属玻璃(BMG)具有优异的力学性能和物理性能,为新型结构材料和功能材料的发展开辟了新的领域。然而,BMG在室温下发生灾难性脆性断裂,已经成为制约该材料规模化工程应用的瓶颈。因此,寻找提高BMG塑性的途径是目前研究的热点问题。本文针对BMG发展中的主要问题,以BMG合金化和半固态处理为主要研究目的,以不含贵重金属元素及有毒元素Be的Zr基低成本BMG合金为研究对象开展了以下几个主要方面的研究:
     1.研究了制备条件对Zr基BMG热稳定性和力学性能的影响。在相同的冷却速度下,通过改变铸造条件,考察热速处理、浇注保温时间、浇注温度对BMG热稳定性和力学性能的影响,以确定最佳的制备条件。结果表明,热速处理可以增加BMG的GFA和热稳定性,对于Zr_(55)Al_(10)Ni_5Cu_(30)BMG,当铸造电压从7kV提高至10kV时,过冷液相区△Tx和参数γ分别从73K增至89K,从0.413增至0.417。在加热温度及冷却速率等条件不变的情况下,随着浇注保温时间的延长,瞬态形核率增大,液态合金有结晶的趋势,原子的排列也由无规向有序转变趋势,结构无序密堆性下降,非晶合金的GFA和热稳定性降低。在相同的冷却速率和浇注温度下,制备BMG的浇注保温时间存在一个临界值,超过此临界值,试样开始晶化。高的浇注温度制备的非晶合金GFA和压缩断裂强度增加,塑性下降。对于特定成分的BMG,存在一个最佳的浇注温度,即在此浇注温度条件下制备的BMG的压缩断裂强度最高,塑性最好,BMG的力学性能在一定程度上可由浇注温度控制。在相同的铸造条件下,考察了不同成分试样合金的冷却速度对BMG的GFA和力学性能的影响,结果表明,相同的冷却速度对不同成分合金的GFA和力学性能的影响不同,与大直径BMG相比,具有相同化学成分的小尺寸的BMG表现出更为优异的塑性和良好的压缩断裂强度。
     2.选择Zr_(55)Cu_(30)Ni_5Al_(10)BMG作为基体合金,研究了Fe、Mn、Nb元素合金化对其热稳定性和力学性能的影响,并讨论其作用机理。结果表明,元素加入对合金非晶形成有一定的成分范围,当含量达到极限值时,在相同的冷却条件下,加入组元与原有组元之间很可能发生反应形成晶体相。Fe元素的添加使得非晶合金的GFA呈现先增加后降低的趋势,热稳定性呈现下降的趋势。Fe元素添加量为1%时,可以提高非晶合金的GFA,其约化玻璃转变温度Trg为0.59,参数γ为0.414。添加过量的Fe元素(4%的Fe含量),会导致基体合金晶化,形成非晶与晶体的复合材料。添加2%的Fe元素,其BMG的压缩断裂强度和塑性应变分别为1868MPa和2.62%,表现了良好的综合力学性能。添加4%的Mn元素能形成Ф3mm的BMG,非晶合金的热稳定性和GFA呈现下降趋势,其过冷液相区△Tx为61K,约化玻璃转变温度Trg为0.58,参数γ为0.40,压缩断裂强度为1817MPa,塑性无明显改善。添加适量的Nb能提高基体合金的热稳定性和GFA。当Nb含量为8%时,BMG具有最好的热稳定性和最高的GFA,其过冷液相区ΔTx值达到86K,参数γ达到0.416。Nb元素的适量添加有利于提高非晶合金的压缩断裂强度和塑性变形能力,(Zr0.55Al0.1Ni0.05Cu0.3)92Nb8BMG的压缩断裂强度和塑性应变分别达到1877MPa和1.92%。
     3.通过改变铸造电压(熔化功率),进而改变熔化温度,使母合金达到固-液两相区,通过改变半固态温度和保温时间,研究了半固态温度和半固态保温时间对先析出的金属间化合物相尺寸形貌、分布、体积分数的影响及其与复合材料力学性能之间的关系,并讨论了复合材料的增塑机制。研究表明,半固态温度升高,(Zr_(0.55)Al_(0.10)Ni_(0.05)Cu_(0.30))_(96)Fe_4BMG复合材料的GFA增加,析出的金属间化合物第二相的体积分数减小。在铸造电压7kV时制备出具有室温压缩塑性的铸态内生球形金属间化合物/BMG复合材料,其不但具有高的压缩断裂强度(达到2203MPa),也具有显著的室温塑性(塑性变形达到5.85%)。半固态温度对(Zr_(0.55)Al_(0.10)Ni_(0.05)Cu_(0.30))_(96)Fe_4BMG复合材料中析出的金属间化合物第二相的微观形态有着很大的影响。铸造电压7kV制备的合金试样非晶基体上分布着球形金属间化合物,其直径大部分在10μm-20μm之间,体积分数为45.3%。复合材料中球形金属间化合物相与非晶基体之间界面清晰,未发现其它相的出现。TEM研究表明球形金属间化合物相与玻璃基体之间具有较好的界面结合力,有效的解决了湿润性的问题,低能量的界面使球形金属间化合物第二相与基体之间牢固而稳定地结合。压缩变形后的试样表面出现了大量的波浪状的多重剪切带,呈现出隆起现象,其间距都小于1μm,小于球形金属间化合物第二相的尺寸。在合适的合金成分下,可以通过半固态温度的调整获得铸态内生球形金属间化合物/BMG两相微观组织,与相应的单相BMG比较,可以在有效的提高材料塑性的同时保持高的断裂强度,有利于获得更好的综合力学性能。延长半固态保温时间,(Zr_(0.55)Al_(0.10)Ni_(0.05)Cu_(0.30))_(94)Fe_6BMG复合材料晶化明显,GFA降低;随着半固态保温时间的延长,试样中析出的金属间化合物第二相的体积分数增大。(Zr_(0.55)Al_(0.10)Ni_(0.05)Cu_(0.30))_(94)Fe_6BMG复合材料的力学性能与金属间化合物第二相的体积分数密切相关,延长半固态保温时间,金属间化合物第二相的体积分数增大,合金试样的压缩断裂强度和塑性应变呈明显的下降趋势。
Bulk metallic glasses (BMG) with excellent mechanical and physical propertiesopen a new research field for structural and functional materials. However thecatastrophic brittle fracture at room temperature has restricted the extensiveapplication of BMG. Extensive effort have been devoted to the finding of new methodfor improving the ductility in BMG. In this paper, based on the main developmentissues in BMG, Zr-based BMG which have not precious metals and toxic elements Beare selected to study the influences of alloying and semi-solid processing on BMG, thefollows are the main conclusions:
     The effects of the preparation conditions on thermal stability and mechanicalproperties of Zr-based BMG were investigated. By changing the casting conditions,the effects of thermal rate treatment, casting holding time and casting temperature onthermal stability and mechanical properties of BMG were studied under the samecooling rate, thus the optimal preparation conditions were determined. The resultsshow that thermal rate treatment can increase GFA and thermal stability of the BMG,for Zr_(55)Al_(10)Ni_5Cu_(30)BMG, supercooled liquid region△Txand parameter γ increasefrom73K to89K, from0.413to0.417, respectively, as casting voltage increase from7kV to10kV. Under the same heating temperature and cooling rates, the transientnucleation rate and the crystallization trend of liquid melt increase with castingholding time increase. And the random arrangement of atoms change to the orderarrangement, the disordered close-packed structure, GFA and thermal stabilitydecrease. There is a critical value of casting holding time in BMG under the samecooling rate and casting temperature, beyond this critical value, the samples begin tocrystallize. GFA and compression fracture strength increase, compressive plasticitydecrease with casting temperature increase. There is an optimum casting temperatureto the specific composition of BMG. Compression fracture strength and compressiveplasticity increase under the optimum casting temperature. Mechanical properties tosome extents are controlled by casting temperature. The influence of cooling rate ofthe different component samples on GFA and mechanical properties were investigatedunder the same casting conditions. The results show that there are different influencesof different composition samples on GFA and mechanical properties under the samecooling rate, and large-diameter BMG, compared with the same chemical compositionof the small-diameter BMG show more excellent compression plasticity and compression fracture strength.
     Selected Zr_(55)Al_(10)Ni_5Cu_(30)BMG as the base alloy to study effects and mechanismof adding Fe, Mn, Nb elements on thermal stability and mechanical properties. Theresults show that addition element content of forming amorphous alloy has a certainlimit addition content. When addition content reaches the limit value, it is likely toreact between addition element and original group elements and form crystal phaseunder the same cooling conditions. Adding Fe makes the GFA of BMG increase atfirst and then decrease, thermal stability decrease. Fe addition content is1%, canimprove GFA, reduced glass transition temperature Trgis0.59, parameter γ is0.414.Excessive Fe addition content (4%Fe content) results in crystallization of amorphousmatrix, forming amorphous matrix composite. Fe addition content is2%, the samplehave an excellent mechanical properties, that is, BMG's compression fracture strengthand plastic strain are1868MPa and2.62%, respectively. Mn addition content is4%,can form BMG which the critical dimension is Ф3mm, thermal stability and GFAdecrease, supercooled liquid region△Txis61K, reduced glass transition temperatureTrgis0.58, parameter γ is0.40, compression fracture strength is1817MPa, has noductility. Adding the appropriate amount of Nb element can improve thermal stabilityand GFA. When Nb addition content is8%, BMG has the best thermal stability andthe highest GFA, supercooled liquid region△Txreaches to86K, parameter γ reachesto0.416. Also Nb addition content is8%, the sample has an excellent mechanicalproperties, that is, BMG's compression fracture strength and plastic strain are1877MPa and1.92%, respectively.
     By changing casting voltage(heating power), thereby changing heatingtemperature, making master alloy temperature enter to solid-liquid two phase region,to study the effects of semi-solid temperature and holding time on precipitatedintermetallic phases appearance, distribution, volume fraction and the relationshipwith mechanical properties of BMG's composite. Also the enhancement ductilitymechanism was discussed. It show GFA of (Zr0.55Al0.10Ni0.05Cu0.30)96Fe4BMGcomposites increase and precipitated intermetallic second phase volume fractiondecrease with semi-solid temperature increase. As-cast in-situ spherical intermetallicphase/BMG composite which has room temperature compress plasticity wassuccessfully prepared at casting voltage7kV. The BMG composites not only has highcompression fracture strength (reaches2203MPa), but also has significant roomtemperature ductility (plastic strain reaches5.85%). Semi-solid temperature has a great influence on BMG composite precipitated intermetallic second phasemorphology. At casting voltage7kV, BMG composite precipitated intermetallicsecond phase morphology is spherical, most of them are10μm-20μm diameter,volume fraction is45.3%, interface between the amorphous matrix, find no otherphases appear. TEM studies have shown that spherical intermetallic phase and theglass substrate has a better interface binding force, effectively solve the wettingproblem, low-energy interface has a strong and stable binding force between sphericalintermetallic phase and the glass substrate. After deformed, the sample surface showsa large number of waved multiple shear bands which pitch is less than1μm, is lessthan the spherical size of the intermetallic second phase. Under the appropriate alloycomposition, semi-solid temperature can be adjusted to obtain as-cast in-situ sphericalintermetallic phase/BMG composite, with the corresponding single-phase BMGcomparison, can effectively improve the plasticity of the material while maintaininghigh compression fracture strength. GFA of (Zr0.55Al0.10Ni0.05Cu0.30)94Fe6BMGcomposites decrease and precipitated intermetallic second phase volume increase withsemi-solid holding time increase. There is a closely relation between mechanicalproperties and intermetallic second phase volume fraction of(Zr_(0.55)Al_(0.10)Ni_(0.05)Cu_(0.30))_(94)Fe_6BMG composites. Precipitated intermetallic secondphase volume increase, compression fracture strength and plastic strain decease withsemi-solid holding time increase.
引文
[1]郑兆勃.非晶固态材料引论.北京:科学出版社,1987:1-10.
    [2]W. Klement, R.H.Willens, P Duwez. Non-crystalline structure in solidifiedgold-silicon alloy. Nature,1960(187):869-870.
    [3]程天一,章守华.快速凝固技术与新型合金.北京:宇航出版社,1990.
    [4] M.Telford. The case for bulk metallic glass. Materials Today,2004,3:36-43.
    [5]H.S.Chen.Thermodynamic consideration on the formation and stabilityof metalglasses. Acta Metall,22(1974)1505-1511.
    [6]Inoue A, Wang X.M, Zhang W. Developments and applications of bulk metallicglasses. Rev Adv Mater Sci,2008,18:1.
    [7]Luborsky F.E. In Amorphous metallic alloys. Luborsky F E. London:Butterworths,1983:1-5.
    [8]王一禾,杨膺善.非晶态合金.北京:冶金工业出版社,1988:346.
    [9]A.Brenner, D.E.Couch, E.K.Williams. Further observations on the growth of silverwhiskers from silver chloride. J Res, Nat Bur Stand,1950,44:109.
    [10]D.Turnbull, J.Chem. Recrystallization and grain growth. Phys,1952,20:411.
    [11]H.S.Chen. The influence of structure on electrical sensitivities of Pd-Au-Si andAu-Ge-Si glass forming alloys. Solid state communications,1980,33(9):915-919.
    [12]A.L.Drehman, A.L.Greer, D.Turnbull. Kinetics of crystal nucleation and growthin Pd40Ni40P20glass. Appl Phys Lett,1982,41:716-725.
    [13]W.H.Kui, A.L.Greer, D.Turnbull. Formation of bulk metallic glass by fluxing.Appl. Phys Lett,1984,(45):615-618.
    [14]Inoue A, Kita K, Zhang T, et al. Amorphous La55A125Ni20alloy prepared waterquenehing. MaterTrans JIM,1989(30):722-725.
    [15]Inoue A, Zhang T, Masumoto T. La-AI-Ni amorphous alloy with a widesupercooled liquid region. MaterTrans JIM,1989(30):965-972.
    [16]A.Inoue. Materials science foundation. Switzerland:TransTech Publieations,1998
    [17]A.Peker, W.L.Johnson. A highly processable metallic glassZr41.2Ti13.8Cu12.5Ni10Be22.5. Appl Phys Lett,1993,63(17):2342-2344.
    [18]R.Busch.Thermophysical properties of bulk metallic glass forming liquids.JOM,2000,52(7):39-42.
    [19]Inoue A, Nishiya N, Kimura H. Praparation and thermal stability of bulkamorphous Pd40Cu30Ni10P20alloy cyclindy of72mm in diameter. Mater TransJIM,1997,38(2):179-183.
    [20]W.H.Wang, C.Dong, C.H.Shek. Bulk metallic glasses. Mater Sci Eng R,44:45(2004).
    [21]W.H.Wang. Role of minor addition in the formation and proprieties of bulkmetallic glasses. Prog Mater Sci,52(4)540-596(2007).
    [22] A.L.Greer. Confusion by design. Nature.1993,366:303-304
    [23]Na Chen, Laura Martin, Dmitri V. Luzguine-Luzgin, Akihisa Inoue. Role ofAlloying Additions in Glass Formation and Properties of Bulk Metallic Glasses.Materials2010,3,5320-5339.
    [24]Stern E.A. Theory of the extended X-ray absorption fine structure Phys Rev B10(1974)3027-3037.
    [25]寺内晖.固体物理.8(1983),134.
    [26]Oeamura K, Suzuki R, Murakami Y. In Rapid Quenched Metals IV, ed. Masumotoand Suzuk, Vol l p431(Sendal, Japan, Inst Met,1981).
    [27]戴道生,韩汝琪.非晶态物理学.第一版,北京:电子工业出版社,1988,62.
    [28]H.S.Chen. Glass transition temperature in glassy alloys: Effects of atomic sizesand the heats of mixing. Acta Mat,1974,22(7):897-900.
    [29]J.H.Gibbs, E.A.Domarzio. Nature of the glass transition and the glass state. JChem Phys,1958,28(1):373-383.
    [30]J.L.Finney. Random packings and the structure of simple liquids. Pros R Soc,1970,319:479-493.
    [31]D.Turnbull, M.H.Cohen. Free-volume model of the amorphous phase: glasstransition. J Chem Phys,1961,34(1):120-125.
    [32]惠希东,陈国良.块体非晶合金.第一版,北京:化学工业出版社,2007,40-47.
    [33]Inoue A. Bulk amorphous alloy-preparation and fundamental characteristics.Switzerland: Trans Tech Publications Ltd,1998,17-25.
    [34]Makino A, Inoue A, Masumoto T. Nanocrystalline soft magnetic Fe-M-B (M=Zr,Hf,Nb) alloys produced by crystallization of amorphous phase (overview).Mater Trans JIM,1995,36(7):924-938.
    [35]Turnbull D. Under what condition can a glass be formed. Contemp Phys,1969,10(5):473-488.
    [36]Lu Z.P, Li Y, Ng S.C. Reduced glass transition temperature and glass formingability of bulk glass forming alloys. J Non Cryst Solids,2000,270:103-114.
    [37]Li Y, Ng S.C, Ong C.K, et al. Glass forming ability of bulk glass forming alloys.Scr Met Mater,1997,36(7):783-787.
    [38]Zhang H.F, Ding B.Z, Hu Z.Q. Structure and hydriding properties of compositeMgZrFeCr. Acta Metal,2001,49(5):921-926.
    [39]A.Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys,Acta Mater,2000,48:276-306.
    [40]Z.P.Lu, C.T.Liu. A new glass-forming ability criterion for bulk metallic glasses.Acta mater,2002,50(13):3501-3512.
    [41]Q.J.Chen, J.Shen, D.L.Zhang, et al. A New Criterion for Evaluating theGlass-forming Ability of Bulk Metallic Glasses. Materials Science andEngineering A.2006,433:155-160.
    [42]Inoue A,Yokoyama Y, Shinohara Y, et al. Preparation of Bulk Zr-base AmorphousAlloy by a Zone Melting Method. Mater Trans JIM,1994,(35):923-926.
    [43]Warlimont H. Amorphous metals driving materials and process innovations.MaterSci Eng A,2001,3042306:61.
    [44]Chen H.S. Metallic glasses. Chin J Phys,1990,28(5):407-425.
    [45]Inoue A. Development and applications of bulk glassy alloys [EB/OL].(2007-10-15). http://www. qdtiancheng. com/xy/files/inoue.pdf.
    [46]Schuh C.A, Hufnagel T.C, Ramamurty U. Mechanical behavior of amorphousalloys. Acta Mater,2007,55:4067.
    [47]Loffler J.F. Recent progress in the area of bulk metallic glasses. Zeitschrift fürMetallkunde,2006,97(2):225.
    [48]Greer A.L. Metallic glasses on the threshold. Mater Today,2009,12(122):14.
    [49]Scully J.R, Gebert A, Payer J.H. Corrosion and related mechanical properties ofbulk metallic glasses. J Mater Res,2007,22(2):302.
    [50]Kakiuchi H, Inoue A, Onuki M, et al. Application of Zr-based bulk glassy alloysto golf clubs. Mater Trans,2001,42(4):678.
    [51]Schroers J, Lohwongwatana B, Johnson W L, et al. Precious bulk metallic glassesfor jewelry applications. Mater Sci Eng A,2007,4492451:235.
    [52]Mizubayashi H, Murayama S, Tanimoto H. Feasibility study of high-strength andhigh-dam ping materials by means of hydrogen internal friction in amorphousalloys. J Alloys Compd,2002,330:389.
    [53]http:∥w ww. liquidmetal. com/index/.
    [54]Inoue A, Nishiyama N. New bulk metallic glasses for applications asmagnetic-sensing, chemical, and structural materials. MRS Bull,2007,32:651.
    [55]金延.非晶态合金弹簧材料的开发.金属功能材料,2004,11(5):42.
    [56]Mivíek K. Metallic glass:[Doctor of University of Ljubljana]. San Francisco:University of Ljubljana,2006:12.
    [57]Qiu K.Q, Wang A.M, Zhang H.F, et al. Mechanical properties of tungsten fiberreinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics,2002,10(11212):1283.
    [58]Hufnagel T.C. Preface to the viewpoint set on mechanical behavior of metallicglasses. Scripta Mater,2006,54:317.
    [59]Nieh T.G, Wadsworth J. Homogeneous deformation of bulk metallic glasses.Scripta Mater,2006,54:387.
    [60]Nishiyama N, Amiya K, Inoue A. Bulk metallic glasses for industrial products;New structural and functional applications. Mater Res Soc Symp Proceed,2004,806:MM10.3.1.
    [61]张志豪,刘新华,谢建新. Zr基非晶合金精密直齿轮超塑性成形试验研究.机械工程学报,2005,41(3):151.
    [62]Changa J.J, Choa K M, et al. Effects of annealing on the mechanical properties ofZr-based bulk metallic glass for use in die applications. Mater Sci Eng A,2005,396:423.
    [63]Chen Q, Liu L, Chan K C. Deformation behavior of Zr-based bulk metallic glassand composite in the supercooled liquid region. Sci China Ser G-Phys MechAstron,2008,51(4):349.
    [64]Molokanov V.V, Petrzhik M.I, Mikhailova T.N, et al. Supercooled liquid region inZr-Cu based bulk amorphous alloys. J Non-Cryst Solids,1996,2052207:508.
    [65]Greer A.L, Ma E. Bulk metallic glasses: at the cutting edge of metals research.MRS Bull2007,32:611-619.
    [66]张博,汪卫华.铈基块体金属玻璃的研究进展.科学通报,2007,52(13):1477.
    [67]Zhang B, Zhao D Q, Pan M X, et al. Amorphous metallicplastic. Phys Rev Lett,2005,94:205502.
    [68]Golden Kumar, Hong X.T, Jan Schroers. Nanomoulding with amorphous metals.Nature,2009,457(12):868.
    [69]辛全礼,吕志果,郭振美.负载型非晶态合金催化剂的制备、表征及其应用.河南化工,2007,24(2):17.
    [70]石延平.非晶态合金应力传感器的研究.淮海工学院学报,2008,17(3):11.
    [71]Nishiyama N, Amiya K, Inoue A. Novel applications of bulk metallic glass forindustrial products. J Non-CrystSolids,2007,353:3615.
    [72]Xie F, Yang H, Li S.Q, et al. Amorphous magnetoelastic sensors for the detectionof biological agents. Intermetallics,2009,17:270.
    [73]郭金花,连法增,倪晓俊等.块体非晶合金及其涂层的电化学行为.功能材料,2007,38(11):1817.
    [74]Jayaraj J, Kim Y C, Seok H K, et al. Development of metallic glasses for bipolarplate application. Mater Sci Eng A,2007,4492451:30.
    [75]袁泉,潘牧,袁润章.非晶态合金催化剂在低温燃料电池中的应用.电源技术,2006,30(6):516.
    [76]郭世海,张羊换,王煜等. Fe基非晶合金的恒导磁性能研究.功能材料,2007,38(11):1790.
    [77]Yuan W.J, Liu F.J, et al. Core loss characteristics of Fe-based amorphous alloys.Intermetallics,2009,17:278.
    [78]李传福,张川江,辛学祥.非晶态合金的制备与应用进展.山东轻工业学院学报,2008,22(1):50.
    [79]Huang L, Qiao D.C, Green B.A, et al. Bio-corrosion study on zirconium-basedbulk metallic glasses. Intermetallics,2009,1:195.
    [80]Liu L, Qiu C.L, Huang C.Y, et al. Biocompatibility of Ni-free Zr-based bulkmetallic glasses. Intermetallics,2009,17:235.
    [81]Qin F.X, Wang X.M, Xie G.Q, et al. Distinct plastic strain of Ni-freeTi-Zr-Cu-Pd-Nb bulk metallic glasses with potential for biomedical applications.Intermetallics,2008,16:1026.
    [82]Bruek H.A, Christman T, Rosakis A.J, et al. Quasi-static constitutive behavior ofZr41.2Ti13.8Cu12.5Ni10.0Be22.5bulk amorphous alloys.Scripta Metal Mater,1994(30):429-434.
    [83]A Inoue. Stabilization of Metallic Supercooled Liquid and Bulk AmorphousAlloys. Acta Mater.2000,48:279-306.
    [84]王刚. Zr41.25Ti13.75Ni10Cu12.5Be22.5大块非晶合金纳米晶化及力学行为研究:
    [哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2005:3-100.
    [85]F Spaepen. A Microscopic Mechanism for Steady State Inhomogenous Flow inMetallic Glasses. Acta Metall,1977,25:407-415.
    [86]D.turnbull, M.H.Cohen. Free-volum model of the amorphous phase: glasstransition. J Chem Phy,1961,34,120-125.
    [87]Argon A.S. Plastic deformation in metallic glasses. Acta Meter,1979,279(1):47-58.
    [88]Steif P.S, Spaepen F, Hutchinson J W. Strain localization in amorphous metals.Acta Metal,1982,30(2):447-455.
    [89]Xing Da, Shen Wei, Sun Jun, et al. Glass forming ability of bulk(Zr0.6Cu0.2Ni0.1Al0.1)100-xTixamorphous alloys. Journal of Harbin Institute ofTechnology,2004,36(12):1265-1268.
    [90]Jeamy H.J, Chen H.S, Wang T.T. Plastic flow and fracture of metallic glass.Metallurgical Transactions,1972,3:699.
    [91]Gilman J.J. Flow via dislocation in idea glasses. Journal of Applied Physics,1973,44:675.
    [92]Li J.C.M. Dislocations in amorphous metals. Metal Trans A,1985,16(12):2227-2230.
    [93]张哲峰,伍复发,范吉堂等.非晶合金材料的变形与断裂.中国科学G辑:物理学力学天文学2008,38(4):349-372.
    [94]Loffler J.F. Bulk metallic glass. Intermetallics,2003(11):529-540.
    [95]Ma E. Nanocrystalline materials controlling plastic in stability.Nature Mater,2003(2):7-8.
    [96]Fan C, Ott T.R, Hufuagel T C. Metallic glass matrix composite with precipitatedductile reinforcement. Appl phy Lett,2002(81):1020-2022.
    [97]Eckert J, Kuhn U, Matten N, et al. Structural bulk metallic glasses with differentlength-scale of constituent phase. Intermetallics,2002(10):1153-1190.
    [98]Hufhagel T.C, Fan C, Ott R.T, et al. Controlling shear band behavior in metallicglasse through microstructural design. Intermetallics,2002(10):1153-1158.
    [99]Lee J.C, Kim Y.C, Ahn J.P. Enhanced plasticity in a bulk amorphous matrixcomposite macroscopic and microscopic viewpoint studies. Acta Mater,2005(53):129-139.
    [100]He G, Zhang Z.F, ALoser W, et al. Effect of Ta on glass formation, thermalstability and mechanical properties of a Zr52.25Cu28.5Ni4.75A19.5Ta5bulk metallicglass. Acta Mate,2003(5)2383-2395.
    [101]Xing L.Q, Li Y, Ramesh K.T, et al. Enhanced plastic strain in Zr-based bulkamorphous alloys. Phys Rev B,2001(64):180201-1-180201-4.
    [102]J.Schroers, W.L.Johnson. Ductile bulk metallic glass. Phys Rev Lett,2004,93:255506-1-4.
    [103]K.E.Yao, F.Ruan, Y.Q.Yang, et al. Superductile bulk metallic glass. Appl physLett,200622:122106-l-3.
    [104]Y.H.Liu, G.Wang, R.J.Wang, et al. Plastic bulk metallic glasses at roomtemperature. Science,2007,315:1385-1388.
    [105]L.Y.Chen, Z.D.Fu, G.Q.Zhang, et al. New Glass of plastic bulk metallic glass.Phys Rev Lett,2008100:075501-1-4.
    [106]Choi-Yim H, Johnson W.L. Bulk metallic glass matrix composites. Appl PhysLett,1997(71):3808-3810.
    [107]Inoue A, Zhang T, Kim Y.H. Synthesis of high strength bulk amorphousZr-Al-Ni-Cu-Ag alloys with a nanoscales secondary phase. Mater Trans JIM,1997(38):749-755.
    [108]Hu X, Ng S.C, Feng Y.P, et al. Glass forming ability and in-situ compositeformationin Pd-based bulk metallic glasses. Acta Mater,2003(51):561-572.
    [109]Dandliker R.B, Conner R.D, Johnson W.L. Melt infiltration casting of bulkmetallic glass matrix composites. J Mater Res,1998,13(10):2896.
    [110]Hao Li, Ghatu Subhash, Laszlo J.K, et al. Mechanical behavior of tungstenpreform reinforced bulk metallic glass composites. Mater Sci Eng,2004, A403:134.
    [111]Choi-Yim H, Conner R.D, Szuecs F, et al. Processing, microstructure andproperties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6bulkmetallic glass composites. Acta Mater,2002,50(19):2737.
    [112]孙玉峰,张国胜,魏炳忱. TiC原位增强块状Cu47Ti34Zr11Ni8非晶合金复合材料.科学通报,2004,49(2):115.
    [113]Kato H, Inoue A. Synthesis and mechanical properties of bulk amorphousZr-Al-Ni-Cu alloys containing ZrC particles. Mater Trans JIM,1997,38(4):793.
    [114]Dandliker R.B, Conner R.D, Johnson W.L. Melt infiltration casting of bulkmetallic-glass matrix composites. Jounal of materials reseach,1998,13(10):2896-2901
    [115]Choi-Yim H, Conner R D, Szuecs F, et al. Quasistatic and dynamic deformationof tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6bulk metallic glass matrixcomposites. Scripta Materialia,2001,45:1039-1045.
    [116]R.D.Conner, R.B.Dandliker, V.Scruggs, et al. Dynamic deformation behavior oftungsten-fiber/metallic-glass matrix composites. International Journal of ImpactEngineering,2000,24(5):435-444.
    [117]Conner R.D, Dandliker R.B, Johnson W L. Mechanical properties of tungstenand steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5metallic glass matrixcomposites. Acta Mater,1998,46(17):6089-6102.
    [118]I.K.Jeng, P.Y.Lee. Mechanically alloyed tungsten carbide particle/Ti50Cu28Ni15Sn7glass matrix composites. Mater Sci Eng A,2007,449-510:1090-1094.
    [119]Hidemi T, Kato H, Matsuo A, et al. Synthesis and Mechanical Properties ofZr55Al10Ni5Cu30Bulk Glass Composites Containing ZrC Particles Formed by theIn Situ Reaction. Mater Trans JIM,2000,1(11):1454-1459.
    [120]Kato H, Hirano T, Matsuo A, et al. High strength and good ductility ofZr55Al10Ni5Cu30bulk glass containing ZrC particles. Scripta Mater,2000,43:503-507.
    [121]Inoue A, Fan C, Ta Kenchi A. High strength nanocrystalline alloys in a Zr-basedsystem containing compound and glass phases. Journal of Non-crystalline Solids,1999,250-252:724-728.
    [122]Inoue A. Bulk amorphous and nanocrystalline alloys with high functionalproperties. Materials Science and Engineering A,2001,304-306:1-10.
    [123]Xing L.Q, Herlach D.M, Cornet M. Nanocrystal evolution in bulk amorphousZr57Cu20Al10Ni8Ti5alloys and its mechanical properties. Mater Sci Eng A,1998,241:216-225.
    [124]Calin M, Eckert J, Schultz L. Improved mechanical behavior of CuTi-based bulkmetallic glass by in situ formation of nanoscale precipitates.Scripta Mater2003(48):653-658.
    [125]Hays C.C, Kim C P, Johnson W L.Micorstructure controlled shear band patternformation and enhanced plasticity of bulk metallic glasses containing in situformed ductile phase dendrite dispersions. Phys Rev Lett.2000(84):2901-2904.
    [126]Kuhn U, Eckert J, Mattern N, et al. ZrNbCuNiAl bulk metallic glass matrixcomposite containing dendrite bcc phase precipitates. Appl Phys Lett.2002(80):2478-2480.
    [127]Bian Z, Ahmad J, Zhnag W, et al. In suit formed (Cu0.6Zr0.25Ti0.15)93Nb7bulkmetallic glass matrix composites. Mater Trans,2004,(45):2346-2350.
    [128]孙国元.铸态内生塑性晶体相/大块金属玻璃复合材料研究:[南京理工大学博士学位论文].南京:南京理工大学,2006:45-72.
    [129]Douglas C Hofmann, Jin-yoo Suh, et al. Designing metallic glass matrixcomposites with high toughness and tensile ductility, Nature2008(451):1085-1089.
    [130]B.Zhang, D.Q.Zhao, M.X.Pan, et al. Amorphous Metallic Plastic. Phys Rev Lett,2005,94:205502-205505.
    [131]X.K.Xi, L.L.Li, B.Zhang, et al. Correlation of Atomic Cluster Symmetry andGlass-Forming Ability of Metallic Glass. Phys Rev Lett,2007,99:095501-095504.
    [132]O.N.Senkov, D.B.Miracle. Effect of the atomic size distribution on glass formingability of amorphous metallic alloys. Mater Res Bullet,2001,36:2183-2198.
    [133]D.Xu, G.Duan, W.L.Johnson. Unusual Glass-Forming Ability of BulkAmorphous Alloys Based on Ordinary Metal Copper. Phys Rev Lett,2004,92:245504-245507.
    [134]S.Sharma, C.Suryanarayana. Effeet of Nb on the glass-forming ability ofmechanically alloyed Fe-Ni-Zr-B alloys. Scripta Mater,2008,58:508-511.
    [135]J.J.oak, D.V.L.Luzgin, A.Inoue. Investigation of glass-forming ability,deformation and corrosion behavior of Ni-freeTi-based BMG alloys designed forapplication as dental implants. Mater Sci Eng C,2009,29:322-327.
    [136]W.Qin, J.Li, H.Kou, et al. Effects of alloy addition on the improvement of glassforming ability and plasticity of Mg-Cu-Tb bulk metallic glass.Intermetallies, inpress.
    [137]H.C.Yim, R.Busch, W.L.Johnson. The effect of silicon on the glass formingability of the Cu47Ti34Zr1lNi8bulk metallic glass forming alloy during processingof composites. J Appl Phys,1998,83:7993-7997.
    [138]G.J.Fan, L.F.Fu, D.C.Qiao, et al. Effect of microalloying on the glass-formingability of Cu60Zr30Ti10bulk metallic glass. Non-Crystalline Solids,2007,353:421-4222.
    [139]王金国.应变诱发法镁合金AZ91D半固态组织演变机制:[吉林大学博士论文].长春:吉林大学,2005:2-6.
    [140]Flemings M.C. Behavior of metal alloys in the semi-solid state. Metall Trnas,1991,22(A)(5):957-981
    [141]邢书明.难变形钢铁材料半固态连铸技术研究:[北京科技大学博士论文].北京:北京科技大学,1999:1-10.
    [142]谢水生,黄声宏.半固态金属加工及其应用.北京:冶金工业出版社,1999:1-20.
    [143]谢水生,潘洪平,丁志勇.半固态金属加工技术研究现状与应用.塑性工程学报,2002,9(2):52-56.
    [144]刘政,赵素,雷蕾.金属半固态加工技术的应用与进展.上海有色金属,2005,26(2):79-85.
    [145]刘丹.铝合金液相线制浆及半固态加工工艺与理论研究:[东北大学博士论文].沈阳:东北大学,2001:3-11.
    [146]Dokatkin B.I, Eskin G.I. Ingots of Aluminum Alloys with Non-dendriticStructure Produced by Ultransonic Treatment for Deformation in the Semi-solidState. The4th Int Conf on Semi-solid Processing of Alloys and composites,England:1996,193.
    [147]Brows S.B, Flemings M.C. Net-shape Forming via Semi-solid Processing.Advanced Materials&Processes,1993,1:36-39.
    [148]Hirt G, Zillgen M, Cremer T. Recent Advances in Thixo-forming to ProduceNear Net Shape Components.首届中国国际压铸会议论文集,北京:1997,259-264.
    [149]谢辉,许丽君,袁中岳.预变形及液固两相区等温处理对ZA27合金铸态组织的影响.中国有色金属学报,2001,11(1):47.
    [150]陈体军,郝远,狄杰建.变质剂对ZA27合金半固态等温热处理组织的影响.热加工工艺,2001,(4):23.
    [151]许广济,陆松,陈体军.硼、钛对半固态ZA27组织演变的影影.甘肃工业大学报,2000,26(1):19.
    [152]李元东,郝远,闫峰云. AZ91D镁合金在半固态等温处理中的组织演变.中国有色金属学报,2001,11(4):571.
    [153]朱鸣芳,苏华钦.半固态等温热处理制备粒状组织ZA12合金的研究.铸造,1996,(4):1.
    [154]朱鸣芳,苏华钦.半固态等温热处理对ZA12合金组织和性能的影响.金属热处理,1996(1):33-36.
    [155]郝远,狄杰建,陈体军. ZA27合金在半固态等温热处理中的相变研究.材料科学与工程,2001,19(3):69.
    [156]李元东,郝远,金玉花.半固态等温热处理对AZ91D镁合金组织的影响.甘肃工业大学学报,2001,27(1):27.
    [157]刘勇,杨湘杰.液固两相区等温热处理对ZA101枝晶形貌的影响.铸造工程,2002,(4):18.
    [158]Kiuchi M, Yanagimoto J, Sugiyana S. Discussion on Microstructure of MushyAlloys in Heating Process. Proceeding of the5th International Conference onSemi-solid Processingof Alloys and Comprisites, Colorado USA:[s.n],1999.
    [159]Wang J.L, Su Y.H, Tsao Y. A1Structural Evolution of Conventional CastDendritic and Spray-cast Nondendritic Structure during Isothermal Holding inthe Semi-solid State. ScriptaMaterialia,1997,37(12):2003.
    [160]Hardy S.C, Voorhees P.W. Ostwald Ripening in a Systemwith High VolumeFraction of Coarsening Phase.Metallurgica.Transactions A,1998,19A(11):271.
    [161]Turkeli A.N. Formation of Non-dendritic Structure in7075Wrought AluminumAlloy by SIMA Process and Effect of HeatTreatment. PICSPAC Sheffield, June,19-21.1996.71-74.
    [162]J.W.Qiao, S.Wang, Y.Zhang, et al. Large plasticity and tensile necking ofZr-based bulk metallic glass matrix composites synthesized by the Bridgmansolidification. Appl Phys Lett,2009(94):151905-1-3.
    [163]寇生中,高忙忙,赵吉鹏等.定向凝固法制备非晶基自生复合材料初步研究.铸造,2008(1)557-560.
    [164]Advenit Makaya, TakuyaTamura, Kenji Miwa. Cooling Slope Casting Processfor Synthesis of Bulk Metallic Glass Based Composites with Semisolid Structure.Metallurgical and Materials Transactions A,2010.
    [165]www.tms.org/jom.html.
    [166]Johnson W.L. Bulk glass-forming metallic alloys: science and technology.MRSBull1999,24:42-56.
    [167]Ashby M.F, Greer A.L. Metallic glasses as structural materials.Scripta Mater2006,54:321-326.
    [168]Inoue A. Stabilization of metallic supercooled liquid and bulk amorphousalloys.Acta Mater2000,48:279-306.
    [169]Min Q, Fecht H J. On the thermodynamics and kinetics of crystallization of aZr-Al-Ni-Cu-based bulk amorphous alloy. Materials Characterization,2001,47:215-218.
    [170]Uriarte J.L, Zhang T, Deledda S, et al. Real-time detection of metastable phasesin Zr-based bulk glasses during fast heating in a synchrotron beam.Journal ofNon-Crystalline Solids,2001,287:197-200.
    [171]Zhao D.Q, Zhang Y, Pan M.X, et al. The effects of iron addition on theglass-forming ability and properties of Zr-Ti-Cu-Ni-Be-Fe bulk metallic glassMaterial Transactions, JIM,2000,41(11):1427-1431.
    [172]Eckert J, Kübler A, Reger-Leonhard A, et al. Glass transition, viscosity of thesupercooled liquid and crystallization behaviour of Zr-Al-Cu-Ni-Fe metallicglasses. Mater Trans, JIM,2000,41(11):1415-1422.
    [173]陈伟荣,王英敏,姜建兵等.吸铸法制备Zr-Al-Ni-Cu-Mo大块非晶合金.热加工工艺,2001,6:25-26.
    [174]张庆生,张海峰,邱克强等.机械合金化Zr-Al-Ni-Cu-Ag非晶合金的晶化行为.材料研究学报,2002,16(1):9-12.
    [175]佟存柱,郑萍,白海洋等.块体金属玻璃Zr48Nb8Cu12Fe8Be24低温电阻的研究.物理学报,2002,51(7):1559-1563.
    [176]Inoue A. Bulk amorphous and nanocrystalline alloys with high functionalproperties. Materials Science and Engineering,2001, A304-306:1-10.
    [177]Sordelet D.J, Rozhkova E, Besser M F, et al. Formation of quasicrystals inZr-Pd-(Cu) melt spun ribbons and mechanically milled powders. Intermetallics,2002,10:1233-1240.
    [178]Damote L.C, Mendoza-Zelis L.A, Eledda S.D, et al. Effect of preparationconditions on the short-range order in Zr-based bulk glass-forming alloys.Materials Science and Engineering A,2003, A343:194-198.
    [179]张杰,雒建林,白海洋等. Zr-Ti-Cu-Ni-Be大块非晶低温比热.物理学报,2001,50(9):1747-1750.
    [180]Qiu K.Q, Wang A.M, Zhang H.F, et al. Mechanical properties of tungsten fiberreinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics,2002,10:1283-1288.
    [181]He D.W, Zhao Q, Wang W.H, et al. Pressure-induced crystallization in a bulkamorphous Zr-based alloy. Journal of Non-Crystalline Solids,2002,297:84-90.
    [182]Y.Yokoyama, A.Kobayashi, K.Fukaura, A.Inoue. Oxygen embrittlement andeffect of the addition of Ni element in a bulk amorphous Zr-Cu-Al alloy. MaterTrans JIM,43(2002)571-574.
    [183]F.Jiang, Z.J.Wang, Z.B.Zhang, et al. Formation of Zr-based bulk metallic glassesfrom low purity materials by scandium addition. Scripta Materialia2005,(53):487-491.
    [184]Lin X.H, Johnson W.L, Rhim W.K. Effect of oxygen impurity on crystallizationof an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. MaterialsTransactions JIM,1997,38(5):473-7.
    [185]Eckert et al. Crystallization behavior and phase formation in Zr-Al-Cu-Nimetallic glass containing oxygen. Materials Transactions JIM,1998,39(6):623-632.
    [186]Gebert A, Eckert J, Schultz L. Effect of oxygen on phase formation and thermalstability of slowly cooled Zr65Al7.5Cu17.5Ni10metallic glass. Acta Mater,1998,46(15):5475-82.
    [187]D.H.Ping, K.Hono, A.Inoue. Oxygen distribution in Zr65Cu15Al10Pd10nanocrystalline alloys. Materials Science Forum,1999,307-31-6. Journal ofMetastable and NanocrystallineMaterials,1999,1:31-6. Trans Tech Publications,Switzerland.
    [188]Ping D.H, Hono K, Inoue A. In: Bulk metallic glasses. MRS vol.554. Johnson WL, Inoue A, Liu C T, editors. Warrendale (PA): MRS Publication,199.p.3-8.
    [189]M.W.Chen, A.Inoue, T.Sakurai, et al. Impurity oxygen redistribution in ananocrystallized Zr65Cr15Al10Pd10metallic glass. Applied Physics Letters,1999,74(6):812-4.
    [190]Murty B.S, Ping D.H, Hono K, et al. Direct evidence for oxygen stabilization oficosahedral phase during crystallization of Zr65Cu27.5Al7.5metallic glass.Applied Physics Letters,2000,76(1):55-57.
    [191]Inoue Akihisa, et al. Formation of icosahedral quasicrystalline phase inZr-Al-Ni-Cu-M (M=Ag, Au or Pt) systems. Materials Transactions JIM,1999,40(10):1181-4.
    [192]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic sizedifference, heat of mixing and period of constituent elements and its applicationto characterization of main alloying element. Mater Trans,2005,46(12):2817-2829.
    [193]Chen L.C, Spaepen F. Calorimetric evidence for the micro-quasicrystallinestructure of 'amorphous' Al/transition metal alloys. Nature1988,336(6197):366-368.
    [194]Xu D.H, Duan G, Johnson W.L. Unusual Glass-Forming Ability of BulkAmorphous Alloys Based on Ordinary Metal Copper. Phys Rev Lett2004,92:245504.
    [195]Inoue A, Zhang T. Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5alloy. Mater Trans JIM1996,37(11):1726-1729.
    [196]Liu Y.H, Wang G, Wang R.J, et al. Superplastic Bulk Metallic Glasses at RoomTemperature. Science,2007,315:1385-1388.
    [197]Dong W, Zhang H, Cai J, et al. Enhanced Plasticity in a Zr-Based Bulk MetallicGlass Containing Nanocrystalline Precipitates.Journal of Alloys and Compounds,2006,425: L1-L4.
    [198]Zhu Z.W, Zhang H.F, Sun W.S, et al. Processing of Bulk Metallic Glasses withHigh Strength and Large Compressive Plasticity in Cu50Zr50.Scripta Materialia,2006,54:1145-1149.
    [199]Das J, Tang M.B, Kim K.B, et al.“Work-Hardenable” Ductile Bulk MetallicGlass. Physical Review Letters,2005,94:205501.
    [200]Huang Y.J, Shen J, Sun J.F. Bulk metallic glasses: Smaller is softer. AppliedPhysics Letters,2007,90(8):081919.
    [201]K.Mondal, T.Ohkubo, T.Mukai, et al. Glass forming ability and mechanicalproperties of quinary Zr-based bulk metallic glasses. Materials Transactions.48(2007),1322-1326.
    [202]X.F.Bian, J.Ma, J.Chin. Liquid structural transition of Al-Si alloy. Mech Eng.5(3)(1992)176-182.
    [203]Xiufang Bian, Weimin Wang. Thermal-rate treatment and structuretransformation of Al-13wt.%Si alloy melt. Mater Lett,44(2000)54-58.
    [204]L.Novak, L.Potocky, A.Lovas, et al. Influence of the melt overheating and thecooling rate on the magnetic properties of Fe83.4B16.6amorphous alloys. J MagnMagn Mater,19(1980)149.
    [205]S.Takayama, T.Oi. The effects of processing conditions on magnetic propertiesof amorphous alloys. Appl Phys,50(1979)1595.
    [206]V.P.Manov, S.I.Popel, P.I.Buler, et al. The influence of quenching temperature onthe structure and properties of amorphous alloys. Mater Sci Eng A,133(1991):535-540.
    [207]Xiufang Bian, Minghua Sun. Thermal-rate treatment and critical thickness forformation of amorphous Al85Ni10Ce5alloy. Materials Letters,57(2003)2460-2465.
    [208]V.Manov, P.Popel, E.Brook-Levinson, V.Molokanov. Influence of the treatmentof melt on properties of amorphous materials: ribbons, bulks and glass coatedmicrowires. Materials Science and Engineering A,304-306(2001):54-60
    [209]Mukherjee S, Zhou Z, Schroers J, et al. Overheating threshold and its effect ontime-temperature-transformation diagrams of zirconium based bulk metallicglasses. Appl Phys Lett,2004,84:5010-2.
    [210]李如生.非平衡热力学和好散结构.第一版,北京:清华大学出版社,1986,164.
    [211]Bian X.F, Guo J, Lv X, et al. Prediction of glass-forming ability of metallicliquid. Appl Phys Lett,2007,91:221910.
    [212]Popel P.S, Chikova O.A, Matveev V.M. Metastable Colloidal States of LiquidMetallic Solutions. High Temp Mater Processes,1995,14:219-234.
    [213]Simonet V, Hippert F, Audier M, et al. Local order in liquids formingquasicrystals and approximant phases. Phys Rev,2001,65B:024203.
    [214]Schenk T, Simonet V, Holland-Moritz D, et al. Temperature dependence of thechemical and topological short-range order in undercooled and stable Al-Fe-Coliquids. Europhys Lett,2004,65:34-40.
    [215]Li H, F.Pederiva. Influence of Intermediate Range Order on the Glass Formation.J Phys Chem,2004,108B:5438.
    [216]Schroers J, Wu Y, Johnson W.L. Heterogeneous influences on the crystallizationof Pd43Ni10Cu27P20. Philos Mag A,2002,82(6):1207-17.
    [217]Ramachandrarao P. Studies on undercooled metalic melts. Prog Mater Sci,1997,42:301-309.
    [218]金属玻璃译文集.中国科学院上海冶金研究所等.上海:上海科学技术文献出版社,1980,5.
    [219]孙军,张国君,刘刚.大块非晶合金力学性能研究进展.西安交通大学学报,2001,35(6):640-645.
    [220]Saotome Y, Iwazaki H. Superplastic extrusion of microgear shaft of10μm inmodule. Journal of Microsystem Technologies,2000,4(6):126-129.
    [221]Y.Saotome, H.Iwazaki. Superplastic backward microextrusion of microparts formicro-electro-mechanical systems.Journal of Materials Processing Technology,2000,119:307-311.
    [222]Y.Saotome, S.Miwa, Tao Zhang, et al. The microformability of Zr-based alloy inthe supercooled liquid state and their application to micro-dies. Journal ofMaterials Processing Technology,2001,113:64-69.
    [223]Yasunori Saotome, Toshihisa Hatori, Tao Zhang, et al. Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5amorphous alloy in supercooled liquidstate. Materials Science and Engineering A,2001,716-720.
    [224]Yasunori Saotomea, Kenichi Imai, Shigeo Shioda, et al. Themicronanoformability of Pt-based metallic glass and the nanoforming ofthree-dimensional structures. Intermetallics,2002,1241-1247.
    [225]A.Inoue. Bulk glassy and nonequilibrium crystalline alloys by stabilization ofsupercooled liquid: fabrication,functional properties and applications (Part2),Proc Japan Acad.81, Ser. B(2005).
    [226]李波.块体锆基非晶合金焊接物理冶金机理的研究:[华中科技大学博士论文].华中科技大学,2005,12.
    [227]A.A.Kundig, M.Cucinelli, P.J.Uggowitzer, et al. Preparation of high aspect ratiosurface microstructures out of a Zr-based bulk metallic glass. Microelectronicengineering,2003(67-68):405-409.
    [228]Mao J, Zhang H.F, Fu H.M, et al. The Effects of Casting Temperature on theGlass Formation of Zr-Based Metallic Glasses. Adv Eng Mater,2009,11:986-991.
    [229]J.Mao, H.F.Zhang, H.M.Fua, et al. Effects of casting temperature on mechanicalproperties of Zr-based metallic glasses. Materials Science and Engineering A527(2010)981-985.
    [230]M.H.Cohen, D.Turnbull. Molecular transport in liquids and glasses. Chem. Phy,31(1959)1164-1169.
    [231]Turnbull D, Cohen M.H. On the free-volume model of the liquid-glass transition.Chem Phys,1970,52:3038-3041.
    [232]Jiang W.H, Liu F.X, Wang Y.D, et al. Comparison of mechanical behave betweenbulk and ribbon Cu-based metallic glasses. Mater Sci Eng A,2006,430(1-2):350-354.
    [233]Wu T.W, Spaepen F. The relation between enbrittlement and structural relaxationof an amorphous metal. Philos Mag B,1990,61:739-750.
    [234]Launey M.E, Busch R, Kruzic J.J. Effect of free volume changes and residualstresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallicglass. Acta Mater,2008,56:500-510.
    [235]T.Ohkubo, D.Nagahama, T. Mukai, K.Hono. Stress-strain behaviors of Ti-basedbulk metallic glass and their nanostructures. Mater Res,22(2007)1406-1413.
    [236]Altounian Z, Batalla E, Strom-Olsen J, et al. The influence of oxygen and otherimpurities on the crystallization of NiZr2and related metallic glasses.J Appl Phys,1987,61:149-155.
    [237]C.Can Aydine, Ersan. Residual stresses in a bulk metallic glass cylinder inducedby thermal tempering. Mechanics of Materials,37(2005)201-212.
    [238]R.D.Conner, W.L.Johnson, N.E.Paton, et al.Shear bands and cracking ofmetallic glass plates in bending.Appl.Phys,2003,94:904-911.
    [239]Schuster B.E, Wei Q, Hufnagel T.C, et al. Size-independent strength anddeformation mode in compression of a Pd-based metallic glass. Acta Materialia,2008,56(18):5091-5100.
    [240]Wu W.F, Han Z, Li Y. Size-dependent “malleable-to-brittle” transition in a bulkmetallic glass. Applied Physics Letters,2008,93(6):061908.
    [241]P.Murali, U Ramamurty. Embrittlement of a Bulk Metallic Glass due to sub-TgAnnealing. Acta Mater,2005,53:1467-1478.
    [242]W.H.Wang, Z.Bian, P.Wen, et al. Role of addition in formation and properties ofZr-based bulk metallic glasses. Intermetallies,2002,10:1249-1257.
    [243]H.Ma, L.L.Shi, J.Xu, et al. Discovering inch-diameter metallic glasses inThree-dimensional composition space. Appl Phys Lett,200587:1819151-3.
    [244]B.Zhang, D.Q.Zhao, M.X.Pan, et al. Amorphous Metallic Plastic. Phys Rev Lett,2005,94:205502-205505.
    [245]N.H.Tariq, B.A.Hasan, J.I.Akhter, et al. Evolution of loops in ductile Zr-basedbulk metallic glass during plastic deformation. Journal of Alloys and Compounds,477(2009) L8-L10.
    [246]Ye J.C, Lu J, Yang Y, et al. Study of the intrinsic ductile to brittle transitionmechanism of metallic glasses. Acta Mater,57(2009)6037.
    [247]M.H.Lee, J.Y.Lee, D.H.Bae, et al. A development of Ni-based alloys withenhanced plasticity. Intermetallics,12(2004)1133-1137.
    [248]E.S.Park, D.H.Kim, T.Ohkubo, et al. Enhancement of glass forming ability andplasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses. Non-Cryst.Sol,351(2005)1232-1238.
    [249]J.C.Oh, T.Ohkubo, Y.C.Kim, et al. Phase separation in Cu43Zr43Al7Ag7bulkmetallic glass. Scripta Mater,53(2005)165-169.
    [250]L.Q.Xing, Y.Li, K.T.Ramesh, et al. Enhanced plastic strain in Zr-based bulkamorphous alloys. Phys Rev B64(2001)180201.
    [251]K.Monda, T.Ohkubo, T.Mukai, et al. Glass forming ability and mechanicalproperties of quinary Zr-based bulk metallic glasses. Materials Transactions,48(2007)1322-1326.
    [252]Debabrata Mishra, A Perumal, P Saravanan, et al. Effect of Co or Mn addition onthe softmagnetic properties of amorphous Fe89-xZr11Bx(x=5,10) alloy ribbons.Journal of Magnetism and Magnetic Materials,321(2009)4097-4102.
    [253]Huazhi Fang, Xidong Hui, Guoliang Chen. Effects of Mn addition on themagnetic property and corrosion resistance of bulk amorphous steels. Journal ofAlloys and Compounds,464(2008)292-295.
    [254]吴霖,李山东.微量Mn元素对La62Al14Cu24块体非晶合金形成能力的影响.金属功能材料,2010,17(2):5-7.
    [255]Yoffe E.H. The moving Griffith crack. Philos Mag,1951,42(330):739-750.
    [256]Johnson J.W, Holloway D.G. On the shape and size of the fracture zones on glassfracture surfaces. Philos Mag,1966,14:731-743.
    [257]Tuler F.R, Butcher B.M. A criterion for the time dependence of dynamic fracture.Int J Fract Mech,1968,4(4):431-437.
    [258]Fineberg J, Gross S.P, Marder M, et al. Instability in dynamic fracture. Phys RevLett,1991,67(4):457-460.
    [259]Marder M, Liu X.M. Instability in lattice fracture. Phys Rev Lett,1993,71(15):2417-2420
    [260]Adda-Bedia M, Arias R, Amar M.B, et al. Dynamic instabilities of brittlefracture. Phys Rev Lett,1999,82(11):2314-2317.
    [261]Oleaga G.E. Remarks on a basic law for dynamic crack propagation. J MechPhys Solids,2001,49(10):2273-2306.
    [262]Sherman D, Beery I. From crack deflection to lattice vibration macro toatomistic examination of dynamic cleavage fracture. J Mech Phys Solids,2004,52(8):1743-1761.
    [263]Pérez R, Gumbsch P. Directional anisotropy in the cleavage fracture of silicon.Phys Rev Lett,2000,84(23):5347-5350.
    [264]Hauch J.A, Holland D, Marder M.P, et al. Dynamic fracture in single crystalsilicon. Phys Rev Lett,1999,82(19):3823-3826.
    [265]Adda-Bedia M. Brittle fracture dynamics with arbitrary paths. The branchinginstability under general loading.J Mech Phys Solids,2005,53(1):227-248.
    [266]Abraham F.F. Unstable crack motion is predictable. J Mech Phys Solids,2005,53(5):1071-1078.
    [267]Nyoungue A, Azari Z, Abbadi M, et al. Glass damage by impact spallation.Mater Sci Eng A,2005,407(1-2):256-264.
    [268]Abraham F.F. Dynamics of brittle fracture with variable elasticity. Phys RevLett,1996,77(5):869-872.
    [269]Buehler M.J, Gao H.J. Dynamical fracture instabilities due to localhyperelasticity at crack tips. Nature,2006,439(7074):307-310.
    [270]Sharon E, Gross S.P, Fineberg J. Energy dissipation in dynamic fracture. PhysRev Lett,1996,76(12):2117-2120.
    [271]Cramer T, Wanner A, Gumbsch P. Energy dissipation and path instabilities indynamic fracture of silicon single crystals. Phys Rev Lett,2000,85(4):788-791.
    [272]Ramulu M, Kobayashi A.S, Kang B S J. Dynamic crack curving and branchingin line-pipe. Exp Mech,1983, March:317-322.
    [273]Pang Shu Jie, Zhang Tao, Asami Katsuhiko, et al. Formation, corrosion behavior,and mechanical properties of bulk glassy Zr-A l-Co-Nb alloys. Journal ofMaterials Research,2003,18(7):1652-1658.
    [274]Raju V.R, U.Kuhn, U.Wolff, et al. Corrosion behavior of Zr-based bulkglass-forming alloys containing Nb or Ti. Materials Letters,2002,57:173-177.
    [275]Hays C.C, Schroers J, Geyer U, et al. Glass forming ability in theZr-Nb-Ni-Cu-Al bulk metallic glasses. Mater Sci Forum,2000,343-346:103-108.
    [276]Choi Yim H, Johnson W.L. Bulk metallic glass matrix composites. Appl PhysLett,1997,71:3808-3810.
    [277]孙民,柳林,王敬丰等. Nb对Zr基块体非晶合金热稳定性、GFA及机械性能的影响.金属学报,2005,41(5):534-538.
    [278]曹扬,陈光,盛婧等. Nb对Zr基块体金属玻璃形成能力与显微硬度的影响.有色金属,2011,63(1):62-64.
    [279]杨元政,仇在宏,李喜峰等. ZrAlCuNiNb合金的GFA及性能.特种铸造及有色合金,2005,25(4):203-204.
    [280]Fan C, Liu C, Inoue A, et al. Effects of Nb addition on icosahedralquasicrystalline phase formation and glass-forming ability of Zr-Ni-Cu-Almetallic glasses.Appl Phys Lett,2001,79:1024-1026.
    [281]Fan C, Inoue A. Formation of nano-scale icosahedral quasicrystals andglass-forming ability in Zr-Nb-Ni-Cu-Al metallic glasses. Scripta Mater2001,45:115-120.
    [282]Zhang T, Inoue A. Thermal Stability and Mechanical Properties of Bulk GlassyCu-Zr-Ti-(Nb,Ta) Alloys.Materials Transactions,43(2002):1367-1370.
    [283]C.C.Hays, C.P.Kim, W.L.Johnson. Enhanced Plasticity of Bulk Metallic GlassesContaining Ducitle Phase Dendrite Dispersions.Materials Science Forum,2000,(343-346):191-196.
    [284]Inoue A, Tomioka H,Masumoto T. Mechanical properties of ductile Fe-Ni-Zrand Fe-Ni-Zr(Nb or Ta) amorphous alloys containing fine crystalline particles.JMater Sci,1983,18:153-160.
    [285]周玉,武高辉.材料分析测试技术.第一版,哈尔滨:哈尔滨工业大学出版社,2004,309-320.
    [286]曹庆平. Cu基块状非晶合金的玻璃形成能力、晶化机制及变形诱发的结构和力学性能的变化:[上海交通大学博士学位论文].上海:上海交通大学,2007,74-76.
    [287]齐吉泰,与长兴,印志强等.非晶态固体相分离和结晶的关系,长春师范学院学报,2006,25(6):35-37.
    [288]K.Hono, Y.Zhang, A.Inoue, et al. Atom probe studies of nanocrystallinemicrostructural evolution in some amorphous alloys. Mater Ttrans JIM,1995,36(7):909-917.
    [289]M.Ccalin, U.Koster. Nanocrystallization of Al-Ni-Y and Al-Ni-Nd metallicglasses. Mater Sci Forum,1998,269-272:749-754.
    [290]Yokoyama, Yamano K, Fukaura K, et al. Nanocrystalline Zr-based bulk glassyalloys with high flexural strength. Mater Trans JIM,1999,40:1015-1018.
    [291]Kim C P. PhD Thesis, California Institute of Technology, Pasadena California,2001.
    [292]陈宗淇,王光信,徐桂英.胶体与界面化学.第1版,北京:高等教育出版社,2001
    [293]J.Das, K.B.Kim, W.Xu, et al. Ductile metallic glasses in supercooled martensiticalloys. Mater Trans,200647(10):2606-2609.
    [294]Y.F.Sun, B.C.Wei, Y.R.Wang, et al. Plasticity improved Zr-Cu-Al bulk metallicglass matrix composites containing martensite phase. Appl Phys Lett,200587:051905-1-3.
    [295]Z.Bian, G.L.Chen, G.He, et al. Microstructure and ductile-brittle transition ofas-cast Zr-based bulk glass alloys under compressive testing. Mater Sci Eng,2001,A316:135-144.
    [296]L.H.Dai, Y.L.Bai. Basic mechanical behaviors and mechanics of shear bandingin BMGs. Int J Impact Eng,2008,35(704-716).
    [297]R.D.Conner, R.B.Dandliker, V.Scruggs, et al. Dynamic deformation behavior oftungsten-fiber/metallic glass-matrix composites. Int J Impact Eng,2000,24:435-444.
    [298]C.Fan, A.lnoue. Ductility of bulk nanocrystalline composites and metallicglasses at room temperature. Appl Phys Lett,200077(l):46-48.
    [299]曹杨.块体金属玻璃复合、晶化与性能研究:[南京理工大学博士学位论文].南京:南京理工大学,2009,52-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700