用户名: 密码: 验证码:
盲源分离的时频域算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲源分离是指在不知道或无法获得源信号和混合方式的情况下仅由观测信号恢复源信号的过程。作为一种数据分析、信号处理强有力的工具,盲源分离具有非常重要的理论意义,并广泛应用于无线通信、语音信号处理、阵列信号处理、图像处理、生物信号处理、信号识别、地震勘探和计量经济学等领域。
     本文围绕这一热点课题展开,讨论了盲源分离算法在非平稳信号中的应用问题。
     对于非平稳信号,如语音信号、音乐信号、脑电信号等,时频联合分析JTFA(Joint Time-FrequencyAnalysis)不仅可以从频域的角度描述信号,还可以描述频率分量及信号的能量在时域中的分布,因此可以有效地提取非平稳信号的时变局部特征,比单一时域或频域表示有更好的“显微”优势。
     在盲源分离中,引入双线性JTFA或线性JTFA,可以充分利用了源信号在时-频两域的多样性来分离信号。
     1、本文分析了多分量信号自项、交叉项在Wigner-Ville平面、模糊平面的分布特性,根据两者的对应关系,设计了一种高性能的核函数,推导了其对应的时频分布、满足的性质和实现的算法。且以Boashash提出的时频性能指标为准则,分析了时频分布参数的选择方法。在此基础上,借鉴Belouchrani,A和Amin, M.G提出的时-频联合对角化思想,以该时频分布计算观测信号的时频谱,以自项点理论选择时频点进行Jacobi联合近似对角化求出酋矩阵,进而估计源信号和混合阵,提出了一种性能优越的双线性时频盲源分离算法。另外,本文从重排时频谱的角度,应用重排平滑伪Wigner-Ville分布来抑制双线性分布交叉项聚集的尖锋,提出了一种基于重排时频谱的盲源分离算法。上述算法能实现音乐信号、语音信号的盲源分离。
     2、本文借鉴M.Puigt和Y.Deville提出的时频比思想,引入S变换(StockwellTransform)、或广义S变换来获得非平稳信号的多分辨率特性。通过S变换、或广义S变换将一维信号映射到二维时频平面,再构造不同观测信号的时频比矩阵,通过在时频比矩阵范围内搜索一个个单源分析域,以估计混合阵的每个元素,进而估计源信号,提出了一种具有多分辨率的线性时频盲源分离算法。该算法能避免双线性JTFA交叉项带来的干扰问题,并具有多分辨特性,适合分离同时含有多个高频分量和低频分量的混合信号。
     3、由于现实世界中观测信号往往被各种各样的噪声污染,从而破坏了源信号的结构,因此如何抑制噪声,使盲源分离算法具有更好的鲁棒性是必须考虑的一个现实难题。本文针对噪声作为信号源之一的情况做了一点探讨,提出了一种基于Hough变换的盲源分离算法。该算法以Wigner-Ville分布计算观测信号的时频谱并将信号的时频谱看作图像,利用Hough变换将信号检测转换为在参数空间寻找局部极大值的问题,再运用自项点理论选择合适的矩阵进行联合近似对角化,求出酋矩阵,进而估计源信号和混合阵。该算法通过把噪声能量扩展到整个参数平面而只选择信号能量占主导的自项点进行对角化,对噪声具有一定的抑制能力。
Blind source separation (BSS) is to recover the sources form the observations only,without the information about the source signals or the mixing process. As a powerfuldata representation and signal processing tool, BSS has become a very important topicof research and development in many areas, especially wireless communications,speech signal processing, array signal processing, image processing, biological signalprocessing, signal recognition, exploration seismology, econometrics, etc.
     Focusing on this theme, some BSS approaches for non-stationary signals arediscussed in this dissertation.
     For non-stationary signals, such as speech signals, music signals and EEG, jointtime-frequency analysis(JTFA) can study these signals in both the time and frequencydomains simultaneously, using various t-f representations. This method, hence caneffectively extract the local time-varying characteristics of non-stationary signals andhas better “microscopic” advantage compared to the time domain or frequency domainrepresentation.
     Based on the bilinear JTFA or linear JTFA, some BSS approaches exploiting thediversities in the t-f signatures of the sources can be obtained.
     Firstly, the location features of auto-and cross-terms from the multi-componentssignals and their relationship between the Wigner-Ville distribution plane and ambiguityfunction plane are discussed in this dissertation. Then, a high performance kernel isstudied and its t-f distribution、its desirable properties and its calculation algorithm arederived. And, its parameter choice based on Boashash’ performance indicator isproposed. Moreover, a high-resolution t-f BSS approach is developed based on the t-fjoint diagonalization method, proposed by Belouchrani, A and Amin, M.G. Thisapproach includes first whitening mixed signals, then constructing a set of t-f matricesusing the proposed t-f distribution, finally a Jacobi joint diagonalization of a combinedset of t-f matrices to estimate the mixing matrix and the source signals. In addition, aBSS algorithm based on rearrangement t-f spectrum is proposed. This algorithmexploits the rearrangement spectrum mechanism and adopts smooth pseudo Wigner-Ville distribution to eliminate cross-terms interference. By use of the techniquesproposed in this dissertation, the improved performance of BSS of music signal, speechsignals has been achieved.
     Secondly, a linear t-f BSS approach adopting Stockwell transform or generalizedStockwell transform to obtain multi-resolution characteristics are proposed. Thisapproach uses Stockwell transform or generalized Stockwell transform to derive t-fdistribution of mixed signals and then constructs different t-f ratio matrices, proposedby M.Puigt and Y.Deville. Then, it detects single source occurs to identify each elementof the mixing matrix and hence obtains the estimated signals. This approach can avoidthe cross-terms interference from bilinear t-f distributions and has the multi-resolutioncharacteristics. Therefore it may be more suitable to separate mixed-signals containingmany high-frequency components and low-frequency components simultaneously.
     Thirdly, in real life, there is a variety of noise present in the observations. How toobtain better noise suppression and robustness is a real problem as the structure ofsignals are corrupted by noise. In this dissertation, source noise is discussed and a BSSapproach based on Hough transform is proposed. This approach is developed whichincludes firstly calculating the t-f distributions of observed signals by Wigner-Villedistribution, and using the Hough transform to convert the signals detection to find thelocal peak values in the parameter domain though considering this t-f distribution as animage, finally a joint-diagonalization of a combined set of t-f distributions chosen byauto-term theory to estimate the unitary matrix, the mixing matrix and the sourcesignals. The effect of spreading the noise power while localizing the source energy inthe parameter plane amounts to increasing the robustness of the proposed approach withrespect to noise.
引文
[1] Aapo Hyvarinen著,周宗潭等译.独立成分分析[M].北京:电子工业出版社,2007.
    [2] Andrzej Cichocki,Shun-ichi Amari著,吴正国等译.自适应盲信号与图像处理[M].北京:电子工业出版社,2005.
    [3] Herault J,Jutten C. Space or time adaptive signal processing by neural network models [C].Neural Network for Computing:AIP Conference Proceeding, New York, American,1986,pp.206-211.
    [4] Tong L, Liu R, Soon V C, Huang J.F. Indeterminacy and identifiablity of blind identification[J]. IEEE Trans Signal Processing,1991,38(5):499-509.
    [5] Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals[J]. IEE, Radar andSignal Processing,1993,140(6):362-370.
    [6] Common P. Independent component analysis, A new concept?[J]. Signal Processing,1994,36(3):287-314.
    [7] Hyvarinen A. Fast and robust fixed-point algorithms for independent compoanalysis[J]. IEEETransactions on Neural Networks,1999,10(3):626-634.
    [8] Li H, Adali T. A class of complex ICA algorithms based on the kurtosis cost function[J]. IEEETransactions on Neural Networks,2008,19(3):408-420.
    [9] Md. Shamim Reza, Mohammed Nasser and Md. Shahjaman. An Improved Version of KurtosisMeasure and Their Application in ICA[J]. International Journal of Wireless Communicationand Information Systems,2011,1(1):6-11.
    [10] Qiu-Hua Lin, Li-Dan Wang, Jian-Gang Lin, Xiao-Feng Gong. Constrained Complex-ValuedICA without Permutation Ambiguity Based on Negentropy Maximization[J]. Lecture Notes inComputer Science,2010,6365:271-278.
    [11] Michael Novey and Tülay Adal. Complex ICA by Negentropy Maximization[J]. IEEETranscation on neural networks,2008,19(4):596-609.
    [12] Yang H H, Amaris S. Adaptive on-line learning algorithms for blind separtion-maximumentropy and minimum mutual information[J]. Neural Computating,1997,9(7):1457-1482.
    [13] Fabian J. Theis, Ch. Bauer, Elmar W. Lang. Comparison of maximum entropy and minimalmutual information in a nonlinear setting[J]. Signal Processing,2002,82:971-980.
    [14] Jumin ZHAO, Haiyan ZHANG, Dengao LI, Qinglun MA. Natural Gradient Search Mutualinformation Optimization BSS[J]. Journal of Computational Information Systems,2011,7(2):631-636.
    [15] Amari S,Cichocki A,Yang H. A new learning algorithm for blind signal separation[J].Advances in Neural Information Processing Systems,1996,8:757-763.
    [16] Pearlmutter B.A., Parra L.C. Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA[J]. Advances in Neural Information Processing Systems,1997,9:613-619.
    [17] Juha Karvanen, Jan Eriksson and Visa Koivunen. Adaptive Score Functions for MaximumLikelihood ICA[J]. Journal of VLSI Signal Processing,2002,32(1):83-92.
    [18] Cardoso, J.-F, Adali, T. The Maximum Likelihood Approach to Complex ICA.Acoustics,Speech and Signal Processing[C]. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),Toulouse, France, May2006, pp.673–676.
    [19] Togami, M. Online speech source separation based on maximum likelihood of local Gaussianmodeling[C].2011IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Prague,2011,pp.213–216.
    [20] A. J. Bell, T. J. Sejnowski, An Information-Maximization Approach to Blind Separation andBlind Deconvolution[J]. Neural Computation,1995,7(6):1129-1159.
    [21] H. H. Yang, S. Amari, Adaptive Online Learning Algorithms for Blind Separation:MaximumEntropy and Minimum Mutual Information[J]. Neural Computation,1997,9:1457–1482.
    [22] H Park, S Oh, S Lee. A modified infomax algorithm for blind signal separation[J]. Neurocomputing,2006,70(1-3):229-240.
    [23] Qinggui Jin,Guolong Liang. A new algorithm of Infomax for small numbers of sound signalseparation[C]. International Conference on Artificial Intelligence and Education,Hangzhou,2010,pp.159-162.
    [24] Chen Hanfu,Cainse P E. The strong consistency of the stochastic gradient algortithm ofadaptive control[J]. IEEE Transactions on Automatic Control,1985,30(2):189-192.
    [25]丁锋,杨家本.随机梯度算法的收敛性分析[J].清华大学学报,1999,39(1):83-86.
    [26] George W.E,Seppo Honkapohja,Noah Williams. Generalized Stochastic Gradient Learning[J].International Economic Review,2010,51(1):237–262.
    [27] Amari S,Cichocki A,Yang H. A new learning algorithm for blind signal separation[J].Advances in Neural Information Processing Systems,1996,8:757-763.
    [28] Amari S. Natural gradient works efficiently in learning[J]. NeuralComputation,1998,10(1):251-276.
    [29] Jumin ZHAO, Haiyan ZHANG, Dengao LI, Qinglun MA. Natural Gradient Search MutualInformation Optimization BSS[J]. Journal of Computational Information Systems,2011,7(2):631-636.
    [30]冶继民,金海红,楼顺天,张贤达.未知源信号数目投影自然梯度盲信号分离算法[J].西安电子科技大学学报(自然科学版),2006,33(2):190-195.
    [31] Liu JQ, Feng DZ, Zhang WW. Adaptive improved natural gradient algorithm for blind sourceseparation[J]. Neural Computing.2009,21(3):872-889.
    [32] Ping Wang, Ji Xiang Lu, Xin Wang, Hong Zhong Shi. A New Orthogonal Projected NaturalGradient BSS Algorithm with a Dynamically Changing Source Number under OverDetermined Mode[J]. Advanced Materials Research,2011,267:768-773.
    [33] Cardoso J F,Laheld B. Equivariant adaptive source separation[J]. IEEE Trans on SignalProcessing,1996,44(12),pp.3017-3030.
    [34] Cardoso J F. Blind signal separation:statistical principles[J]. Proceeding of IEEE,1998,86(10):2009-2025.
    [35] Belouchrani A,Abed-Meraim K,Cardoso J F,Moulines E. A blind source separation techniqueusing second-order statistics[J]. IEEE Trans on Signal Processing,1997,45(2),pp.434–444.
    [36] A. Belouchrani and M. G. Amin, Blind Source Separation Based on Time-Frequency SignalRepresentation[J]. IEEE Trans. on Signal Processing,1998,46(11):2888-2898.
    [37] Tome A.M. Blind source separation using a matrix pencil[C]. Proc.Int.Joint Conf.NeuralNetw.,Como,Italy,2000, pp.339-342.
    [38] Parra L,Sajda P. Blind Source Separation via Generalized Eigenvalue Decomposition[J].Journal of Machine Learning Research,2003,4(8):1261-1269.
    [39] Li X L,Zhang X D. Nonorthogonal Joint Diagonalization Free of Degenerate Solution[J]. IEEETrans on Signal Processing,2007,55(5):1803-1814.
    [40]聂卫科,冯大政,张斌.谐波恢复的联合对角化算法[J].电子与信息学报.2009,31(2):331-334.
    [41] Souloumiac A. Nonorthogonal Joint Diagonalization by Combining Givens and HyperbolicRotations[J]. IEEE Trans. Signal Process.,2009.57(6).2222-2231.
    [42] Xi-Lin Li,Tülay Adal,Matthew Anderson. Joint blind source separation by generalized jointdiagonalization of cumulant matrices[J]. Signal Processing,2011,91(10):2314-2322.
    [43]徐先峰,冯大政.一种快速的解盲源分离新算法[J].电子学报.38(12)2010:2780-2785.
    [44] Bofill P.,Zibulevsky M. Underdetermined blind source separation using sparse representations[J]. Signal Processing,2001,81(11):2353-2362.
    [45]何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离[J].中国科学E辑(信息科学),2006,36(8):864-879.
    [46]谢胜利,孙功宪,肖明,傅予力,吕俊.欠定和非完全稀疏性的盲信号提取[J].电子学报,2010,38(5):1028-1031.
    [47] Yuanqing Li, Shun-Ichi Amari, et.al. Underdetermined Blind Source Separation Based onSparse Representation[J]. IEEE Transactions on signal processing,54(2):423-437.
    [48] Gongxian Sun, Feng Gao, Jun Lv and Ming Xiao. Dual Channel Speech Denoising Based onSparse Representation[J]. Lecture Notes in Electrical Engineering,2010,67(5):373-379.
    [49] Jourjine A,Rickard S,Yilmaz O. Blind separation of disjoint orthogonal signals: demixing Nsources from2mixtures[C]. IEEE International Conference on Acoustics, Speech, and SignalProcessing, Istanbul, Turkey,2000, pp.2985-2988.
    [50] Yilmaz O,Richard S. Blind separation of speech mixtures via time-frequency masking[J].IEEE Trans. on Signal Processing,2004,52(7):1830-1847.
    [51] MELIA T, RICKARD S. Underdetermined blind source separation in echoic environmentsusing DESPRIT[J]. EURASIP Journal on Advances in Signal Processing,2007, pp.1-19.
    [52] Matthieu Puigt,Yannick Deville. Two Time-Frequency Ratio-Based Blind Source SeparationMethods for Time-Delayed Mixtures[J]. Lecture Notes in Computer Science,2006,3889:682-690.
    [53] Puigt Matthieu, Deville Yannick. Time-frequency ratio-based blind separation methods forattenuated and time-delayed sources[J]. Mechanical Systems and Signal Processing,2005,19(6):1348-1379.
    [54] Deville Y, Puigt M, Albouy B. Time-frequency blind signal separation: Extended methods,performance evaluation for speech sources[C]. IEEE International Conference on NeuralNetworks-Conference Proceedings,Toulouse, France,2004,pp.255-260.
    [55]肖明,谢胜利,傅予力.基于频域单源区间的具有延迟的欠定盲分离[J].电子学报,2007,35(12):2279-2283.
    [56]刘琨,杜利民,王劲林.基于时频域单源主导区的盲源欠定分离方法[J].中国科学E辑,2008,38(8):1284-1301.
    [57]陆凤波,黄知涛,姜文利.基于时频域单源区域的延迟欠定混合非平稳信号盲分离[J].电子学报,2011,39(4):1-5.
    [58] Weinstein E,Feder M,Oppenheim A V. Multi-channel signal separation by decorrelation[J].IEEE Trans on Speech and Audio Processing,1993,1(4):405-413.
    [59] Gerven V S,Compernolle V D. Signal separation by symmetric adaptive decorrelation stability,convergence and uniqueness[J]. IEEE Trans on Signal Processing,1995,43(7):1602-1612.
    [60] Kawamoto M,Matsucka K,Ohnishi N. A method of blind separation for convolved non-stationary signals[J]. Neurocomputing,1998,22(3):157-171.
    [61]张华,冯大政,庞继勇.基于二阶统计量的语音信号时域卷积盲分离算法[J].电子与信息学报,2010,32(5):1033-1037.
    [62] D.Yellin and E.Weinstein. Multichannel signal separation:Methods and analysis[J]. IEEETrans.on signal processing,1996,44:106-118.
    [63] Sun X, Douglas S C. Multichannel blind deconvolution of arbitrary signals: adaptivealgorithms and stability analyses[C]. Conference Record of the Thirty-Fourth AsilomarConference on Signals, Systems and Computers,Pacific Grove,USA,2000,pp.1412-1416.
    [64]张贤达.时间序列分析-高阶统计量方法[M].北京:清华大学出版社,1996.
    [65] Amari S,douglas S.C,Cichocki A, Yang H.H. Multichannel blind deconvolution and equaliz-ation using the natural gradient[C]. IEEE Proceedings of international workshop wirelesscommunication,1997,pp.101-104.
    [66] Choi S,Hong H,Glotin H,Berthommier F. Multichannel signal separation for cocktail partyspeech recognition:a dynamic recurrent network[J]. Neurocomputing,2002,49(4):299-314.
    [67] Botond Sandor KIREI, Marina Dana OPA, Irina MURESAN, Ioana HOMANA, NorbertTOMA, Blind Source Separation for Convolutive Mixtures with Neural Networks[J].Advances in Electrical and Computer Engineering,2011,11(1):63-68.
    [68] Douglas S C,Sawada H,Makino S. Natural gradient multichannel blind deconvolution andspeech separation using causal FIR filters[J]. IEEE Trans on Speech and Audio Processing,2005,13(1):92-104.
    [69] Scott C. Douglas,Xiaoan Sun. Convolutive blind separation of speech mixtures using thenatural gradient[J]. Speech Communication,2003,39(1):65-78.
    [70] Smaragdis P. Blind separation of convolved mixtures in the frequency domain[J]. Neurocomputing,1998,22:21–34.
    [71] Araki S,Mukai R,Makino S. The fundamental limitation of frequency domain blind sourceseparation for convolutive mixtures of speech[J]. IEEE Trans on Speech and Audio Processing,2003,11(2):109–116.
    [72] Rahbar K,Reilly J P. A frequency domain method for blind source separation of convolutiveaudio mixtures[J]. IEEE Trans on Speech and Audio Processing,2005,13(5),pp.832–844.
    [73] Ding S X,Huang J,Wei D M,Cichocki A. A near real-time approach forconvolutive blindsource separation[J]. IEEE Trans on Circuits and Systems I:Regular Papers,2006,53(1):114-128.
    [74] Rivet B,Girin L,Jutten C. Mixing audiovisual speech processing and blind source separationfor the extraction of speech signals from convolutive mixtures[J]. IEEE Trans on Audio,Speech and Language Processing,2007,15(1):96-108.
    [75] Mei T M,Xi J T,Yin F L,Mertins A,Chicharo,J F. Blind source separation based on time-domain optimization of a frequency-domain independence criterion[J]. IEEE Trans on Audio,Speech and Language Processing,2006,14(6),pp.2075-2085.
    [76]彭春翌,朱孝龙,张贤达.基于斜投影的卷积信道盲信号分离[J].清华大学学报(自然科学版),2005,45(4):517-520.
    [77] H. Sawada, S. Araki, S. Makino, Underdetermined Convolutive Blind Source Separation viaFrequency Bin-Wise Clustering and Permutation Alignment[J]. IEEE Trans. Audio, Speech,and Language Processing,2011,19(3):516-527.
    [78] Sawada H, Mukai R,Araki S and Makino S. A robust and precise method for solving thepermutation problem of frequency-domain blind source separation[J]. IEEE Transactions onSpeech and Audio Processing,2004,12(5):530-538.
    [79] Ikram M.Z. and Morgan D.R. Permutation inconsistency in blind speech separation:Investigation and solutions[J]. IEEE Transactions on Speech and Audio Processing,2005,13(1):1-13.
    [80] Wang, L, Ding, H, and Yin, F. An improved method for permutation correction in convolutiveblind source separation[J]. Archives of Acoustics,2010,35(4):493-504.
    [81] Lin Wang,Heping Ding,Fuliang Yin, A Region-Growing Permutation Alignment Approach inFrequency-Domain Blind Source Separation of Speech Mixtures[J]. IEEE Transactions onAudio, Speech, and Language Processing,2011,19(3):549–557.
    [82] Hyyarinen A, Pajunen P. Nonlinear independent component analysis:existence and uniquenessresults[J]. Neural Networks,1999,12(3):245-246.
    [83] Pajunen P. Nonlinear independent component analysis by self-organizing maps[C]. Proc of the1996Int Conf on Artificial Neural Networks.1996:815-820.
    [84] Haritopoulos M,Yin H,Allison N. Image denoising using self-organizing map-based nonlinearindependent component analysis [J]. Neural Networks,2002,15(8-9):1085-1098.
    [85]刘琚,聂开宝,何振亚.非线性混叠信号的可分离性及分离方法研究[J].电子与信息学报.2003,25(1):54-61.
    [86] Yannick Deville, Shahram Hosseini, Alain Deville. Effect of indirect dependencies on maxi-mum likelihood and information theoretic blind source separation for nonlinear mixtures [J].Signal Processing,2011,91(4):793-800.
    [87] Taleb A,Jutten C. Source separation in post-nonlinear mixtures[J]. IEEE Transactions onSignal Processing,1999,47(10):2807-2820.
    [88] TAN Y,WANG J,ZURADA M. Nonlinear blind source separation using a radial basis functionnetwork[J]. IEEE Transactions on Neural Network,2001,12(1):124-134.
    [89] ROJAS F,ROJAS I,Clemente R,et al. Nonlinear blind source separation using geneticalgorithm [C]. Proc.of Independent Component Analysis and Signal Separation.U.S.A,2001,pp.400-405.
    [90] TAN Y,WANG J. Nonlinear blind source separation using higher order statistics and a Geneticalgorithm[J]. IEEE Transactions on Evolutionary Computation,2001,5(6):600-612.
    [91] Chun-Hou Zheng,De-Shuang Huang,Kang Li,George Irwin,Zhan-Li Sun. MISEP Method forPostnonlinear Blind Source Separation[J]. Neural computation,2007,19(9):2557-2578.
    [92] SONG K,WANG Q,DING M L. Approach to nonlinear blind Source separation based on nichegenetic algorithm[C]. Proc of Intelligent Systems Design and Applications, Jinan,2006, pp.441-445.
    [93] De Prisco, R., Zaccagnino,G.,Zaccagnino,R. A multi-objective differential evolution algorithmfor4-voice compositions[C]. IEEE Symposium on Differential Evolution (SDE), Paris,2011,pp.1-8.
    [94] WEI Y,LIU Z X,LI C H. Improved particle swarm to nonlinear blind source separation[C].IEEE International Symposium on Microwave,Antenna,Propagation,and EMC Technologiesfor Wireless Communications,Hangzhou,2007,pp.1128-1133.
    [95] WOO W L,KHOR L C. Blind restoration of nonlinearly mixed signals using multilayerpolynomial neural network[J]. IEE Proc on Vision,Image and Signal Processing,2004,151(1):51-61.
    [96] WOO W L,SALI S. General multilayer perceptron demixer scheme for nonlinear blind signalseparation[J]. IEE Proc on Vision,Image and Signal Processing,2002,149(5):253-262.
    [97] L.Tong,Y. Inouye, and R. Liu. Waveform preserving blind estimation of multiple independentsources[J]. IEEE Trans on Signal Processing,1993,41(7):2461-2470,
    [98] P. Georgiev, A. Cichocki. Robust blind source separation utilizing second and fourth orderstatistics[C]. International Conference on Artificial Neural Networks, Madrid, Spain,2002, pp.1162-1167.
    [99] S.Choi, A.Cichocki. Blind separation of nonstationary sources in noisy mixtures[J]. ElectronicsLetters,2000,36:848-849.
    [100]Cardoso. Source separation using higher order moments[C]. Proc. IEEE ICASSP, Glaskow,UK,1989,pp.2109-2112.
    [101]J.F.Cardoso. High-Order Contrasts for Independent Component Analysis[J]. Neural Comput-ation,1999,11:157-192.
    [102]A. Hyv rinen and E. Oja. Independent Component Analysis: Algorithms and Applications[J].Neural Networks,2000,13(4-5):411-430.
    [103]L. Zhang, A. Cichocki and S. Amari.Natural Gradient Algorithm to Blind Separation ofOverdetermined Mixture with Additive Noises[J]. IEEE Signal Processing Letters,1999,6(11):293-295.
    [104]S. Amari, T. Chen and A. Cichocki. Nonholonomic orthogonal learning algorithms for blindsource separation[J]. Neural Computation,2000,12:1463-1484.
    [105]D. Gabor. Theory of communication[J]. J. Inst. Elec. Eng.,93(III):429–457,1946.
    [106]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,2001.
    [107]Ville J. Theorie et applications de la notion de signal analytique[J]. Cables et Transmission,1948,2A:61-74.
    [108]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [109]胡广书.现代信号处理教程[M].北京:清华大学出版社,2004.
    [110]邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报,2000,28(9):78-84.
    [111]Moreno-Picot, S. Arevalillo-Herraez, M. A Linear Cost Algorithm to Compute the DiscreteGabor Transform[J]. IEEE Transactions on Signal Processing.2010,58(5):2667-2674.
    [112]Ewa Matusiak, Tomer Michaeli and Yonina C. Eldar. Noninvertible Gabor Transforms[J].IEEE Transactions on signal processing,2010,58(5):2597-2612.
    [113]Bastiaans, M.J. Gabor's expansion of a signal into Gaussian elementary signals[J]. Proceedingsof the IEEE.1980,68(4):538-539.
    [114]A. Papoulis. Signal Analysis[M]. McGraw-HilI. New York, NY1988.
    [115]R.Koenig, H.K.Dunn, L.YLacy.The sound spectrograph[J] J.Acoust.Soc.Amer,1946,18:19-49.
    [116]R.K.Potter, GKopp, H.C.Green. Visible Speech[M]. New York: Van Nostrand,1947.
    [117]Jingang Zhong,Yu Huang. Time-frequency representation based on an adaptive short-timeFourier transform[J]. IEEE Transactions on Signal Processing,2010,58(10):5118-5128.
    [118]Zhao Zhao and Xiangquan Shi. FM interference suppression for PRC-CW radar based onadaptive STFT and time-varying filtering[J]. Journal of Systems Engineering and Electronics,2010,21(2):219–223.
    [119]J. Morlet et al. Wave propagation and sampling theory—Part II: Sampling theory and complexwaves[J]. Geophysics,1982,47(2):222-236.
    [120]Ingrid Daubechies著,李建平等译.Ten Lectures on Wavelets[M].北京:国防工业出版社,2004.
    [121]Stephane Mallat.信号处理的小波导引[M].北京:机械工业出版社,2003.
    [122]Runyi Yu. Theory of dual-tree complex wavelets[J]. IEEE Transactions on signal process-ing,2008,56(9):4263-4273.
    [123]Rajeswara Mahidar P et al. A Novel Noisy Image Fusion Technique Using Dual-Tree ComplexWavelet Transform[J]. International Journal of Engineering Science and Technology,2011,3(6):4523-4528.
    [124]L.Cohen著,白居宪译.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998.
    [125]Classen T.A.C.M, Mecklenbruker W.F.G. The Wigner distribution-a tool for time-frequencysignal analysis-part I: continuous-time signals[J]. Philips Journal of Research,1980,35(3):217–259.
    [126]Classen T.A.C.M, Mecklenbruker W.F.G. The Wigner distribution-a tool for time-frequencysignal analysis-part II: discrete-time signals[J]. Philips Journal of Research,1980,35(4):276–300.
    [127]Classen T.A.C.M, Mecklenbruker W.F.G. The Wigner distribution-a tool for time-frequencysignal analysis-part III: relations with other time-frequency signal transform[J]. Philips Journalof Research,1980,35(6):372–389.
    [128]Gupta R.D,Kundu D. Generalized exponential distributions[J]. Australian and New Zealand ofStatistics,1999,41(2):173-188.
    [129]Jones D.L, Farks J.W. A High Resulution Data-Adaptive Time-Frequency Representation[J].IEEE Transactions on ASSP,1990,(12):2127-2135.
    [130]Jones D.L,Baranink R.G. An Adaptive Optimal-kernal Time~Frequeney Representations[J].IEEE Transactions on signal processing,1995,(10):2361-2371.
    [131]BaraniukR.G,Jones D.L. Signal-Dependent Time-frequency Analysis Using a radiallyGaussian kernel[J]. IEEE Transactions on Signal Processing,1993:32(3):263-284.
    [132]BaraniukR.G,Jones D.L. A Signal-Dependent Time-frequency Representation: Fast algorithmfor optimal kernel design[J]. IEEE Transactions on Signal Processing,1994:(1):134-146.
    [133]Shie Qian, and Dapang Chen. Signal representation using adaptive normalized Gaussianfunctions[J]. Signal Processing,1994,36(1):1--11.
    [134]Jin Yuan, Liefeng Bo, Kesheng Wang and Tao Yu. Adaptive Spherical Gaussian Kernel inSparse Bayesian Learning Framework for Nonlinear Regression[J]. Expert Systems withApplications,2009,36(2):3982-3989.
    [135]Tan Xiaogang,Wei Pin,Li Liping. Improvement on polynomial Wigner-Ville distribution fordetecting higher-order polynomial phase signal[J]. Journal of Systems Engineering andElectronics,2009,20(2):234–240.
    [136]Ristic B, Boashash B. Relationship between the polynomial and the higher order Wigner-Villedistributio[J]. IEEE Signal Processing letters,1995,2(12):227-229.
    [137]Braham Barkat and Boualem Boashash. Design of Higher Order Polynomial Wigner–VilleDistributions[J]. IEEE Transactions on signal processing,1999,47(9):608-611.
    [138]Boashash B. Time-frequency signal analysis[J]. Advances in Spectral Estimation and ArrayProcessing,1991,1(9):418-517.
    [139]邹红星,戴琼海,李衍达,卢旭光.不含交叉项干扰且具有WVD聚集性的-时频分布之不存在性[J].中国科学E辑,2001,31(4):348-354.
    [140]Loughlin P.J. Pitton J.W. Atlas L.E. Bilinear time-frequency representations:New insights andproperties[J]. IEEE Trans,Signal Processing,1993,41:750-767.
    [141]B. Boashash. Time–Frequency Signal Analysis and Processing: A Comprehensive Reference[M]. Elsevier Science, Oxford,2003.
    [142]Lynn, Tan Jo, Sha ameri, Ahmad Zuri. Separable kernel design for bilinear time-frequencyanalysis of digital modulation signals[C]. International Symposium on Communications andInformation Technologies, Sydney,2007:17-19.
    [143]Khoa N. Le, Kishor P. Dabke, Gregory K. Egan. Hyperbolic kernel for time-frequency powerspectrum[J]. Optical Engineering,2003,42(8):2400-2415.
    [144]WANG Yong, JIANG Yicheng. New Approaches for Construction of Time-Frequency Kernels[J]. Chinese Journal of Electronics,2009,18(1):101-104.
    [145]Martin J,Bastiaans,Tatiana Alieva, LJubiˇsa Stankovic. On Rotated Time–Frequency Kernels[J]. IEEE Signal processing letters,2002,9(11):378-381.
    [146]Jubi a Stankovic,Tatiana Alieva,Martin J. Bastiaans. Time-Frequency Signal Analysis Basedon the Windowed Fractional Fourier Transform[J]. Signal Processing,2002,83(11):2459-2468.
    [147]郭福成,皇甫堪.基于滤波器组的改进型Wigner-Ville分布[J].信号处理,2001,17(1):1-4.
    [148]am Bilas Pachori, Pradip Sircara. A new technique to reduce cross terms in the Wignerdistribution[J]. Digital Signal Processing,2007,17(2):466-474.
    [149]Ning Jing; Peng Jiegang. Repression of the Cross-Term Interference Based on Emd andCohen's Class Distribution[C]. IEEE Circuits and Systems International Conference on Testingand Diagnosis, chengdu,2009,pp.1-4.
    [150]Xiaobing Li, Meng Chu, Tianshuang Qiu, Haiping Bao. An EMD based time-frequencydistribution and its application in EEG analysis[J]. Journal of biomedical engineering,2007,24(5):990-995.
    [151]蔡艳平,李艾华,李仁兵,李喜来,白向峰.基于经验模态分解的交叉项抑制法[J].计算机工程,2011,37(7):271-273.
    [152]Miros aw Szmajda, Krzysztof Górecki, Janusz Mroczka. Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform-Tools for Power Quality monitoring [J].Metrology and Measurement Systems,2010,3:383-396.
    [153]陈超,郝雁中,高宪军,孙强.抑制维格纳分布交叉干扰项的联合算法[J].吉林大学学报(信息科学版),2009,27(2):127-132.
    [154]Khandan, F. Ayatollahi, A. Performance region of center affine filter for eliminating ofinterference terms of discrete Wigner distribution[C]. Proceedings of the3rd InternationalSymposium on Image and Signal Processing and Analysis, Italy,2003,pp.621-625.
    [155]Wen-kai Lu,Qiang Zhang. Deconvolutive Short-Time Fourier Transform Spectrogram[J].IEEE Signal Processing Letters,2009,16(7):576-579.
    [156]Dianfa Ping,Peihong Zhao,Bing Deng. Cross-terms suppression in Wigner-Ville distributionbased on image processing[C]. IEEE International Conference on information and Automation,Harbin,2010,pp.2168-2171.
    [157]Adel Belouchrani, Karim Abedmeraim. Contrast functions for blind source separation based ontime frequency distributions[J]. Lecture Notes in Computer Science,2006,3889:876-884.
    [158]Ren Xishun, Shen Yuehong, Jian Luoming. A modified approach of underdetermined blindsource separation in time-frequency domain[C]. The2nd International Conference onNetworks Security, Wireless Communications and Trusted Computing,2010, pp.125-128.
    [159]A. Holobar, C. Fevotte, C. Doncarli, and D. Zazula. single autoterms selection for blind sourceseparation in time-frequency plane[C]. EUSIPCO, Toulouse,France,2002, pp.3-6.
    [160]Loesch Benedikt,Yang Bin. Online blind source separation based on time-frequencysparseness[C]. IEEE International Conference on Acoustics, Speech and Signal Processing,2009,pp.117-120.
    [161]E.M. Fadaili, N. Thirion-Moreau, E. Moreau, Non-orthogonal joint diagonalization/zerodiagonalization for source separation based on time-frequency distributions[J]. IEEE Trans.Signal Process,2007,55(5):1673-1687.
    [162]Li Zhinong, Lv Yaping, Han Jie. Blind separation of non-stationary signals in the mechanicalequipment based on time-frequency analysis[J]. Journal of Mechanical Strength,2008,30(3):354-358.
    [163]K.Kodera, C.De Villedary, R.Gendrin. A new mothod for the numerical analysis of non-stationary signals[J]. Phys. Earth and Plan,1976,12:142-150.
    [164]F.Auger, P.Flandrin. Improving the readability of time-frequency and time-scale representa-tions by the reassignment method[J]. IEEE Trans, Signal Proc.,1995,SP-43(5):1068-1089.
    [165]P.Flandrin,F.Auger,and E. Chassande-Mottin. Time-frequency reassignment: From principlesto algorithms, in Applications in Time-Frequency Signal Processing[M]. CRC Press,2003.
    [166]Nilsen, G.K. Recursive Time-Frequency Reassignment[J]. IEEE Transactions on SignalProcessing,2009,57(8):3283-3287.
    [167]Khadkevich, M,Omologo, M. Time-frequency reassigned features for automatic chord recogni-tion[C].2011IEEE International Conference on coustics, Speech and Signal Processing,Pargue,2011,pp.181-184.
    [168]刘增华,余锋祥,宋国荣,何存富,吴斌.基于非参数Snakes的时频重排方法在钢绞线导波模态识别中的应用[J].机械工程学报,2011,47(8):47-53.
    [169]Labib M. Khadra. The smoothed pseudo-Wigner distribution in speech processing[J].International Journal of Electronics,1988,65(4):743-755.
    [170]Da-Zheng Feng,Wei Xing Zheng,Andrzej Cichocki. Matrix-Group Algorithm via ImprovedWhitening Process for Extracting Statistically Independent Sources From Array Signals[J].IEEE Transactions on Signal Processing,2007,55(3):962-977.
    [171]A. Belouchrani, K. Abed-Mera m, MG Amin, A. Zoubir. Joint anti-diagonalization for blindsource separation[C]. International Conference on Acoustic, Speech, and Signal Processing.Salt Lake City.2001,pp.2789-2792.
    [172]曹广福,严从荃.实变函数论与泛函分析[M].北京:高等教育出版社,2004.
    [173]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2004.
    [174]Cardoso, J.-F,and Souloumiac, A. Jacobi angles for simultaneous diagonalization[J]. SIAMJournal on Matrix Analysis and Applications,1996,17(1):161–164.
    [175]Y Takahashi, T Takatani, K Osako, et al. Blind spatial subtraction array for speechenhancement in noisy environment[J]. IEEE Transactions on Audio, Speech and LanguageProcessing,2009,17(4):650–664.
    [176]Zoghi.M.R, Kahaei.M.H. Using modified conditional second-order statistics in blind sourceseparation in noisy environment[C]. IEEE/ACS International Conference on ComputerSystems and Applications, Amman, Jordan,2007,pp.247-251.
    [177]Y. Takahashi, Y. Uemura, H. Saruwatari,et al. Musical noise analysis based on higher orderstatistics for microphone array and nonlinear signal processing[C]. IEEE InternationalConference on Acoustics, Speech, and Signal Processing,.aipei, Taiwan,2009,pp.229-232.
    [178]Blanco D, Mulgrew B, Ruiz D.P, et al. Independent component analysis in signals withmultiplicative noise using fourth-order statistics[J]. Signal Processing,2007,87(8):1917-1932.
    [179]傅予力,沈轶,谢胜利.基于规范高阶累积量的盲分离算法[J].应用数学.2006,19(4):869-876.
    [180]Hassan, Syed Ali, Bin Yang. Maximum likelihood performance over higher-order statistics forblind source separation in wireless systems[C].2nd International Conference on ElectricalEngineering, Lahore, Pakista,2008,pp.1-5.
    [181]Castells F, Igual J, Millet J, et al. Atrial activity extraction from atrial fibrillation episodesbased on maximum likelihood source separation[J]. Signal Processing,2005,85(3):523-535.
    [182]Yang Yan, Kang Gewen; Li Hong. Image denoising by sparse code shrinkage[C].5thInternational Conference on Wireless Communications, Networking and Mobile Computing,Beijing, China,2009,pp.1-4.
    [183]陈盛双,张富铭,王传廷,赵鹏.基于稀疏编码收缩和Contourlet变换的红外图像去噪[J].计算机工程与应用.2010.46(15):179-181.
    [184]潘泉,张磊,孟晋丽等.小波滤波方法及应用[M].北京:清华大学出版社.2005.
    [185]Janett Walters-Williams,Yan Li. Performance Comparison of Known ICA Algorithms to aWavelet-ICA Merger[J]. Signal Processing,2011,5(3)):80-92.
    [186]Richard O. Duda,Peter E. Hart.Use of the Hough transformation to detect lines and curves inpictures[J]. Communications of the ACM,1972,15(1):11-15.
    [187]孙晓昶,皇甫堪.基于Wigner-Hough变换的多分量LFM信号检测及离散计算方法[J].电子学报,2003,31(2):241-244.
    [188]赵树杰,赵建勋.信号检测与估计理论[M].北京:清华大学出版社,2005.
    [189]边海龙.非平稳信号联合时频分析方法的若干问题研究与应用[D].电子科技大学.2008.
    [190]Mati Wax and Jacob Sheinvald. A least-squares approach to joint diagonalization[J]. IEEESignal Processing Letters,1997,4(2):52-53.
    [191]Frederic Abrard, Yannick Deville. A time–frequency blind signal separation method applicableto underdetermined mixtures of dependent sources[J]. Signal Processing.2005,85(7):1389-1403.
    [192]Y. Deville, M. Puigt, Temporal and time-frequency correlation-based blind source separationmethods. Part I: Determined and underdetermined linear instantaneous mixtures[J], SignalProcessing,2007,87(3):374-407.
    [193]Stockwell R G, Mansinha L, Lowe R L, Localization of the complex spectrum: the S transform[J], IEEE Transactions Signal Processing,1996,17(6):998-1001. 
    [194]陈学华,贺振华,黄德济.广义S变换及其时频滤波[J].信号处理,2008,24(1):28-31.
    [195]Pinnegar C.R,Eaton D.W. Application of the S transform to prestack noise atterntion filtering[J]. Journal of Geophysical Research,2003:108(B9):2422-2431.
    [196]高静怀,陈文超,李幼铭.广义S变换与薄互层地震响应分析[J].地球物理学报.2003,46(4):526-532.
    [197]B. Boashash. Time-Frequency Signal Analysis and Processing[M]. Englewood Cliffs, NJ:rentice-Hall,2003.
    [198]Braham Barkat and Boualem Boashash. A High-Resolution Quadratic Time–FrequencyDistribution for Multicomponent Signals Analysis[J]. IEEE Transactions on signal processing,2001,49(10):2232-2239.
    [199]I.S. Gradshteyn, I.M. Ryzhik. Table of integrals, series, and products(Seventh edition)[M].ElsevierAcademic Press, Amsterdam,2007.
    [200]B. Boashash and V. Sucic. A resolution performance measure for quadratic time-frequencydistributions[C]. Proc.10th IEEE WorkshopStatist. Signal Array Process., Pocono Manor, PA,Aug.2000, pp.584-588.
    [201]Boualem Boashash,V. Sucic and B. Boashash. Optimization algorithm for selecting quadratictime-frequency distributions: Performance results and calibration[C]. Proc.6th Int. Symp.Signal Process. Applicat., vol.1, Kuala Lumpur, Malaysia, Aug.2001, pp.331-334.
    [202]Victor Sucic. Resolution Measure Criteria for the Objective Assessment of the Performance ofQuadratic Time-Frequency Distributions[J]. IEEE Transactions on signal processing,2003,51(5):1253-1263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700