用户名: 密码: 验证码:
电力系统频率测量及其在数字语音真伪鉴别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率反映发电和负荷之间的动态平衡,是电力系统最基本的参数之一,准确快速的频率测量对电力系统运行、监测和控制具有重要的意义。频率波动不仅表征系统的动态行为而且包含丰富的时间信息,其变化具有均一性和独特性。利用这一特点,电网频率准则(Electric Network Frequency Criterion, ENF)将电网频率引入数字语音证据的真实性与完整性检测。本文研究电力系统频率测量方法,在北美电网频率监测系统FNET的基础上,将电力系统频率测量数据用于数字语音信号的真伪鉴别。
     在介绍FNET框架的基础上,推导用于第二代频率扰动记录单元(FrequencyDisturbance Recorder,FDR)的递归式离散傅立叶变换(Discrete Fourier Transform,DFT)算法,FDR算法引入信号再采样策略,根据频率估计的初值逐点校正数据窗内的电压采样点,确保在每个周期内的采样点数目保持不变,使得实际采样满足同步采样条件,达到提高频率和电压相量估计精度的目的。仿真结果表明FDR算法抑制噪声和谐波干扰的能力强、具有良好的稳态性能和动态频率跟踪能力;降低相角估计误差中的正弦误差项是进一步提高FDR算法精度的有效途径,提高电压信号的采样率、增加相角的多项式拟合阶数和FDR硬件装置中A/D转换器的字长并不从根本上改善FDR算法精度。
     提出一种改进的电网频率估计算法,引入采样点间隔参数k,采用四个间距为k的采样点建立电压采样点与频率之间的数学关系,根据最小二乘原理得出频率估计的表达式,分别考虑白噪声和谐波的影响,推导出频率估计的近似显性表达式。采样点间隔参数影响频率估计精度,当信号的圆周频率与采样点间隔参数的乘积取π3时,算法具有最佳的白噪声和三次谐波抑制能力。仿真得出的最佳采样点间隔和理论值一致;算法的精度在稳态接近FDR算法,但动态跟踪能力优于FDR算法。该方法不借助数学优化算法或迭代过程即可估计电网频率,所需的采样点数目少、运算速度快、响应时间短,适合短时间窗条件下的频率估计。
     将电网频率测量数据用于数字语音真伪鉴别,提出一套完整的数字语音真伪鉴别流程。采用稳健统计方法辨识FDR原始数据中的尖峰值,引入B样条基函数,通过B样条基函数的线性组合重构FDR原始数据,达到消除缺失数据段和尖峰值的目的,构建用于真伪鉴别的大型标准电网频率数据库;提出一种振荡器误差校正算法,引入数值偏差和时间间隔偏差两个参数,采用递推方式校正ENF估计值序列和电网频率子序列,解决现有的ENF序列无法与电网标准频率直接比较的问题;改进短时傅立叶变换,采用两阶段ENF估计方法,从窗函数、补零操作、噪声干扰、频率偏移量四个方面,给出检验ENF估计子的准确度和精确度的流程。算例表明,文中的ENF估计子不需要窗函数和补零操作且近似于无偏估计,在减少运算量的同时能获得满意的频率估计效果。通过电网频率数据库匹配确定数字语音记录的制作时间并实例验证该真伪鉴别流程的正确性。
     引入相位估计鉴别数字语音信号的真伪。考虑DFT结果中负频率分量的影响,得出一种正弦信号相位的高精度估计公式;在信号导数法估计频率的基础上,根据导数信号的相位推导出原始正弦信号的相位估计表达式。算例表明,相位是检测数字语音信号真伪的另一个有效特征量,文中两种相位估计算法均能在篡改点附近检测出估计值不同程度的突变,通过估计值的变化率即可判断数字语音记录是否被修改过。
Frequency is one of the fundamental parameters of power system since it canfaithfully reflect the dynamic behavior of system generation and load. Fast and accuratefrequency estimation plays a critical role in system operation, monitoring and control.Frequency variation not only embodies system’s dynamic behaviors but contains plentyof time information. From different time scales, the variation is uniform and unique.The electric network frequency criterion (ENF) makes good use of this feature byincorporating power system frequency with forensic digital audio authentication (DAA).This paper analyzes power system frequency measurement methods and then applies thefrequency measurements in DAA on the basis of the North American power systemfrequency monitoring system FNET.
     Based on brief introduction of the FNET system, recursive discrete Fouriertransform (DFT) used in the second generation of frequency disturbance recorder (FDR)is deduced followed by a re-sampling strategy. The re-sampling strategy adjusts eachdata sample in one data window according to the coarse estimation given by therecursive DFT. It guarantees that the number of sample points within one cycle remainsconstant regardless of frequency change of a real voltage signal; hence, the sampling isnearly a synchronized sampling and as a consequence the frequency and voltage phasorcan be estimated accurately. Simulation results indicate that the FDR algorithm is robustto white noise and harmonics, and that the frequency tracking ability in static anddynamic condition is excellent. Further improvement of the accuracy of the FDRalgorithm lies in reduction of sinusoidal term in the phase angle estimation error,whereas the increase of sampling frequency, polynomial fitting order of phase anglesand word length of the A/D converter do not necessarily refine the accuracy.
     An improved frequency estimation algorithm is proposed using least squaremethod. A sampling interval parameter k is introduced, and four neighboring sampleswith interval k are adopted to establish the mathematic relationship between voltagesamples and system frequency. Noise and harmonics are considered separately whichhelps to deduce the final explicit formula for frequency estimation. The samplinginterval is the key parameter of this algorithm, and its optimal value is obtained if theproduction of signal radian frequency and sapling interval equals to π3. If thiscondition is met during estimation, the algorithm will then possess the best performance of noise and3rd-harmonics suppression. Simulation results validate this theoretical value;the performance of this proposed method is close to that of the FDR algorithm in staticscenarios, but has better frequency tracking ability. It can estimate frequency withoutiteration, and needs a few sampling points; hence, the frequency is measured in a fastermanner with a shorter time delay, which implies that the proposed method is suitable forfast frequency estimation of a short data window.
     An entire procedure of DAA is proposed. Robust statistical method is introduced toidentify the spikes contained in FDR raw data, and a series of B-spline basis functionsare used to replace the missing segments; an ad hoc standard power system frequencydatabase for DAA is then established when outliers are removed. An iterative oscillatorerror correction algorithm is proposed by introducing value offset and time intervaloffset, and this method overcomes mismatch problem of the extracted ENF sequenceagainst the FDR data. A two-step method for ENF estimation is used by adjusting thecurrent short-time Fourier transform. To learn the accuracy and precision of any ENFestimator, a procedure considering windowing function, zero-padding factor, noisyinfluence and frequency bin offset is proposed. Testing results indicate that the ENFestimator in this paper needs neither windowing function nor zero-padding factor, and isnearly an unbiased estimator, which avoids the intensive computation withoutcompromising the accuracy. Determination of production time of an audio recording istested by frequency database matching and the entire authentication procedure isvalidated by case studies.
     Phase estimation is introduced as an alternative method for DAA. Considering thenegative frequency component of the DFT output, a phase angle estimation method withhigh precision is deduced. Based on the signal derivative method for frequencyestimation, another phase estimation method using phase angle of derivative signal isproposed. Massive testing indicates that the phase information is an effective feature forthe DAA, and that the two methods can detect change near the tampering points. Bychecking the rate of change of phase sequence the tampering points can be located then.
引文
[1] G. Andersson, P. Donalek, R. Farmer et al. Causes of the2003major grid blackouts in NorthAmerican and Europe, and recommended means to improve system dynamic performance [J].IEEE Trans. on Power Systems,2005,20(4):1922-1928.
    [2]胡学浩.美加联合大面积停电事故的反思和启示[J].电网技术,2003,27(9):71-76.
    [3]薛禹胜.综合防御由偶然故障演化为电力灾难-北美‘8.14’大停电的警示[J].电力系统自动化,2003,27(18):1-5.
    [4]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4.
    [5]李再华,白晓民,丁剑等.西欧大停电事故分析[J].电力系统自动化,2007,31(1):1-3.
    [6]陈向宜,陈允平,李春艳等.构建大电网安全防御体系-欧洲大停电事故的分析及思考[J].电力系统自动化,2007,31(1):4-8.
    [7]林伟芳,汤涌,孙华东等.巴西‘2.4’大停电事故及对电网安全稳定运行的启示[J].电力系统自动化,2011,35(9):1-5.
    [8]周双喜,朱凌志,郭锡玖等.电力系统电压稳定性及其控制[M].北京:中国电力出版社2003.
    [9] B. E. Koenig. Authentication of forensic audio recordings [J]. Journal of the Audio EngineeringSociety,1990,38(1-2):3-33.
    [10] C. Grigoras. Digital audio recording analysis: The electric network frequency criterion [C].Diamond Cut Productions, Inc., Applications Notes AN-4,2003.
    [11] C. Grigoras. Digital audio recording analysis: the electric network frequency (ENF) criterion [J].The International Journal of Speech Language and the Law,2005,12(1):63-76.
    [12] C. Grigoras. Applications of ENF criterion in forensic audio, video, computer andtelecommunication analysis [J]. Forensic Science International,2007(167):136-143.
    [13] C. Grigoras. Applications of ENF analysis in forensic authentication of digital audio and videorecordings [J]. The Journal of Audio Engineering Society,2009,57(9):643-661.
    [14]杨萃.噪声环境下频率估计算法研究[D].广州:华南理工大学博士学位论文,2010.
    [15]胡广书.现代信号处理教程[M].北京:清华大学出版社2004.
    [16] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal-part1:fundamentals [J]. Proceeding of the IEEE,1992,80(4):520-538.
    [17] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal-part2:algorithms and applications [J]. Proceeding of the IEEE,1992,80(4):540-568.
    [18]谢小荣,韩英铎.电力系统频率测量综述[J].电力系统自动化,1999,23(3):54-58.
    [19] M. Akke. Frequency estimation by demodulation of two complex signals [J]. IEEE Trans. onPower Delivery,1997,12(1):157-163.
    [20] C.T. Nguyen, K. Srinivasan. A new technique for rapid tracking of frequency deviations basedon level crossings [J]. IEEE Trans. on Power Apparatus and Systems,1984,103(8):2230-2236.
    [21] M.M. Begovic, P. M. Djuric, S. Dunlap et al. Frequency tracking in power networks in thepresence of harmonics [J]. IEEE Trans. on Power Delivery,1993,8(2):480-486.
    [22] S. M. Kay. Modern spectral estimation-theory and application [M]. NJ: Prentice-Hall,1988.
    [23]张贤达.现代信号处理[M].(第二版)北京:清华大学出版社2002.
    [24]罗鹏飞.统计信号处理[M].北京:电子工业出版社,2009.
    [25]张贤达.矩阵分析与应用[M].北京:清华大学出版社2004.
    [26] M.S. Sachdev, M.M. Giray. A least error squares technique for determining power systemfrequency [J]. IEEE Trans. on Power Apparatus and Systems,1985,104(2):437-444.
    [27] M.M. Giray, M.S. Sachdev. Off-nominal frequency measurement in electric power systems [J].IEEE Trans. on Power Delivery,1989,4(3):1573-1578.
    [28]胡绍民.基于最小二乘拟合测量电力系统频率的新方法[J].电力系统自动化,2000,32-34.
    [29] A. Abdollahi and F. Matinfar. Frequency estimation: a least-squares new approach [J]. IEEETrans. on Power Delivery,2011,26(2):790-798.
    [30] A. Lopez, J. C. Montano, M. Castilla et al. Power system frequency measurement under non-stationary situations [J]. IEEE Trans. on Power Delivery,2008,23(2):562-567.
    [31] R. Chudamani, K. Vasudevan and C.S. Ramalingam. Real-time estimation of power systemfrequency using nonlinear least squares [J]. IEEE Trans. on Power Delivery,2009,24(3):1021-1028.
    [32] V.V. Terzija, Milenko B. Djuric and B. D. Kovacevic. Voltage phasor and local system frequencyestimation using Newton-type algorithm [J]. IEEE Trans. on Power Delivery,1994,9(3):1368-1374.
    [33] V.V. Terzija. Improved recursive Newton-type Algorithm for frequency and spectra estimation inpower systems [J]. IEEE Trans. on Instrumentation and Measurement,2003,52(5):1654-1659.
    [34] J. Yang, H.S. Xi and W. Guo. Robust modified Newton algorithm for adaptive frequencyestimation [J]. IEEE Signal Processing Letter,2007,14(11):879-882.
    [35] L. Ljung. Analysis of recursive stochastic algorithms [J]. IEEE Trans. on Automatic Control,1977,22(4):551-575.
    [36] A. K. Pradhan, A. Routray and A. Basak. Power system frequency estimation using least meansquare technique [J]. IEEE Trans. on Power Delivery,2005,20(3):1812-1816.
    [37] B. Widrow, J. Mccool and M. Ball. The complex LMS algorithm [J]. Proceeding of the IEEE,1975,63(4):719-720.
    [38] R. H. Kwong and E. W. Johnston. A variable step size LMS algorithm [J]. IEEE Trans. on SignalProcessing,1992,40(7):1633-1642.
    [39] D.C. Rife and R.R. Boorstyn. Single-tone parameter estimation from discrete-time observations[J]. IEEE Trans. on Information Theory,1974,20(5):591-598.
    [40] M.D. Kusljevic. A simple recursive algorithm for frequency estimation [J]. IEEE Trans. onInstrumentation and Measurement,2004,53(2):335-340.
    [41] M. D. Kusljevic. A simple recursive algorithm for simultaneous magnitude and frequencyestimation [J]. IEEE Trans. on Instrumentation and Measurement,2008,57(6):1207-1214.
    [42] T.S. Sidhu and M.S. Sachdev. An iterative technique for fast and accurate measurement of powersystem frequency [J]. IEEE Trans. on Power Delivery,1998,13(1):109-115.
    [43] T.S. Sidhu. Accurate measurement of power system frequency using a digital signal processingtechnique [J]. IEEE Trans. on Instrumentation and Measurement,1999,48(1):75-81.
    [44] Z. Salcic, S. K. Nguang and Y.Z. Wu. An improved Taylor method for frequency measurement inpower systems [J]. IEEE Trans. on Instrumentation and Measurement,2009,58(9):3288-3294.
    [45] W. Premerlani, B. Kasztenny and M. Adamiak. Development and implementation of a synchro-phasor estimator capable of measurements under dynamic conditions [J]. IEEE Trans. on PowerDelivery,2008,23(1):109-122.
    [46] Y. Pantazis, O. Rosec and Y. Stylianou. Iterative estimation of sinusoidal signal parameters [J].IEEE Signal Processing Letters,2010,17(5):461-464.
    [47]许庆强,索南加乐,宋国兵等.振荡时电力系统瞬时频率的实时测量[J].中国电机工程学报,2003,23(1):51-54.
    [48]陈朝辉,黄少锋,杨奇逊.基于综合相量的电力系统振荡频率实时测量[J].电力系统自动化,2004,28(4):32-35.
    [49]许庆强.基于幅值线性变化模型的频率测量新算法[J].电力系统自动化,2008,32(21):32-36.
    [50] J.K. Wu, J. Long and J.X. Wang. High-accuracy, wide-range frequency estimation methods forpower system signals under nonsinusoidal conditions [J]. IEEE Trans. on Power Delivery,2005,20(1):366-374.
    [51]吴杰康,龙军,王辑祥.基于数字微分算法的系统频率快速准确测量[J].电工技术学报,2004,19(4):93-97.
    [52] A.V. Oppenheim and R.W. Schafer. Digital signal processing [M]. NJ: Prentice-Hall,1975.
    [53]胡广书.数字信号处理-理论、算法与实现[M].(第二版)北京:清华大学出版社2003.
    [54]王华奎.数字信号处理及应用[M].(第二版)北京:高等教育出版社2009.
    [55]吴湘淇.信号与系统[M].(第三版)北京:电子工业出版社2009.
    [56] P. Duhamel and M. Vetterli. Fast Fourier transforms: a tutorial review and a state of the art [J].Signal Processing19(1990):259-299.
    [57] A. G. Phadke, J. S. Thorp and M. G. Adamiak. A new measurement technique for trackingvoltage phasors, local system frequency, and rate of change of frequency [J]. IEEE Trans. onPower Apparatus Systems,1983,102(3):1025-1038.
    [58] A.G. Phadke and J. S. Thorp. Synchronized phasor measurements and their applications [M]. NY:Springer,2008.
    [59] IEEE Standard for synchrophasors for power systems [S]. IEEE Std. C37.118-2005.
    [60] J. D. La Ree, V. Centeno, J. S. Thorp et al. Synchronized phasor measurement applications inpower systems [J]. IEEE Trans. on Smart Grid,2010,1(1):20-27.
    [61] J.T. Xi and J. F. Chicharo. A new algorithm for improving the accuracy of periodic signalanalysis [J]. IEEE Trans. on Instrumentation and Measurement,1996,45(4):827-830.
    [62]江道灼,孙伟华,陈素素.电网相量实时同步测量的一种新方法[J].电力系统自动化,2003,27(15):40-44.
    [63] G. Benmouyal. An adaptive sampling-interval generator for digital relaying [J]. IEEE Trans. onPower Delivery,1989,4(3):1602-1609.
    [64] D. Hart, D. Novosel, Y. Hu et al. A new frequency tracking and phasor estimation algorithm forgenerator protection [J]. IEEE Trans. on Power Delivery,1997,12(3):1064-1073.
    [65]闵勇,丁仁杰,韩英铎等.自适应调整采样率的相量在线测量算法研究[J].电力系统自动化,1998,22(10):10-13.
    [66]马仁政,陈明凯.减少频谱泄漏的一种自适应采样算法[J].电力系统自动化,2002,(4):55-58.
    [67]陈明凯,郑翔骥,汪晓强等.减少频谱泄漏的一种新的等角度间隔采样递推算法[J].电工技术学报,2005,20(8):94-98.
    [68]易立强同步相量测量算法研究及实现[D].湖南大学硕士学位论文,2007.
    [69] M. Akke and J.S Thorp. Sample value adjustment improves phasor estimation at off-nominalfrequencies [J]. IEEE Trans. on Power Delivery,2010,25(4):2255-2263.
    [70] V.K. Jain, W. L. Collins and D. C. Davis. High-accuracy analog measurements via interpolatedFFT [J]. IEEE Trans. on Instrumentation and Measurement,1979,28(2):113-122.
    [71] B. G. Quinn. Estimating frequency by interpolation using Fourier coefficients [J]. IEEE Trans. onSignal Processing,1994,42(5):1264-1267.
    [72] B. G. Quinn. Estimation of frequency, amplitude, and phase from the DFT of a time series [J].IEEE Signal Processing,1997,45(3):814-817.
    [73] M. D. Macleod. Fast nearly ML estimation of the parameters of real or complex single tones orresolved multiple tones [J]. IEEE Trans. on Signal Processing,1998,46(1):141-148.
    [74] B. G. Quinn, E. J. Hannan. The estimation and tracking of frequency [M]. UK: CambridgeUniversity Press,2001.
    [75] J. Borkowski. LIDFT-the DFT linear interpolation method [J]. IEEE Trans. on Instrumentationand Measurement,2000,49(4):741-745.
    [76] E. Aboutanios. A modified dichotomous search frequency estimator [J]. IEEE Signal ProcessingLetters,2004,11(2):186-188.
    [77] E. Aboutanios and B. Mulgrew. Iterative frequency estimation by interpolation on Fouriercoefficients [J]. IEEE Signal Processing Letters,2005,53(4):1237-1242.
    [78] E. Jacobsen and P. Kootsookos. Fast, accurate frequency estimators [J]. IEEE Signal ProcessingMagazine,2007, May,123-125.
    [79] C. Candan. A method for fine resolution frequency estimation from three DFT samples [J]. IEEESignal Processing Letters,2011,18(6):351-354.
    [80] C. Yang and G. Wei. A noniterative frequency estimator with rational combination of threespectrum lines [J]. IEEE Trans. on Signal Processing,2011,59(10):5065-5070.
    [81] D. Agrez. Dynamics of frequency estimation in the frequency domain [J]. IEEE Trans. onInstrumentation and Measurement,2007,56(6):2111-2118.
    [82] D. Belga, D. Dallet and D. Petri. Accuracy of sine wave frequency estimation by multipointinterpolated DFT approach [J]. IEEE Trans. on Instrumentation and Measurement,2010,59(11):2808-2815.
    [83] J. Schoukens, R. Pintelon and H.V. Hamme. The interpolated fast Fourier transform: acomparative study [J]. IEEE Trans. on Instrumentation and Measurement,1992,41(2):226-232.
    [84] T. Grandke. Interpolation algorithms for discrete Fourier transforms of weighted signals [J].IEEE Trans. on Instrumentation and Measurement,1983,32(2):350-355.
    [85] G. Andria, M. Savino and A. Trotta. Windows and interpolation algorithms to improve electricalmeasurement accuracy [J]. IEEE Trans. on Instrumentation and Measurement,1989,38(4):856-863.
    [86] K. F. Chen and S. L. Mei. Composite interpolated fast Fourier transform with the Hanningwindow [J]. IEEE Trans. on Instrumentation and Measurement,2010,59(6):1571-1579.
    [87] K. Duda. DFT interpolation algorithm for Kaiser-Bessel and Dolph-Chebyshev windows [J].IEEE Trans. on Instrumentation and Measurement,2011,60(3):784-790.
    [88] F.S. Zhang, Z.X. Geng and W. Yuan. The algorithm of interpolating windowed FFT for harmonicanalysis of electric power system.[J]. IEEE Trans. on Power Delivery,2001,16(2):160-164.
    [89] R.G. Yang and H. Xue. A novel algorithm for accurate frequency measurement using transformedconsecutive points of DFT [J]. IEEE Trans. on Power Delivery,2008,23(3):1057-1062.
    [90] J.Z. Yang and C. W. Liu. A precise calculation of power system frequency [J]. IEEE Trans. onPower Delivery,2001,16(3):361-366.
    [91] M. H. Wang and Y. Z. Sun. A practical, precise method for frequency tracking and phasorestimation [J]. IEEE Trans. on Power Delivery,2004,19(4):1547-1552.
    [92] M. H. Wang and Y. Z. Sun. A practical method to improve phasor and power measurementaccuracy of DFT algorithm [J]. IEEE Trans. on Power Delivery,2006,21(3):1054-1062.
    [93]张同尊,邵俊松,方勇杰.一种基于离散傅立叶变换的频率测量算法[J].电力系统自动化,2007,31(22):70-72.
    [94]牟龙华,刑锦磊.基于傅立叶变换的精确频率测量算法[J].电力系统自动化,2008,32(23):67-70.
    [95]磨少清,李啸骢.一种高精度的改进傅立叶测频算法[J].电力系统自动化,2003,27(12):48-49.
    [96]吴笃贵,贺春,易永辉.一种新颖的频率跟踪算法[J].电网技术,2004,28(14):39-43.
    [97] T. Radil, P. M. Ramos and A. Cruz Serra. New spectrum leakage correction algorithm forfrequency estimation of power system signals [J] IEEE Trans. on Instrumentation andMeasurement,2009,58(5):1670-1679.
    [98]张介秋,李爽,韩峰岩等.电力系统高精度频率估计的谱泄漏对消算法[J].电工技术学报,2005,20(12):30-35.
    [99]王柏林.频谱小偏差校正新方法[J].电力系统自动化,2005,29(20):46-49.
    [100]李一泉,何奔腾.一种基于傅氏算法的高精度测频方法[J].中国电机工程学报,2005,26(2):78-81.
    [101] P. Zhang, H. Xue and R. G. Yang. Shifting window average method for accurate frequencymeasurement in power systems [J]. IEEE Trans. on Power Delivery,2011,26(4):2887-2889.
    [102] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear Estimation [J]. Proceeding ofthe IEEE,2004,92(3):401-422.
    [103] A.A. Girgis and R.G. Brown. Application of Kalman filter in computer relaying [J]. IEEE Trans.on Power Apparatus Systems,1981,100(7):3387-3395.
    [104] M.S. Sachdev, H. C. Wood and N. G. Johnson. Kalman filtering applied to power systemmeasurements for relaying [J]. IEEE Trans. on Power Apparatus and Systems,1985,104(12):3565-3573.
    [105] A. A. Girgis, W. B. Chang and E. B. Markram. A digital recursive measurement scheme for on-line tracking of power system harmonics [J]. IEEE Trans. on Power Delivery,1991,6(3):1153-1160.
    [106] H. Ma and A. A. Girgis. Identification and tracking of harmonic sources in a power system usingKalman filter [J]. IEEE Trans. on Power Delivery,1996,11(3):1659-1665.
    [107] C. I. Chen, G. W. Chang, R. C. Hong et al. Extended real model of Kalman filter for time-varying harmonics estimation [J]. IEEE Trans. on Power Delivery,2010,25(1):17-26.
    [108] K. R. Shih and S. J. Huang. Application of a robust algorithm for dynamic state estimation of apower system [J]. IEEE Trans. on Power Systems,2002,17(1):141-147.
    [109] P. K. Dash and M. V. Chilukuri. Hybrid S-transform and Kalman filtering approach for detectionand measurement of short duration disturbances in power networks [J]. IEEE Trans. onInstrumentation and Measurement,2004,53(2):746-753.
    [110] A.A. Girgis and T. L. Hwang. Optimal estimation of voltage phasors and frequency deviationusing linear and non-linear Kalman filtering: theory and limitations [J]. IEEE Trans. on PowerApparatus Systems,1984,103(10):2943-2951.
    [111] A. A. Girgis and W. L. Peterson. Adaptive estimation of power system frequency deviation andits rate of change for calculating power system overloads [J]. IEEE Trans. on Power Delivery,1990,5(2):585-594.
    [112] S. Bittanti and S.M. Savaresi. On the parameterization and design of an extended Kalman filterfrequency tracker [J]. IEEE Trans. on Automatic Control,2000,45(9):1718-1724.
    [113] K. Nishiyama. A nonlinear filter for estimating a sinusoidal signal and its parameters in whitenoise: on the case of a single sinusoid [J]. IEEE Trans. on Signal Processing,1997,45(4):970-981.
    [114] P. K. Dash, A. K. Pradhan and G. Panda. Frequency estimation of distorted power system signalsusing extended complex Kalman filter [J]. IEEE Trans. on Power Delivery,1999,14(3):761-766.
    [115] P. K. Dash, R. K. Jena, G. Panda et al. An extended complex Kalman filter for frequencymeasurement of distorted signals [J]. IEEE Trans. on Instrumentation and Measurement,2000,49(4):746-753.
    [116] A. Routray, A. K. Pradhan and K. P. Rao. A novel Kalman filter for frequency estimation ofdistorted signals in power systems [J]. IEEE Trans. on Instrumentation and Measurement,2002,51(3):469-479.
    [117] R. Aghazadeh, H. Lesani, M. Sanaye-Pasand et al. New technique for frequency and amplitudeestimation of power system signals [J]. IEE Proc. Generation, Transmission, Distribution,2005,152(3):435-440.
    [118] C. H. Huang, C.H. Lee, K. J. Shih et al. Frequency estimation of distorted power system signalsusing a robust algorithm [J]. IEEE Trans. on Power Delivery,2008,23(1):41-50.
    [119] C.H. Huang, C. H. Lee, K. J. Shih et al. A robust technique for frequency estimation of distortedsignals in power systems [J]. IEEE Trans. on Instrumentation and Measurement,2010,59(8):2026-2036.
    [120]罗谌持,张明.基于Sigma点卡尔曼滤波器的电力频率跟踪新算法[J].电力系统自动化,2008,32(13):35-39.
    [121]张世平,赵永平,张绍卿等.一种基于自适应陷波的电网频率测量新方法[J].中国电机工程学报,2003,23(7):81-83.
    [122]储昭碧.基于自适应陷波滤波器的电力信号时频分析[D].合肥:合肥工业大学博士学位论文,2009.
    [123]储昭碧,张崇巍,冯小英.基于自适应陷波滤波器的频率和幅值估计[J].自动化学报,2010,36(1):60-66.
    [124] L. Hsu, R. Ortega and G. Damm. A globally convergent frequency estimator [J]. IEEE Trans. onAutomatic Control,1999,44(4):698-713.
    [125] M. Mojiri and A. R. Bakhshai. An adaptive notch filter for frequency estimation of a periodicsignal [J]. IEEE Trans. on Automatic Control,2004,49(2):314-318.
    [126] M. Mojiri, M. K. Ghartemani, and A. Bakhshai. Estimation of power system frequency using anadaptive notch filter [J]. IEEE Trans. on Instrumentation and Measurement,2007,56(6):2470-2477.
    [127] M. Mojiri, D. Yazdani and A. Bakhshai. Robust adaptive frequency estimation of three-phasepower systems [J]. IEEE Trans. on Instrumentation and Measurement,2010,59(7):1793-1802.
    [128] M. Mojiri and A. R. Bakhshai. Estimation of n frequencies using adaptive notch filter [J]. IEEETrans. on Circuits and Systems-II: Express Briefs,2007,54(4):338-342.
    [129] P. J. Moore, R. D. Carranze and A. T. Johns. A new numeric technique for high-speed evaluationof power system frequency [J]. IEE Proceedings-Generation, Transmission and Distribution,1994,141(5):529-536.
    [130] J. Szafran and W. Rebizant. Power system frequency estimation [J]. IEE Proceedings-Generation,Transmission and Distribution,1998,145(5):578-582.
    [131]陈平,李庆民,张黎.电网瞬时频率的一种跟踪算法[J].电力系统自动化,2007,31(1):80-84.
    [132]曾启明,陈伟乐,谢志堂等.电力系统频率新的跟踪算法[J].中国电机工程学报,2004,24(6):70-72.
    [133]常宝波,张培荣,徐广腾.自适应相量计算方法[J].电力系统自动化,2008,32(11):53-55.
    [134]刘林,林涛,曹健等.基于时频原子变换的电力系统同步相量测量方法[J].电力系统自动化,2011,35(3):39-43.
    [135] R. Zivanovic. An adaptive differentiation filter for tracking instantaneous frequency in powersystems [J]. IEEE Trans. on Power Delivery,2007,22(2):765-771.
    [136] H. Karimi, M. Karimi-Ghartemani and M. R. Iravani. Estimation of frequency and its rate ofchange for applications in power systems [J]. IEEE Trans. on Power Delivery,2004,19(2):472-480.
    [137]吕干云,汪晓东,程浩忠.电能质量干扰环境下的电力系统基本频率估计[J].电工技术学报,2007,22(1):132-136.
    [138]胡晓菁,宋政湘,王建华等.基于高精度数字倍频原理实现电力系统频率跟踪的新技术[J].高压电器,2007,43(3):172-175.
    [139]胡晓菁,宋政湘,王建华等.数字倍频原理的频率跟踪技术的误差分析与改进[J].电力系统自动化,2007,31(1):85-88.
    [140] T. Lobos and J. Rezmer. Real-time determination of power system frequency [J]. IEEE Trans. onInstrumentation and Measurement,1997,46(4):877-881.
    [141] D. W.P. Thomas and M. S. Woolfson. Evaluation of frequency tracking methods [J]. IEEE Trans.on Power Delivery,2001,16(3):367-371.
    [142] I. Kamwa, M. Leclerc and D. McNabb. Performance of demodulation-based frequencymeasurement algorithms used in typical PMUs [J]. IEEE Trans. on Power Delivery,2004,19(2):505-514.
    [143] T.T. Nguyen and X. J. Li. Application of a Z-transform signal model and median filtering forpower system frequency and phasor measurements [J]. IET Generation, Transmission,Distribution,2007,1(1):72-79.
    [144] D. Borkowski and A. Bien. Improvement of accuracy of power system spectral analysis bycoherent resampling [J]. IEEE Trans. on Power Delivery,2009,24(3):1004-1013.
    [145] M. D. Kusljevic. Simultaneous frequency and harmonic magnitude estimation using decoupledmodules and multirate sampling [J]. IEEE Trans. on Instrumentation and Measurement,2010,59(4):954-962.
    [146] T. Lin and A. Domijian, Jr. Recursive algorithm for real-time measurement of electrical variablesin power systems [J]. IEEE Trans. on Power Delivery,2006,21(1):15-22.
    [147]应展烽,吴军基,易文俊.基于小波变化和三点法的基本频率测量[J].电机与控制学报,2010,14(2):65-70.
    [148]赵成勇,胥国毅,何明锋等.基于改进递归小波的电力系统频率测量[J].电工技术学报,2005,20(6):62-65.
    [149] L.L. Lai, W. L. Chan, C. T. Tse et al. Real-time frequency and harmonic evaluation usingartificial neural networks [J]. IEEE Trans. on Power Delivery,1999,14(1):52-59.
    [150]周莉,刘开培,马秉伟.基于支持相量机的电力系统频率测量新方法[J].高电压技术,2006,32(6):94-96.
    [151] M. D. Kusljevic, J. J. Tomic and L. D. Jovanovic. Frequency estimation of three-phase powersystem using weighted least-square algorithm and adaptive FIR filtering [J]. IEEE Trans. onInstrumentation and Measurement,2010,59(2):322-329.
    [152] R. A. Zadeh, A. Ghosh and G. Ledwich. Combination of Kalman filter and least-error squaretechniques in power system [J]. IEEE Trans. on Power Delivery,2010,25(4):2868-2880.
    [153] Z. G. Zhang, S.C. Chan and K. M. Tsui. A recursive frequency estimator using linear predictionand a Kalman-filter based iterative algorithm [J]. IEEE Trans. on Circuits and Systems-II:Express Briefs,2008,55(6):576-580.
    [154]蒋平,黄淑华,杨莉莉.数字取证[M]北京:清华大学/中国人民公安大学出版社2007.1.
    [155]周琳娜,王东明.数字图像取证技术[M]北京:北京邮电大学出版社2008.11.
    [156] B. E. Koenig and D. S. Lacey. Forensic authentication of digital audio recordings [J]. Journal ofthe Audio Engineering Society,2009,57(9):662-695.
    [157] R. C. Maher. Audio forensic examination: authenticity, enhancement, and interpretation [J].IEEE Signal Processing Magazine,2009,26(2):84-94.
    [158] S. Gupta, S. Cho and C.-C Jay Kuo. Current developments and future trends in audioauthentication [J]. IEEE Multimedia,2012Jan-Mar., pp:50-59.
    [159] M. Kajstura, A. Trawinska, and J. Hebenstreit. Application of the electrical network frequency(ENF) criterion a case of a digital recording [J]. Forensic Science International,2005(155):165-171.
    [160] M. Michalek. The application of power-line hum in digital recording authenticity analysis [J].Problem of Forensic Sciences,2009(LXXX):355-364.
    [161] A. Cooper. The electric network frequency (ENF) as an aid to authenticating forensic digitalaudio recordings-an automated approach [C]. Proceedings of the AES33rd InternationalConference, pp.1-10, Denver, CO, USA, June2008.
    [162] A. Cooper. An automated approach to the electric network frequency (ENF) criterion: theory andpractice [J]. The International Journal of Speech Language and the Law,2009,16(2):193-218.
    [163] E. B. Brixen. Techniques for the authentication of digital audio recordings[C].122nd AudioEngineering Society Convention, Vienna, Austria, May2007.
    [164] E. B. Brixen. Further investigation into the ENF criterion for forensic authentication[C].123rdAudio Engineering Society Convention, New York, USA, Oct.2007.
    [165] E. B. Brixen. ENF-quantification of the magnetic field [C]. Proceedings of the AES33rdInternational Conference, Denver, CO, USA,2008.
    [166] ENFSI Working Group for Forensic Speech&Audio Analysis. Best practice guidelines for ENFanalysis in forensic authentication of digital evidence[S]. FSAAWG-BPM-ENF-001, June2009.
    [167] R. W. Sander. Digital authenticity using the electric network frequency [C]. Proc. AES33rdInt.Conf. Audio Forensic, Theory and Practice, pp.1-11, Denver, CO, Jun2008.
    [168] R. Garg, A. L. Varna and M. Wu. Seeing ENF: natural time stamp for digital video via opticalsensing and signal processing [C]. Proceedings of the19thACM International Conference onMultimedia,2011, pp:23-32.
    [169] Y. Liu, R. Conners, Z. Yuan, and R. Jon Burgett. An accurate electrical network frequencyreference database-FNET system [C]. Presented in the SWGDE meeting, May2009.
    [170] Y. Liu, Z. Yuan, P. N. Markham, R. W. Conners and Y. Liu. Wide-area frequency as a criterionfor digital audio recording authentication [C]. IEEE Power Engineering Society General Meeting2011, pp.1-7.
    [171] M. Huijbregtse and Z. Geradts. Using the ENF criterion for determining the time of recording ofshort digital audio recordings [J]. Lecture Notes in Computer Science,2009,57(18):116-124.
    [172] D. P. N. Rodriguez and J. A. Apolinario. Evaluating digital audio authenticity with spectraldistances and ENF phase change [C]. IEEE International Conference on Acoustics, Speech andSignal Processing, pp:1417-1420.
    [173] D.P. N. Rodriguez, Jose A. Apolinario, and Luiz W. P. Biscainho. Audio authentication: detectingENF discontinuity with high precision phase analysis [J]. IEEE Trans. on Information Forensicsand Security,2010,5(3):534-543.
    [174]国家自然科学基金委员会工程与材料科学部电气科学与工程学科发展战略研究报告[M]北京:科学出版社,2006.
    [175] Y. Zhang, P. Markham, T. Xia, et al. Wide-area frequency monitoring network (FNET)architecture and applications [J]. IEEE Trans. on Smart Grid,2010,1(2):159-167.
    [176] Z. Zhong, C. Xu, B. J. Billian, et al. Power system frequency monitoring network (FNET)implementation [J]. IEEE Trans. on Power Systems,2005,20(4):1914-1921.
    [177] Yilu Liu. A US-Wide Power Systems Frequency Monitoring Network [C]. IEEE Power SystemsConference and Exposition, vol.1, Oct.29-Nov.12006, pp.159-166.
    [178] S. J. Tsai, L. Zhang, A. G. Phadke, et al. Frequency sensitivity and electromechanicalpropagation simulation study in large power systems [J]. IEEE Trans. on Circuits and Systems I:Regular Papers,2007,54(8):1819-1828.
    [179] T. Xia and Y. Liu. Single-phase phase angle measurements in electric power systems [J]. IEEETrans. on Power Systems,2010,25(2):844-852.
    [180] Wei Li, Ju Tang, Jing Ma, et al. Online detection of start time and location for hypocenter inNorth American Power Grid [J]. IEEE Trans. on Smart Grid,2010,1(3):253-260.
    [181] J. Chen. Accurate frequency estimation with phasor angles [D]. Virginia Polytechnic Instituteand State University,1994.
    [182] Xuan Zhang. High precision dynamic power system frequency estimation algorithm based onphasor approach [D]. Virginia Polytechnic Institute and State University,2004.
    [183] Tao Xia. Frequency monitoring network (FNET) algorithm improvements and applicationdevelopment [D]. Virginia Polytechnic Institute and State University,2009.
    [184]范海波,陈军,曹志刚.AWGN信道中非恒包络信号SNR估计算法[J].电子学报,2002,30(9):1369-1371.
    [185]孟慧艳. B样条基组方法在强外场中原子谱计算中的应用[D].合肥:中国科学技术大学博士学位论文,2007.
    [186] C de Boor. A practical guide to splines [M]. New York: Springer,2001.
    [187] J.Y. Chen, W. Y. Li, A. Lau et al. Automated load curve data cleaning in power systems [J]. IEEETrans. on Smart Grid,2010,1(2):213-221.
    [188] The Math Works Inc. MATLAB Spline Toolbox Help,2010.
    [189] Richard W. Conners. Algorithms for automatically matching target and reference electricalnetwork frequency data [R].Technical Report, Dec.2009.
    [190] Richard W. Conners, Zhiyong Yuan, Yuming Liu et al. NIJ Semi-annual report[R],2010.6.
    [191] Richard W. Conners, Yuming Liu, Ye Zhang et al. NIJ semi-annual report[R].2010.12.
    [192] Richard W. Conners, Yuming Liu, Yilu Liu et al. NIJ semi-annual report[R].2011.6.
    [193] D. Agrez. Improving phase estimation with leakage minimization [J]. IEEE Trans. onInstrumentation and Measurement,2005,54(4):1347-1353.
    [194] D. Agrez. Interpolation in the frequency domain to improve phase measurement [J].Measurement,2008,(41):151-159.
    [195]温和,滕召胜,曾博等.基于泄漏对消的电力谐波相角高精度估计算法[J].仪器仪表学报,2009,30(11):2354-2360.
    [196]张海涛,涂亚庆.基于DTFT的一种低频振动信号相位测量新方法[J].振动工程学报,2007,20(2):180-184.
    [197]陈奎孚,张森文,郭幸福.消除负频率影响的频谱校正[J].机械强度,2006,26(1):25-28.
    [198] M. D. Catherine, A. S. Marchand. High-precision Fourier analysis of sounds using signalderivatives [J]. Journal of the Audio Engineering Society,2000,48(7-8):654-667.
    [199] J. Ramirez, J. C. Segura, C. Benitez et al. An effective subband ODF-based VAD with noisereduction for robust speech recognition [J]. IEEE Trans. on Speech and Audio Processing,2005,13(6):1119-1129.
    [200] Yilu Liu, Richard W. Conners and Zhiyong Yuan. Fundamental research to improve theunderstanding of the accuracy, reliability and validity of using the ENF criterion for the forensicauthentication of digital recordings [R]. NIJ Project Proposal,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700