用户名: 密码: 验证码:
滴灌施肥条件下玉米(Zea mays L.)氮素运筹效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统施肥方式在作物生育前期施用大量肥料,存在养分施用与作物需求不同步的问题,是肥料利用率低的原因之一。在作物生长期多次分期施氮是提高氮素利用率的有效技术措施。随着节水灌溉技术的发展,与之相结合的水肥一体化灌溉施肥技术为作物生育中后期施肥提供了便利的技术手段。滴灌分期施氮是实现氮肥后移的一种方式,极大的改变了氮肥的基肥与追肥的比例,而有关如何运筹滴灌施肥养分供应与作物需求同步尚有待深入研究。本研究以滴灌技术为手段,以玉米为研究对象,通过盆栽试验和田间试验,研究了滴灌分期施氮协同玉米氮素供求时间同步的效应及机制,为玉米氮肥减施增效,提高肥料利用效率,充分发挥滴灌施肥技术在粮食增产中的作用提供依据。主要结论如下:
     1.氮在玉米产量形成中发挥重要作用。施氮显著增加玉米产量,但是过量施用会导致增产效果降低。随施氮量增加,籽粒产量和生物产量均呈现低→高→低变化,在低施氮量时,滴灌多次分期施氮籽粒产量和生物产量均显著高于习惯的两次施氮,中高施氮量时则无此效果。通过滴灌多次分期施氮可实现玉米氮肥减施增效的目标。本田间试验条件下,施氮各处理较不施氮对照籽粒产量增加11.7%-24.5%,生物产量增加6.8%-23.3%。从氮肥运筹看,施氮量为150kg N/hm2时,从播前基肥到灌浆中期分五次滴灌施氮(A2)的籽粒产量、生物产量均显著高丁传统习惯的苗期到大喇叭口期两次施氮(A1)。分五次滴灌施氮(A2)处理籽粒产量较不施氮对照增加21.8%,而两次施氮处理仅增产11.7%,五次滴灌施氮处理较两次施氮处理多增产10.1%;五次滴灌施氮处理生物产量较不施氮对照高17.7%,而两次施氮处理仅比不施氮对照高6.8%,五次滴灌施氮处理较两次施氮处理多增产10.9%。施氮量为300和450kg N/hm2时,五次施氮和两次施氮对籽粒产量影响差异分别为1.1%和1.6%,对生物产量影响筹异均为4.7%。从施氮量来看,施氮量为150、300、450kg N/hm2时,籽粒产量二次施氮处理分别比不施氮对照高11.7%、24.5%和15.4%,五次施氮处理分别比不施氮对照高21.8%、23.4%和17.O%;生物产量二次施氮处理分别比不施氮对照高6.8%、23.3%和13.9%,五次施氮处理分别为17.7%、18.6%和9.2%。
     施氮量为150kg N/hm2时,分五次滴灌施氮(A2)处理产量与施氮量为300kg N/hm2时的处理相当,高于450kg N/hm2的处理。
     2.氮肥的偏生产力和农学效率是反映氮肥利用效率的重要指标。在低施氮量时,滴灌多次分期施氮氮肥的偏生产力和农学效率均高于传统习惯的两次施氮,而在中高施氮量时两种施氮方式差异不大。随施氮量增加,氮肥的偏生产力和农学效率均显著降低。施氮量较低时,通过滴灌多次分期施氮可极大提高氮肥的利用效率。
     研究结果表明,施氮量为150kg N/hm2时,从播前基肥到灌浆中期分五次滴灌施氮(A2)处理的氮肥偏生产力和农学效率分别为101.77和18.22kg/kg N,传统习惯苗期到大喇叭口期二次施氮(A1)处理的分别为93.33和9.77kg/kg N,分五次施氮较二次施氮每kg氮多增产8.45kg籽粒产量。施氮量为300kg N/hm2时,A2处理氮肥偏生产力和农学效率分别为51.55和9.78kg/kg N,A1处理分别为52.0和10.22kg/kg N,两种方式偏生产力和农学效率无差异。施氮量为450kgN/hm2时,A2处理氮肥偏生产力和农学效率分别为32.59和4.74kg/kg N,A1处理分别为32.15和4.30kg/kg N,两种方式偏生产力和农学效率也无差异。
     3.随着施氮量增加,玉米成熟期土壤硝态氮含量增加,高施氮量时硝态氮存在明显的淋溶下移现象,因而控制氮素的输入是减缓土壤硝态氮残留的根本措施。滴灌多次分期施氮玉米成熟期土壤硝态氮含量高于传统习惯的两次施氮。硝态氮含量随着土层深度增加而减少。通过滴灌多次分期施氮,可以在保持玉米较高产量的情况下,尽可能减少氮素输入,从而降低环境污染的风险。
     田间试验结果表明,不施氮对照玉米成熟期0-100cm土层土壤硝态氮平均含量为4.83mg/kg,施氮量为150kg N/hm2时,从播前基肥到灌浆中期分五次滴灌施氮(A2)处理的硝态氮含量为20.83mg/kg,传统习惯苗期到大喇叭口期二次施氮(A1)处理的为6.11mg/kg o施氮量为300kg N/hm2时,A2处理的土壤硝态氮含量为30.67mg/kg,A1处理的为19.80mg/kg。施氮量为450kg N/hm2时,A2处理的土壤硝态氮含量为268.94mg/kg,A1处理的为20.82mg/kg。
     4.盆栽试验结果表明,施氮显著增加玉米各生育期植株干物质、叶绿素含量、光合速率、植株含氮量及氮素吸收量。高肥力土壤上述指标也都高于低肥力土壤,但不同分期施氮处理的影响不显著。表明土壤的基本肥力是作物正常生长和产量形成的基础,在施肥和不施肥的条件下,高肥力的土壤均有利丁玉米干物质的积累和产量的形成。研究同时表明,以化肥形式的氮素供应对丁促进玉米植株生长和产量形成是至关重要的。无论是高肥力土壤,还是低肥力土壤,施氮均大幅度提高了植株干物质积累和产量的形成。
     5.施氮提高玉米的光合能力。滴灌多次分期施氮玉米苗期和灌浆期的光合速率、蒸腾速率及气孔导度高丁传统习惯两次施氮。通过氮素合理运筹有助丁玉米植株生长稳健,利丁产量形成。
     研究表明,通过滴灌施肥技术,根据玉米氮素需求的规律,在不同生育期分期多次提供氮素养分,可以更好的实现氮素供应和玉米养分需求的同步,促进玉米生产氮肥减施增效,应充分发挥滴灌施肥技术在粮食增产中的作用。
Large portion of fertilizer often was used at earlier growth stages by traditional fertilization method. Nutrient supply with this fertilizer application can not meet the need of crops at different growing stages, which caused low fertilizer use efficiency. Split application of nitrogen was an effective technical measure at different growth stages. With the development of water-saving irrigation technology, the integration of irrigation and fertilization technology (fertigation) provided a convenient technical means to supply adequate nutrients to plants at middle-late growing stages. Split application of nitrogen by dripping fertigation method was an effective way to supply nutrient timely to crops based on plant needs, which dramatically changed the nitrogen fertilizer ratio of basal application and topdressing application. However, the related theory and technology about fertigation need further attention and study. Aiming at the technology development to supply nitrogen nutrient according to plant needs during the entire growing period, this study uses maize as testing crop and using drip irrigation technology. Pot and field experiments were performed to study the mechanisms and effects of splitting application of nitrogen by dripping fertigation with the goal to reduce fertilizer rate and to improve fertilizer use efficiency. The main conclusions are presented as follows:
     1. Nitrogen plays an important role in grain yield formation of maize. The grain yield could be improved by applying N fertilizer. With the increase of N fertilizer application rate, the grain yield was increased first, but with further increase in N fertilizer rate, the yield response to N decreased. Both total biomass and grain yield in N splitting application treatment were higher than those in conventional nitrogen application treatment under reasonable nitrogen application level, while little difference was observed at higher nitrogen application levels. The results demonstrated that by reasonably splitting application of nitrogen could realize the goal of reducing fertilizer application and increasing efficiency.
     Compared to CK treatment (no nitrogen application), the grain yield in all treatments with nitrogen application increased by11.7%to24.5%. Both total biomass and grain yield of treatments with5split application of nitrogen (A2) were higher than those in conventional nitrogen application treatment with two split applications (Al) with nitrogen application rate of150kg/hm2. Compared to CK, the grain yields in5split treatment and in2split treatment increased by21.8%and11.7%, respectively. Compared to CK, biomass yields in5split treatment and2split treatment increased by17.7%and6.8%, respectively.. At nitrogen application rates of150,300and450kg/hm2, compared to CK, grain yield in2split treatment increased by11.7%,24.5%and15.4%, respectively, while the5split treatment increased by21.8%,23.4%and17.0%, respectively. Compared to CK treatment, at nitrogen application rates of150,300and450kg/hm2, the biomass in2split treatment increased by6%、23.3%and13.9%, respectively, while that in5split treatment increased by17.7%,18.6%and9.2%, respectively.
     With5split application of N fertilizer under fertigation, application of N at150kg/hm2produced about the same yield with the2split application treatments at300kg/hm2, indicating that split application of N is an effective measure to improve N fertilizer efficiency.
     2. Both partial factor productivity from applied N (PFPN) and agronomic efficiency of applied N (AEN) were the important indexes about nitrogen use efficiency. Both PFPN and AEN in N splitting application treatment were higher than those in conventional nitrogen application treatment under reasonable nitrogen application level, while little difference was observed at higher nitrogen application levels. The results demonstrated that by reasonably splitting application of nitrogen could realize the goal of increasing nitrogen fertilizer efficiency.
     PFPN and AEN of treatments with5split application of nitrogen (A2) were101.77and18.22kg/kg N at nitrogen application rate of150kg/hm2, respectively, while the two split treatment (A1) were93.33and9.77kg/kg N, respectively. Compared to A1treatment, the grain yield in A2treatment was increased by8.45kg/kg N. PFPN and AEN of treatments with5split application of nitrogen (A2) were51.55and9.78kg/kg N at nitrogen application rate of300kg/hm2, respectively, and the same value was observed at the two split treatment (A1). PFPN and AEN of treatments with5split application of nitrogen (A2) were32.59and4.74kg/kg N at nitrogen application rate of450kg/hm2, and the same value was also observed at the two split treatment (A1).
     3. With increase of nitrogen application rate, nitrate nitrogen content in the soil was increased at maize maturity. There was a significant movement of nitrate nitrogen leaching down to the soil profile under high level of nitrogen application. Therefore, reducing input of nitrogen was the effective measures for reducing N nitrogen content at maize maturity. The nitrate nitrogen content in nitrogen split application for five times was significantly higher than that in nitrogen split application for two times. The soil nitrate nitrogen content decreased with the increasing of soil depths. By reasonably splitting application of nitrogen could realize the goal of reducing fertilizer application rate, increase grain yield and reduce the risk of environmental pollution.
     The average nitrate nitrogen content in0~100cm soil profile in CK treatment was4.83mg/kg. The nitrate nitrogen content in soils in the5split treatment under nitrogen application rate of150kg/hm2was20.83mg/kg, while that in2split treatment was6.11mg/kg. The nitrate nitrogen content in5split treatment under nitrogen application rate of300kg/hm2was30.67mg/kg, while that in2split treatment was19.80mg/kg. The nitrate nitrogen content in5split treatment under nitrogen application rate of450kg/hm2was268.94mg/kg, while that in2split treatment was20.82mg/kg.
     4. Dry matter yield, chlorophyll content, photosynthesis rate, nitrogen content and nitrogen uptake were significantly increased by nitrogen application under pot experiment condition. These indexes above in high fertility soil were all higher than those in low fertility soil. Results above showed that basic soil fertility was the foundation for plant growth and yield formation. Nitrogen fertilization is important in improving plant growth and yield formation.
     5. The photosynthetic capacity was improved by reasonable nitrogen application. Photosynthesis rate, stomatal conductance and transpiration rate in5split treatment in seedling and filling stages were higher than those in2split treatment. Reasonable nitrogen application could supply necessary nutrients for plants different growth stages and it was beneficial to obtain high yield.
     Results above showed that the synchronization between nitrogen supplying and plant nutrients need can be realized by the split application of nitrogen with fertigation, which is an effective way to improve nitrogen use efficiency in sustained high yield and high efficient maize production.
引文
1. 蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应[J].应用生态学报,2004,15(2):201-204.
    2. 曹承富,孔令聪,汪建来,等.施氮量对强筋和中筋小麦产量和品质及养分吸收的影响[J].植物营养与肥料学报,2005,11(1):46-50.
    3. 褚贵新,吕新,刘建国,等.冬小麦套作玉米作物氮磷吸收分配规律和施肥运筹[J].新疆农业科学,2000,(5):199-202.
    4. 崔振岭,石立委,徐久飞,李俊良,张福锁,陈新平.氮肥施用对冬小麦产量、品质和氮素表观损失的影响研究[J].应用生态学报,2005,16(11):2071-2075.
    5. 戴廷波,曹卫星,李存东.作物增铵营养的生理效应[J].植物生理学通讯,1998,34(6):488-493.
    6. 邓兰生,张承林.滴灌施氮肥对盆栽棉花生长的影响[J].植物营养与肥料学报,2007,13(1):81-85.
    7. 东先旺,刘光亮,张海燕,等.灌水量与夏玉米光合性能及产量的关系[J].玉米科学,2000,8(4):53-56.
    8. 董树亭.作物优质高产高效栽培[M].北京:中国农业出版社,2000.
    9. 董钻,谢甫绨.大豆氮磷钾吸收动态及模式的研究[J].作物学报,1996,22(1):89-951.
    10. 杜昌文,周建民.控释肥料的研制及其进展[J].土壤,2002(3):127-133.
    11. 杜建军,廖宗文,毛小云,刘可星,冯新.控/缓释肥在不同介质中的氮素释放特性及其肥效评价[J].植物营养与肥料学报,2003,9(2):165-169.
    12. 段巍巍,赵红梅,郭程瑾,等.夏玉米光合特性对氮素用量的反应[J].作物学报,2007,33(6):949-954.
    13. 樊小林,刘芳,廖照源,郑祥洲,喻建刚.我国控释肥料研究的现状和展望[J].植物营养与肥料学报,2009,15(2):463-473.
    14. 封俊,沈雪民,刘春和,张学军.文丘里滴灌施肥器水力性能的研究[J].喷灌技术,1992,1:41-43.
    15. 高俊凤.植物生理学实验技术[M].西安:世界图书出版社,2000,93-95.
    16. 关义新,林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报,2000,6(2):152-158.
    17. 郭庆法,王庆成,汪黎明,等.中国玉米栽培学[M].上海:上海科学技术出版社,2004.
    18. 郭天财,宋晓,马冬云,等.施氮水平对冬小麦旗叶光合特性的调控效应[J].作物学报,2007,33(12):1977-1981.
    19. 国家统计局.中国统计年鉴[M].北京:中国统计出版社,2003.
    20. 何华.地下滴灌条件下作物水氮吸收利用与最佳灌水技术参数的研究[D].西北农林科技大学,2001.
    21.何萍,金继运,林葆.玉米高产施肥营养生理研究进展[J].玉米科学,1998,6(2):72-76.
    22.侯振安,李品芳,龚江等.不同滴灌施肥策略对棉花氮素吸收和氮肥利用率的影响[J].土壤学报,2007,44:702-708.
    23.侯振安,李品芳,吕新,龚江,王艳娜.不同滴灌施肥方式F棉花根区的水、盐和氮素分布[J].中国农业科学,2007,40(3):549-557.
    24.胡田田,肖玲,李岗等.施肥对春玉米养分吸收和产量形成的影响[J],西北农业大学学报,1999,27(5):11-16.
    25.黄丽华,沈根祥,钱晓雍等.滴灌施肥对农田土壤氮素利用和流失的影响[J].农业工程学报,2008,24:49-53.
    26.金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,32(4):55-62.
    27.金继运,李家康,李书田.化肥与粮食安全[J].植物营养与肥料学报,2006,12(5):601-609.
    28.金继运,林葆.化肥在农业生产中的作用和展望[J].作物杂志,1997(2):5-9.
    29.金继运.我国肥料资源利用中存在的问题及对策建议[J].中国农技推广,2005,11:4-6.
    30.金洁.分次施氮对稻田水层及渗漏水氮素影响动态变化研究[D].浙江大学,2005,05.
    31.巨晓棠,李生秀.旱地土壤供氮能力研究的进展[J].干旱地区农业研究,1993,11(3):43-48.
    32.巨晓棠,张福锁.氮肥利用率的要义及其提高的技术措施[J].科技导报,2003(4):51-54.
    33.巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192-197.
    34.李方敏,廖宗文,艾天成.平衡施肥理论与肥料高效利用[J].磷肥与复肥,2004,19(5):66-67,70.
    35.李海波,李全英,陈温福,等.氮素不同用量对水稻叶片气孔密度及有关生理性状的影响[J].沈阳农业大学学,2003,34(5):340-343.
    36.李洪勋,吴伯志.不同耕作措施玉米高产光合指标的研究[J].玉米科学,2007,15(2):94-97.
    37.李家康,林葆,梁国庆,等.对我国化肥施用前景剖析[J].磷肥与复肥,2001,16(2):1-5.
    38.李久生,张建君,任理.滴灌点源施肥灌溉对土壤氮素分布影响的试验研究[J].农业工程学报,2002,18(5):61-66.
    39.李少昆,刘景德,吕新.新疆玉米高产栽培的实践与探索[J].石河子大学学报(自然科学版),1999,(3):83-88.
    40.李生秀,李世清,高亚军,等.施用氮肥对提高旱地作物土壤水分利用效率的作用机理和效果[J].干旱地区农业研究,1994,12(1):38-46.
    41.李生秀.提高旱地土壤氮肥利用效率的途径和对策[J].土壤学报,2002,39(增刊):56-74.
    42.李生秀.控释肥料志在提高利用率[J].中国农资,2005(4):48-50.
    43.李世清,李生秀.半干旱农田生态系统的硝酸盐淋溶损失[J].应用生态学报,2000,11(2):240-242.
    44.林葆,李家康.我国化肥的肥效及其提高的途径-全国化肥试验网的主要结果[J].土壤学报,1989,26(3):273-279.
    45.刘洪亮,梁永超,刘涛,褚贵新.新型硝化抑制剂对膜下滴灌棉田抑制效果及棉花产量的影响[J].新疆农业科学,2010,47(11):2200-2204.
    46.刘景辉.春玉米需氮规律的研究[J].内蒙古农牧学院学报,1994,15(3):12-18.
    47.刘丽霞,程红卫,陈温福.水稻叶片气孔长度、宽度和密度及其相关性的研究[J].沈阳农业大学学报,2000,31(6):531-533.
    48.刘荣根,吴梅菊,周敏.氮肥的不同施用量和次数对小麦生长及产量的影响[J].土壤肥料,1999(2):1-4.
    49.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    50.路海东,薛吉全,马国胜,等.不同类型饲用玉米的氮肥运筹研究[J].玉米科学,2006,14(1):150-152.
    51.吕殿青,同延安,孙本华,等.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.
    52.马保国,刘永朝.几个夏玉米品种叶片的光合特性研究[J].河北北方学院学报(自然科学版),2006,22(6):27-30.
    53.邱荣生.氮肥运筹对二早一水玉米群体质量影响研究[J].玉米科学,1996,4(2):53-57.
    54.中丽霞,王璞.不同氮肥运筹方式对夏玉米产量和氮素利用的影响[J],山西农业科学,2009,37(2):36-39.
    55.司贤宗,葛东杰,谭金芳.氮肥运筹方式对豫单2002产量及品质的影响[J].中国农业通报,2007,23(6):383-387.
    56.宋海星,李生秀.玉米生产量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,36(1):71-76.
    57.宋尚有,王勇,樊廷录,等.氮素营养对黄土高原早地玉米产量、品质及水分利用效率的影响[J].植物营养与肥料学报,2007,13(3):387-392.
    58.孙传范,戴廷波,荆奇.不同生育时期增铵营养对小麦生长及氮素利用的影响[J].应用生态学报,2004,15(5):753-757.
    59.孙文涛,孙占祥,王聪翔等.滴灌施肥条件下棉花水肥耦合效应的研究[J].中国农业科学,2006,39(3):563-568.
    60.孙月轩.氮肥运筹比例对夏玉米群体质量及产量的影响[J].耕作与栽培,1994,3(1):29-31.
    61.唐国章,王永华,郭天财,等.氮素施用对超高产小麦生育后期光合特性及产量的影响[J].作物学报,2003,29(1):82-86.
    62.万靓军.水稻氮肥运筹效应及技术改进的研究[D].扬州大学,2006,05.
    63.王东,于振文,李延奇等.施氮量对济麦20旗叶光合特性和蔗糖合成及子粒产量的影响[J].作物学报,2007,33(6):903-908.
    64.王计平.干旱条件下氮、磷、钾元素随滴灌水运移规律及影响因素研究[D].山西农业大学,2001,06.
    65.王鹏文,戴俊英,赵桂坤等.玉米种植密度对产量和品质的影响[J].玉米科学,1996,(4):44-46.
    66.王永军,王空军,董树亭.氮肥用量时期对墨西哥玉米产量及饲用营养品质的影响[J].中国农业科学,2005,38(3):492-497.
    67.王月福,于振文,曹卫星,高低土壤肥力下小麦基施和追施氮肥的利用效率和增产效应[J].作 物学报,2003,29(4):491-495.
    68.王忠孝.山东玉米[M].北京:中国农业出版社,1999.
    69.吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响.中国农业科学,1995,28(增刊):104-107.
    70.肖凯,张荣铣,钱维朴.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制.植物营养与肥料学报,1998,4(4):371-378.
    71.徐静安,潘振玉.分析测试方法[M].北京:化学工业出版社,2000.
    72.闫文芝.对影响小麦气孔密度变化因素初探[J].内蒙古农业科技,1997(3):9-12.
    73.闫湘,金继运,何萍,梁鸣早.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450-459.
    74.尹飞虎,关新元,陈云.喷滴灌专用肥研究与应用现状[J].新疆农垦科技,2002,2:32-33.
    75.尹飞虎,康今花,黄子蔚,曾德超.棉花滴灌随水施滴灌专用肥中磷素的移动和利用率的32P研究[J].西北农业学报,2005,14(6):199-204.
    76.余松烈.作物栽培学(北方本)[M].北京:农业出版社,1990.
    77.张福锁,崔振岭,王激清.中国土壤和植物养分管理现状与改进策略[J].植物学通报,2007,96(1):1622-1631.
    78.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境,2000,9(2):154-157.
    79.张福锁,王激清,张卫峰等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    80.张吉旺,董树亭,王空军等.大田遮荫对玉米光合特性的影响[J].作物学报,2007,33(2):216-222.
    81.张吉旺,王空军,胡昌浩等.施氮时期对夏玉米饲用营养价值的影响[J].中国农业科学,2002,35(11):1337-1342.
    82.张建君,李久生,任理.滴灌施肥灌溉条件下土壤水氮运移的研究进展[J].灌溉排水,2002,21(2):75-78.
    83.张瑞莲,李真龙.怎样安装滴灌系统[J].山西农业,2003,10:28.
    84.张耀兰,齐华,金路路等.氮肥对春小麦叶片光合特性的影响[J].辽宁农业科学,2005(6):5-7.
    85.赵勇,杨文钰.种植密度和施氮量对粮饲兼用玉米雅玉8号产量的影响[J].玉米科学,2006,14(2):119-123.
    86.赵平.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42.
    87.赵十诚,裴雪霞,何萍等.氮肥减量后移对土壤氮素供应和夏玉米氮素吸收利用的影响[J].植物营养与肥料学报,2010,16(2):492-497.
    88.赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响[J].植物营养与肥料学报,2006,12(5):622-627.
    89.中国土壤学会农业化学委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    90.周建斌,陈竹君,李生秀.Fertigation-水肥调控的有效措施[J].干旱地区农业研究,2001, 19(4):16-21.
    91.朱菜红,董彩霞,沈其荣等.配施有机肥提高化肥氮利用效率的微生物作用机制研究[J].植物营养与肥料学报,2010,16(2):282-288.
    92.朱兆良,张绍林,尹斌等.太湖地区单季晚稻产量-氮肥施用量反应曲线的历史比较[J].植物营养与肥料学报,2010,16(1):1-5.
    93.朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系[J].中国科学院院刊,2003,(2):89-931.
    94.朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    95.朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报,2006,12(1):1-4.
    96. Ajdary K., Singh D. K., Singh A. K., et al. Modelling of nitrogen leaching from experimental onion field under drip fertigation [J]. Agricultural Water Management,2007,89:15-28.
    97. Alva A. K., Paramasivam S., Graham W. D. Impact of nitrogen management practices on nutritional status and yield of Valencia orange trees and groundwater nitrate [J]. J. Environ. Qual., 1998,27(4):904-910.
    98. Alva A. K., Paramasivam S. Nitrogen management for high yield and quality of citrus in sandy soils [J]. Soil Sci. Soc.Am. J.,1998,62 (5):1335-1342.
    99. Arregui L. M., Lasa B., Lafarga A., et al. Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions [J|. European Journal of Agronomy,2006,24(2):140-148.
    100. Asadi M. E., Clemente R. S., Gupta A. D., et al. Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand [J]. Agricultural Water Management,2002,52(3):197-213.
    101. Barton L., Colmer T. D. Irrigation and fertilizer strategies for minimizing nitrogen leaching from turfgrass [J]. Agricultural Water Management,2006,80:160-175.
    102. Bar-Yosef B., Imas P. Tomato response to phosphorus nutrition via drip fertigation [A]. Proc. Fifth Intern. Microirrigation Cong. [C]. Orlando, Fl. American Soc. Agric. Engineers,1995,200-208.
    103. Bhat R., Sujatha S. Soil fertility and nutrient uptake by arecanut (Areca catechu L.) as affected by level and frequency of fertigation in a laterite soil [J]. Agricultural Water Management,2009, 96:445-456.
    104. Brian J. Boman. Fertigation versus conventional fertilization of flatwoods grapefruit. Fertilizer Research 1996,44:123-128.
    105. Bravdo B. Use ofdrip irrigation in orchards [J]. Hort. Tech.,1993,3(1):44-49.
    106. Cassman K. G., Peng S., Olk D. C., Dobermann A. and Singh U. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems [J].Field Crops Research,1998,56(1):27-39.
    107. Cechini. Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes [J]. Photosynthetica,1998,35(2):233-240.
    108. Cui M., Sun X. C., Hu C. X., et al. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide [J]. J. Soils Sediments,2011,11:722-730.
    109. Dasberg S. and Bresler E. Drip irrigation manual [M]. International irrigation information center. Publication No.9, BetDagan, Israel,1985.
    110. David E., Jan S., Marcia W. Fertigation is an efficient way for many farmers to grow crops [J]. Agricultural Research,2004,52(11):18
    111.Diez J. A., Caballero R., Roman R., et al. Intergrated fertilizer and irrigation management to reduce nitrate leaching in central Spain [J]. Journal of Environment Quality,2000,29:1539-1547.
    112. Elstein D., Suszkiw J., Wood M. Fertigation is an efficient way for many farmers to grow crops [J]. Agricultural Research,2004,52(11):18-19.
    113. Fageria N. K., Baligar V. C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency [J]. Journal of Plant Nutrition,2003,26:1315-1333.
    114. Feinerman E., Falkovitz M. S. Optimal scheduling of nitrogen fertilization and irrigation [J]. Water Resources Management,1997,11:101-117.
    115.Gheysari M., Mirlatifi S. M., Homaee M., et al. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates [J]. Agricultural Water Management 2009,96: 946-954.
    116. Goldberg D., Gornat B. and Rimon D. Drip irrigation principles, design and agricultural practices [M]. Drip irrigation scientific publications, Kfar Shmariahu, Israel,1976.
    117.Guimera J., Marfa O., Candela L., et al. Nitrate leaching and strawberry production under drip irrigation management [J]. Agriculture, Ecosystems and Environment,1995,56:121-135.
    118. Guo T. C., Yao Z. J., Wang C. Y., et al. Effectsof irrigation and fertiliz-er application regimes on photosynthetic characteristics of flag leaves and yield traits of wheat [J]. Acta Bot. Bor.-Occid. Sin.,2004,24(10):1786-1791.
    119. Hagin J., Lowengart A. Fertigation for minimizing environmental pollution by fertilizers [J]. Fertilizer Research,1996,43:5-7.
    120. Haynes R. J. Comparison of fertigation with broadcast applications of urea-N on levels of available soil nutrients and on growth and yield of trickle-irrigated peppers [J]. Scientia Horticulturae,1988, 35(3-4):189-198.
    121. Hebbar S. S., Ramachandrappa B. K., Nanjappa H. V., et al. Studies on NPK drip fertigation in field grown tomato [J]. Europ. J. Agronomy,2004,21:117-127.
    122. Hou Z. A., Li P. F., Li B.G., et al. Effects of fertigation scheme on N uptake and N useefficiency in cotton [J]. Plant Soil,2007,290:115-126.
    123. Huang S. W., Jin J. Y. Status of heavy metals in agricultural soils as affected by different patterns of land use[J]. Environ. Monit. Ass.,2008,139:317-327.
    124. Jokinen K., Sarkka L E., Nakkila J., et al. Split root fertigation enhances cucumber yield in both an open and a semi-closed greenhouse [J]. Scientia Horticulturae,2011,130:808-814.
    125. Ju X. T., Kou C. L., Christie P., et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain [J]. Environ. Poll.,2007,145:497-506.
    126. Krystyna E., Irena B. Influence of irrigation and nitrogen fertilization on quality of fresh and frozen broccoli [J]. Vegetable Crops Research Bulletin,1999,50:93-106.
    127. Lamm F. R., Ayars J. E., Nakayama F. S. Microirrigation for Crop Production:Design, Operation, and Management [M].Amsterdam:Elsevier,2007.
    128. Li J. S., Li B., Su M. S., et al. Responses of nitrogen uptake and yield of winter wheat to nonuniformity of sprinkler fertigation[J]. Agricultural Sciences in China,2005,4(9):693-699.
    129. Li J. S., Yoder R. E., Odhiambo L. O., et al. Simulation of nitrate distribution under drip irrigation using artificial neural networks [J]. Irrig Sci,2004,23:29-37.
    130. Li Y. E., Liu E. D. Emissions of N2O, NH3 and NOx from fuel combustion, industrial processes and the agricultural sectors in China [J]. NutCyc. Agroecosystems,2000,57:99-106.
    131. Mengel K., Hutsch B., Kane Y. Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen [J]. Europ. J. Agronomy,2006,24:343-348.
    132. Mosier A. R., Zhu Z. L. Changes in patterns of fertilizer nitrogen use in Asia and its consequences for N2O emissions from agricultural systems [J]. Nutr. Cyc. Agroecosystems,2000,57:107-117.
    133. Mulvaney R. L., Khan S. A., Ellsworth T. R. Need for a Soil-Based approach in managing nitrogen nertilizers for profitable corn production [J]. Soil Science Society of America Journal,2006, 70(1):172.
    134. Neilsen D., Parchomchuk P., et al. Using soil solution monitoring to determine the effects of irrigation management and fertigation on nitrogen availability in high density apple orchards [J]. J. Am. Soc. Hortic. Sci.,1998,123(4):706-713.
    135. Neilsen G. H., Parchomchuk P., et al. Response of apple trees to fertigation-induced soil acidification [J]. Can. J. Plant Sci.,1994,74:347-351.
    136. Novoa R., Loomis R. S. Nitrogen and plant production [J]. Plant and Soil,1981,58:177-204.
    137. Pascale S., Barbieri G. Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops [J]. Scientia Horticulturae,1995,64 (3):145-157.
    138. Pattey E., Edwards G. C., Desjardins R. L., et al. Tools for quantifying N2O emissions from agro-ecosystems [J]. Agric. for. Meteorol.,2007,142:103-119.
    139. Playan E., Faci J. M. Border fertigation:field experiments and a simple model [J]. Irrig. Sci,1997, 17:163-171.
    140. Presterl T., Seitz G., Landbeck M., et al. Improving Nitrogen-Use Efficiency in European Maize: Estimation of Quantitative Genetic Parameters [J]. Crop Sci.2003,43:1259-1265.
    141. Quick W. P., Chaves M. M., Wendler R., et al. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions [J]. Plant Cell Environ,1992,15:25-35.
    142. Rajput T. B. S., Patel N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments [J]. Agricultural Water Management,2006,79:293-311.
    143. Raun W. R., Johnson G. V., Westerman R. L. Fertilizer nitrogen recover in long-term continuous winter wheat [J]. Siol Sci. Soc. Am. J.,1999,63(4):645-654.
    144. Russell C. A., Dunn B. W., Batten G. D., et al. Soil tests to predict optimum fertilizer nitrogen rate for rice [J]. Field Crops Research,2006,97(2-3):286-301.
    145. Sanchez C. A., Roth R. L., Gardner B. R. Irrigation and nitrogen management for sprinkler irrigated cabbage on sand [J]. J. Am., Soc. Hort. Sci.,1994,119:427-433.
    146. Sayre J. D. Mineral accumulation in corn [J].Plant Physiol,1948,23(3):267-281.
    147. Sharmasarkar F. C., Sharmasarkar S., Miller S. D., et al. Assessment of drip irrigation and flood irrigation onwaterand fertilizeruse efficiencies for sugarbeets [J]. Agriculture Water Management, 2001,46:241-251.
    148. Shaviv A. Environmental friendly nitrogen fertilization [J]. Science in China Ser. C (Life Sciences), 2005,48(special issue):937-947.
    149. Silber A., Xu G., Levkovitch I, et al. High fertigation frequency the effects on uptake of nutrients, water and plant growth [J]. Plant Soil,2003,253:467-477.
    150. Singandhupe R. B., Rao G. G., Patil N. G., et al. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.) [J]. Europ. J. Agronomy 2003, 19:327-340.
    151. Sneh M. The history of fertigation in Israel [A].In:Dahlia Greidinger International Symposium on Fertigation Proc. [C].Haifa, Israel,1995,1-10.
    152. Sonneveld C. Fertigation in the greenhouse industry [A].In:Dahlia Greidinger International Symposium on Fertigation Proc. [C].Haifa, Israel,1995,121-140.
    153.Tadahiko M. Physiological nitrogen efficiency in rice:Nitrogen utilization photo synthesis and yield potential [J]. Plant Soil,1997,196:201-210.
    154. Tanaka Y., Tkashi A. Substrate specificity of the granule-bound and chloroplastie starch synthtase [J]. Plant Physical,1968(9):405-410.
    155. Thomas L., Thompson Thomas A, et al. Subsurface drip irrigation and fertigation of broccoli:Ⅱ. Agronomic, economic, and environmental qutcomes [J]. Soil Science Society of America Journal, 2002,66(1):178-185.
    156. Threadgill D. E. Chemigation via sprinkler irrigation:Current status and future development [J]. Appl.Eng. Agric,1985,1:16-23.
    157. Tilman D., Cassman K. G., Matson P. A., et al. Agricultural sustainability and intensive production practices [J]. Nature,2002.418(8):671-677.
    158. Tilman D. Global environmental impacts of agricultural expansion:The need for sustainable and efficient practices [J]. Proc. Natl. Acad. Sci.,1999,96:5995-6000.
    159. Venterea R. T., Hyatt C. R., Rosen C. J. Fertilizer management effects on nitrate leaching and indirect nitrous oxide emissions in irrigated potato production [J]. Journal of Environmental Quality,2011,40:104-112
    160. Zhang T. Q., Tan C. S., Liu K., et al. Yield and economic assessments of fertilizer nitrogen and phosphorus for processing tomato with drip fertigation [J]. Agronomy Journal,2010,102 (2):774-780
    161. Zhao C. S., Hu C. X., Huang W., et al. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China [J], J Soils Sediments,2010,10:9-17.
    162. Jaynes D. B., Rice R. C., Hunsaker D. J. Solute transport during chemigation of level basin [J]. Trans. ASAE,1992,35(6):1809-1815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700