用户名: 密码: 验证码:
环境激励下结构模态参数自动识别与算法优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验模态分析在结构的健康监测、损伤识别、动力特性分析等方面具有重要的工程应用价值,主要包括数据采集、数据处理、参数识别、模型验证等步骤,其中模态参数识别是其中的核心内容。在数据采集时,通常单次完成所有自由度数据采集,对于采集通道数小于结构自由度数的结构需进行多组分时测量。选用单组测量分析时域法中应用最为广泛的随机子空间识别法、多组分时测量分析中常用的特征系统实现算法以及善于低频密集模态分析的小波模态参数识别方法为研究对象。目前,随机子空间识别和特征系统实现算法需要人工参与定阶及模态拾取,存在自动化程度不高的问题,需要进行模态参数自动识别研究;另一方面,随着分析数据量的不断增大,基于数据驱动随机子空间识别法还存在效率低的问题,需要进行模态参数识别算法优化,以提高计算效率。在我国一些重要领域所应用的实验模态系统基本都是国外公司开发的,国内的实验模态系统还处于发展阶段,在各方面与国外成熟商业系统都有不小差距,需要研发具有自主产权功能完善的实验模态分析系统,以缩小与国外先进模态系统的差距。本文主要研究随机子空间识别法、特征系统实现算法等时域方法的模态参数自动识别及算法优化,研发具有自主产权功能完善的实验模态分析系统,主要工作和结论如下:
     ①研究了单组测量分析时域法中应用最为广泛的随机子空间识别法,针对其自动化不高的问题,提出利用模糊聚类算法进行模态参数自动拾取,以频率、阻尼比、模态振型、模态能量为聚类因子计算各模态之间的相似性,采用谱系聚类法根据模态之间的相似性将计算结果分成若干类,提取元素个数大于一定值的类作为拾取结果,实现模态参数自动识别;为了减少虚假模态对结果拾取的影响,提出了模态相似指数作为模态可靠性衡量指标,利用其可以有效剔除计算结果中的虚假模态;为了确定结构的主导模态,利用输出矩阵C、状态矩阵A的特征值与特征向量以及状态-输出协方差矩阵G计算随机子空间识别结果各模态对应的模态能量,从而确定结构中的主导模态;针对基于数据驱动随机子空间识别法计算效率低下的问题,提出了基于特征值分解的随机子空间算法,相比原始算法,无需对高维矩阵进行QR分解和SVD分解,在保证识别精度的条件下减少了计算量,尤其在对大数据量分析时可大幅度提高计算效率。
     ②研究了多组分时测量分析中常用的特征系统实现算法,针对其识别精度易受信号噪影响的问题,利用奇异值分解法(SVD)滤除信号中的部分噪声,减少噪声模态并提高识别精度。为了减少虚假模态对模态拾取的影响,利用输出矩阵C、状态矩阵A的特征值和特征向量以及输入分配矩阵B计算识别结果中各模态能量矩阵,对其进行奇异值分解得到最大奇异值,将其作为各模态对输出能量贡献的衡量指标,称之为模态能量水平,依据虚假模态模态能量为零的特点剔除计算结果中的虚假模态。以频率、阻尼比、模态振型为聚类因子,利用谱系聚类法实现模态参数自动识别。
     ③研究了善于低频密集模态分析的小波模态参数识别方法,针对其计算效率低下的问题,提出基于数据缩减的分频段小波模态参数快速识别算法。首先利用奇异值分解对协方差信号在保留数据信息量的情况下进行缩减以减少参与计算的数据量,由正功率谱密度矩阵的奇异值分解确定识别系统的模态阶数及相应的频率范围,利用小波变换对缩减后的数据进行各阶模态逐频段识别。相比原始算法在保持计算精度的情况下提高了计算效率,在多测点数据分析中可大幅度提高计算效率。
     ④成功研发了一套具有自主知识产权的实验模态分析系统,该系统包括数据采集、结构建模、数据处理、参数识别、模型验证、振型动画等模块,可以方便、快捷和高效地完成结构模态参数识别的全过程。对各个功能模块进行了详细的设计,并对系统实现的关键技术进行了讨论。系统包含了多种不同模态参数识别方法,它们可以互相校核,确保了识别结果的可靠性,最后将该系统进行了工程应用及对比试验。
     最后对论文的工作进行了总结,并对基于环境激励的实验模态参数技术研究进行了展望。
Experimental modal analysis has important engineering application in structuralhealth monitoring, damage identification and dynamic characteristic analysis, etc. Itsanalyzing steps mainly includes data collection, data processing, parameteridentification, and model verification, in which the modal parameter identification isthe core content of the experimental modal analysis. During data collecting, the data ofall freedoms is usually collected at a single time, however the data should be collectedin different groups when the number of acquisition channels is less than the number ofstructure’s freedoms. SSI(Stochastic subspace identification) is the most widely usedtime-domain method in single measurement analysis; ERA(eigensystem realizationalgorithm) is a commonly used method in multi-component measurement analysis;while CWT (continuous wavelet transform)-based modal parameters identification isgood at identifying low-frequency close modal, all of them are studied detailedly inthis thesis. Today, order selection and modal selection for SSI and ERA needs manualparticipation, the automation degree is low, so the research about automatic modalparameter identification is urgently needed. Moreover, with the constantly increasingof analysis data amount, Data-SSI(data driven stochastic subspace identification) andCWT-based modal parameters identification exhibit a low efficiency in identification,so the algorithm of the modal parameter identification needs to be improved. Theexperimental modal systems used in some Chinese important domains are mainlydeveloped by foreign corporations, domestic experimental modal systems are still indevelopment stage, and the gap between domestic systems and foreign maturecommercial systems is still obvious, so developing experiment modal analysis systemwith self-propery right and perfect functions to narrow this gap is very important. Thisthesis studies the automatic modal parameter identification and algorithm optimizationfor some time-domain method such as stochastic subspace identification method, theeigensystem realization algorithm, and a analysis system with self-propery right andperfect functions has also been developed. The main contents and conclusions of thethesis are as follows:
     ①Stochastic subspace identification which is a most widely used time-domainmethod in single measurement analysis is studied. Due to its low automation degree,the hierarchical clustering method is adopted to automatically pick up modal. Automatic modal analysis is realized with the help of the hierarchical clusteringmethod, classify the results into several categories according the similarity between theresults with eigenfrequencies, damping ratios, mode shapes and mode energy, somecategories will be selected if the number of its elements is large enough. In order toreduce the influence by spurious modes on modal selection, a criterion named modelsimilarity index is proposed which can effectively indicate the spurious modesobtained by the stochastic subspace identification. The energy of each mode iscalculated by the selection matrices C, the eigenvalues and eigenvectors of the statematrix A and the state output covariance matrix G, then the contribution of differentorder modes to the structural response can be understood, which in turn can help toconfirm the dominate mode in the structure. An improved stochastic subspaceidentification algorithm based on eigendecomposition is introduced to solve its lowefficiency problem. Compared with the traditional algorithm, the proposed algorithmneed much less cost of memory and computing time as it doesn’t have a process of theQR decomposition of a high-dimensional matrix and SVD of the projection matrix,and the proposed algorithm improved the identification computational efficiencywithout losing the quality, especially when analyzing a large amount of data, thecomputational efficiency can be improved significantly.
     ②ERA(eigensystem realization algorithm) which is a commonly used method inmulti-component measurement analysis is studied. For the drawback that itsidentification precision is susceptible affected by the measurement noise, SVD isadopted to reduce measurement noise. In order to reduce the influence by spuriousmodes on modal selection, the energy matrix of each mode can be calculated by theselection matrices C, the eigenvalues and eigenvectors of the state matrix A and theinput distribution matrix B. The largest singular value of the energy matrix obtained bySVD is a measure for the energy contribution of each mode, which is named modalenergy level. Spurious modes resulting from noise or model redundancy are indicatedaccording their mode energy level. Take frequency, damping ratio, mode shape andmold the modal energy level as the clustering factor, automatic identification can berealized with the help of Hierarchical clustering method.
     ③CWT (continuous wavelet transform)-based modal parameters identificationwhich is good at identifying low-frequency close modal is studied. Attempting toovercome its low efficiency problem, a rapid modal identification algorithm usingwavelet based on data reduction is introduced. The SVD is firstly used to reduce the covarience signals on the premise of keeping data information amount, to decrease thedata needed in calculation. And then SVD is also applied to positive power spectraldensity matrix to identify modal order and its corresponding frequency range, then thewavelet transform is took to identify different order modes from one frequency toanother frequency after data reduction. Compared to the original algorithm, thismethod improves the identification computational efficiency without losing the quality,and the computational efficiency can be improved significantly especially whenanalyzing a large number of data.
     ④A modal analysis system with self-propery right is developed successfully inthis thesis. It contains data acquisition module, data process module, designs ofstructure model module, parameters identification module, modal validation module,and modal shaping module. The whole process of structural modal parametersidentification can be easily, quickly and efficiently completed by using this system.Each functional module is detailedly designed, and the key technologies of itsimplementation are also detailedly discussed. The system contains a variety of modalparameter identification methods, they can check each other to ensure the reliability ofthe identification results. At last, the system is used at some project applications andcomparative test, the results demonstrate that the modal analysis system designed inthis thesis has the value of engineering application.
     Finally, the works of this thesis were summaried, and the future prospect ofambient excitation based experimental modal parameter technique is also discussed.
引文
[1]曹树谦,张文德等.振动结构模态分析——理论、实验与应用[M].天津:天津大学出版社,2001.
    [2]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [3]郭荣,周鋐.某型轿车白车身试验模态分析及动态特性评价[J].机械设计,2010,27(8):18-22.
    [4]丁明波,陈兴冲,王轲之.铁路连续弯梁桥自振特性试验的环境随机激振法[J].兰州交通大学学报,2008,27(4):18-21.
    [5]邹春平,陈端石,华宏星.船舶结构振动模态综合法[J].上海交通大学学报,2003,37(8):1213-1218.
    [6]刘华翔,朱荣昌. F-22机载火控雷达系统研究[J].飞机设计,2003(1):42-46,52.
    [7]王学敏,黄方林,刘建军.大型桥梁模态参数识别的一种方法[J].工程力学,2007,24(2):110-114.
    [8]郭鑫,黄方林.时域模态参数识别在南京长江大桥安全监测中的应用[J].湖南交通科技,2011,37(2):70-73.
    [9] Filipe Magalh es, álvaro Cunha, Elsa Caetano. Online automatic identification of the modalparameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing,2009,23(2):316-329.
    [10] J. Chen, Y.L. Xu, R.C. Zhang. Modal parameter identification of Tsing Ma suspensionbridge under Typhoon Victor: EMD-HT method[J]. Journal of Wind Engineering andIndustrial Aerodynamics,2004,92(10):805-827.
    [11] Jiangling Fan, Zhiyi Zhang, Hongxing Hua. Data processing in subspace identification andmodal parameter identification of an arch bridge[J]. Mechanical Systems and SignalProcessing,2007,21(4):1674-1689.
    [12] Joseph Lardies, Ta Minh-Ngi. Modal parameter identification of stay cables fromoutput-only measurements[J]. Mechanical Systems and Signal Processing,2011,25(1):133-150.
    [13] Keyu Qi, Zhengjia He, Zhen Li, etc. Vibration based operational modal analysis of rotorsystems[J]. Measurement,2008,41(7):810-816.
    [14] Jian-Huang Weng, Chin-Hsiung Loh, Jerome P. Lynch, etal. Output-only modalidentification of a cable-stayed bridge using wireless monitoring systems[J]. EngineeringStructures,2008,30(7):1820-1830.
    [15] X.H. He, X.G. Hua, Z.Q. Chen, etc. EMD-based random decrement technique for modalparameter identification of an existing railway bridge[J]. Engineering Structures,2011,33(4):1348-1356.
    [16] Paolo Clemente, Francesco Marulo, Leonardo Lecce, etal. Experimental modal analysis ofthe Garigliano cable-stayed bridge[J]. Soil Dynamics and Earthquake Engineering,1998,17(7):485-493.
    [17] Filipe Magalh es, Elsa Caetano, álvaro Cunha. Operational modal analysis and finiteelement model correlation of the Braga Stadium suspended roof[J]. Engineering Structures,2008,30(6):1688-1698.
    [18]夏国林,李霞,张代胜.轿车白车身动力学模型修正研究[J].机械研究与应用,2007,20(6):29-30.
    [19]宋汉文,王丽炜,王文亮,等.有限元模型修正中的若干重要问题[J].振动与冲击,2003,22(4):20-23.
    [20]陈功,熊天齐,钱若军.模型修正(Model Updating)的研究[C]//第五届全国现代结构工程学术研讨会.中国广东广州:工业建筑杂志社,2005:126-128.
    [21]张以帅,洪嘉振,李伟明.模型缩聚-模型修正迭代方法的研究[J].振动与冲击,2009,28(12):23-26.
    [22]宗周红,Bijaya Jaishi,林友勤等.西宁北川河钢管混凝土拱桥的理论和实验模态分析[J].铁道学报,2003,25(4):89-96.
    [23]朱宏平,黄民水.基于环境激励的桥梁结构动力有限元模型修正研究[J].华中科技大学学报,2009,26(1):1-10.
    [24]李碧华,蔡德福,宋汉文.实验模态分析技术用于桥梁状态监测[J].上海力学,1998,19(1):68-71.
    [25]张生.基于振动信号处理及模态分析的机械故障诊断技术研究[D].硕士学位论文.河北:燕山大学,2009.
    [26]赵远.基于工作模态的减速器状态监测和故障诊断的方法研究[D].硕士学位论文.山西:太原理工大学,2010.
    [27] Matthew J. Whelan, Michael V. Gangone, Kerop D. Janoyan, etal. Real-time wirelessvibration monitoring for operational modal analysis of an integral abutment highwaybridge[J]. Engineering Structures,2009,31(10):2224-2235.
    [28] Ashish K. Darpe. A novel way to detect transverse surface crack in a rotating shaft[J].Journal of Sound and Vibration,2007,305(1-2):151-171.
    [29]许金余,张其顶,宋洪斌等.基于模态分析的钢结构损伤识别方法研究[J].机械科学与技术,2007,26(2):206-208.
    [30]邓兆祥,李昌敏,胡玉梅等.轿车车内低频噪声预测与控制[J].重庆大学学报,2007,30(12):7-11.
    [31]徐超,左言言,李晓川.滚筒洗衣机箱体振动与噪声控制[J].环境工程,2008,26(1):57-59.
    [32]童昕.粘弹阻尼结构模态灵敏度分析的模态展开方法[J].航空学报,1999,19(3):268-271.
    [33] P. Verboven, Frequency-domain system identification for modal analysis[D], Ph.D. Thesis,Brussel, Belgium: Vrije Universiteit Brussel,2002.
    [34] P Verboven, B Cauberghe, E Parloo, etal. User-assistingtools for a fast frequency-domainmodal parameter estimation method[J]. Mechanical Systems and Signal Processing,2004,18(4):759-780.
    [35] H. Van der Auweraer, B. Peeters. Discriminating Physical Poles from Mathematical Poles inHigh Order Systems: use and Automation of the Stabilization Diagram[C]//the IEEEInstrumentation and Measurement Technology Conference: Como, Italy,2004:18–20.
    [36] S. Vanlanduita, P. Verbovena, P. Guillaume, etal. An automatic frequency domain modalarameter estimation algorithm[J]. Journal of Sound and Vibration,2003,265(3):647–661.
    [37]孙鑫晖,张令弥.宽频带模态识别算法中极点的自动选取[J].地震工程与工程振动.2009,29(1):130-134.
    [38]姜金辉,陈国平,张方等.模糊聚类法在试验模态参数识别分析中的应用[J].南京航空航天大学学报.2009,41(3):344-347.
    [39]孙国富,.基于模糊聚类的模态参数自动识别[J].振动与冲击,2010,29(9):86-88,244.
    [40]比利时LMS公司.http://www.lmschina.com/.
    [41]美国Vibrant Technology公司. http://www.vibetech.com.
    [42]丹麦BK公司. http://www.bksv.com/.
    [43]德国M+P公司. http://www.mpihome.com/
    [44]东方所.http://www.coinv.com.cn/product/daspmas.htm.
    [45]东华测试技术有限公司.http://www.dhtest.com/motai.htm.
    [46]沈松,应怀樵,雷速华等.用锤击法和变时基技术进行黄河铁路桥的模态试验分析.振动工程学报.2000,13(3):492-495.
    [47] Cunha A.,Caetano E. From Input-Output to Output-Only Modal Identification of CivilEngineering Structures[C]//1st International Operational Modal AnalysisConference(IOMAC): Copenhagen Denmark,2005:1-22.
    [48]续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击.2002,21(3):1-5.
    [49]何启源.基于现代时频分析的环境激励模态参数识别方法研究[D].博士学位论文.重庆:重庆大学,2009.
    [50]刘进明,董书伟,应怀樵等.环境激励中各种模态分析方法的比较[C]//第九届全国振动理论及应用学术会议.中国浙江杭州,2005:126-128.
    [51] CLARKSON, B L, MERCER, C A. Use of cross correlation in studying the response oflightly damped structures to random forces (Frequency response function of lightly dampedsingle-degree of freedom system estimated from truncated measurement of cross-correlationfunction of white noise excitation and response. AIAA JOURNAL,1965,3:2287-2291.
    [52] Wei-Xin Ren, Wael Zatar c, Issam E.Harik. Ambient vibration-based seismic evaluation of acontinuous girder bridge. Engineering Structures,2004,26(5):631-640.
    [53] Ren,Wei-Xin, Peng,Xue-Lin, Lin,You-Qin. Experimental and analytical studies on dynamiccharacteristics of a large span cable-stayed bridge. Engineering Structures,2005,27(4):535-548.
    [54] Rune Brincker, Lingmi Zhang, Palle Andersen. Modal identification of output-only systemsusing frequency domain decomposition. Smart Materials and Structures,2001,10(3):441-445.
    [55]王彤,张令弥.运行模态分析的频域空间域分解法及其应用.航空学报,2006,27(1):62-66.
    [56]王彤,张令弥.有理分式正交多项式频响函数模态参数识别[J].航空学报,2003,24(2):140-143.
    [57] Mark H. Richardson, David L. Formenti. PARAMETER ESTIMATION FROMFREQUENCY RESPONSE MEASUREMENTS USING RATIONAL FRACTIONPOLYNOMIALS[C]//1st IMAC Conference, Orlando,1982:1-15.
    [58]秦仙蓉,张令弥.对模态参数识别的整体正交多项式算法的评述[J].强度与环境,2000,(4):30-38.
    [59]焦群英,陈奎孚.整体正交多项式法识别模态参数的改进[J].中国农业大学学报,2003,8(2):1-6.
    [60] T. De Troyer, P. Guillaume, R. Pintelon, etal. Fast calculation of confidence intervals onparameter estimates of least-squares frequency-domain estimators[J]. Mechanical Systemsand Signal Processing,2009,23(2):261-273.
    [61] P. Verboven, P. Guillaume, B. Cauberghe, etal. Frequency-domain generalized totalleast-squares identification for modal analysis[J]. Journal of Sound and Vibration,2004,278(1-2):21-38.
    [62] P. Verboven, B. Cauberghe, P. Guillaume. Improved total least squares estimators for modalanalysis[J]. Computers&Structures,2005,83(25-26):2077-2085.
    [63] Bart Peeters, Geert Lowet, Auweraer,etal. Operational PolyMAX for estimating the dynamicproperties of a stadiums structure during a football game[J]. Shock and Vibration,2007,14(4):283-303.
    [64] T. De Troyer, P. Guillaume, G. Steenackers, etal. Fast variance calculation of polyreferenceleast-squares frequency-domain estimates[J]. Mechanical Systems and Signal Processing,2009,23(5):1423-1433.
    [65] P. Guillaume, P. Verboven, S. Vanlanduit. Frequency-domain maximum likelihoodidentification of modal parameters with confidence intervals[C]//the InternationalConference on Noise and Vibration Engineering. Leuven Belgium,1998:16-18.
    [66] Bart Peetersa, Herman Van der Auweraera, Patrick Guillaume. The PolyMAXfrequency-domain method: a new standard for modal parameter estimation?[J]. Shock andVibration,2004,11(3-4):395–409.
    [67] P. Mohanty, D.J. Rixen. Operational modal analysis in the presence of harmonicexcitation[J]. Journal of Sound and Vibration,2004,270(1-2):93-109.
    [68] P. Mohanty, D.J. Rixen. A modified Ibrahim time domain algorithm for operational modalanalysis including harmonic excitation[J]. Journal of Sound and Vibration,2004,275(1-2):375–390.
    [69] R.S. Pappa, S.R. Ibrahim. A parametric study of the Ibrahim time domain modalidentification algorithm[J], The Shock and Vibration,1981,51(3):43-57.
    [70] S.R. Ibrahim. A Time Domain Vibration Test Technique[D]. PhD Thesis. Alberta, Canada:University of Calgary,1973.
    [71] Prasenjit Mohanty, Daniel J. Rixen. Modified SSTD method to account for harmonicexcitations during operational modal analysis[J]. Mechanism and Machine Theory,2004,39(12):1247-1255.
    [72] S.A. Zaghlool. Single-station time-domain (SSTD) vibration testing technique: theory andapplication[J]. Journal of Sound and Vibration,1980,72(2):205-234.
    [73] Prasenjit Mohanty, Daniel J. Rixen. Modified ERA method for operational modal analysis inthe presence of harmonic excitations[J]. Mechanical Systems and Signal Processing,2006,20(1):114-130.
    [74]刘福强,张令弥.一种改进的特征系统实现算法及在智能结构中的应用[J].振动工程学报,1999,12(3):316-322.
    [75]贺瑞,秦权.改进的NExT-ERA时域模态识别法的误差分析[J].清华大学学报(自然科学版),2009,49(6):803-810.
    [76] Juang J N, Pappa R S. An Eigensystem Realization Algorithm (ERA) for modal parameteridentification and model reduction[J]. J Guidance, Control, and Dynamics,1985,8(5):620-627.
    [77]李炜明,朱宏平,吴贤国等.未知激励下框架结构系统辨识的特征系统实现算法.振动与冲击,2010,29(8):228-231.
    [78] Q. QIN, H.B. LI, L.Z. QIAN, etal. MODAL IDENTIFICATION OF TSING MA BRIDGEBY USING IMPROVED EIGENSYSTEM REALIZATION ALGORITHM[J]. Journal ofSound and Vibration,2001,247(2):325-341.
    [79] Dionysius M. Siringoringo, Yozo Fujino. System identification of suspension bridge fromambient vibration response[J]. Engineering Structures,2008,30(2):462-477.
    [80]李蕾红,陆秋海,任革学.特征系统实现算法的识别特性研究及算法的推广[J].工程力学,2002,19(1):109-114.
    [81]姜浩,郭学东,杨焕龙.环境激励下桥梁结构模态参数识别方法的研究[J].振动与冲击,2008,27(11):126-129.
    [82] Van Overschee Peter, De Moor Bart. Subspace Identification for Linear Systems:Theory-Implementation-Applications[M]. Dordrecht, the Netherlands: Kluwer AcademicPublishers,1996.
    [83] B.Peeters, G. De Roeck. Reference-based stochastic subspace identification for output-onlymodal analysis[J]. Mechanical Systems and Signal. Processing,1999,13(6):855-878.
    [84] Edwin Reynders, Rik Pintelon, Guido De Roeck. Uncertainty bounds on modal parametersobtained from stochastic subspace identification[J]. Mechanical Systems and SignalProcessing,2008,22(4):948-969.
    [85] Gontier C. Energetic classifying of vibration modes in subspace stochastic modal analysis[J].Mechanical Systems and Signal Processing,2005,19(1):1-19.
    [86] Virote Boonyapinyo, Tharach Janesupasaeree. Data-driven stochastic subspace identificationof flutter derivatives of bridge decks. Journal of Wind Engineering and IndustrialAerodynamics,2010,98(12):784-799.
    [87] Dan-Jiang Yu, Wei-Xin Ren. EMD-based stochastic subspace identification of structuresfrom operational vibration measurements. Engineering Structures,2005,27(12):1741-1751.
    [88] Pelin Gundes Bakir. Automation of the stabilization diagrams for subspace based systemidentification[J]. Expert Systems with Applications,2011,38(12):14390-14397.
    [89] Anders Dahlén, Anders Lindquist, Jorge Mari. Experimental evidence showing thatstochastic subspace identification methods may fail[J]. Systems&Control Letters,1998,34(5):303-312.
    [90]肖祥,任伟新.实时工作模态参数数据驱动随机子空间识别[J].振动与冲击,2009,28(8):148-153.
    [91]樊江玲,张志谊,华宏星.一种改进的随机子空间辨识方法的稳定图[J].振动与冲击,2010,29(2):31-34.
    [92]常军,孙利民,张启伟.基于两阶段稳定图的随机子空间识别结构模态参数[J].地震工程与工程振动,2008,28(3):47-51.
    [93]刘兴汉,王跃宇.基于Cholesky分解的改进的随机子空间法研究[J].宇航学报,2007,28(3):608-612,652.
    [94]常军,孙利民,张启伟.随机子空间产生虚假模态及模态遗漏的原因分析[J].工程力学,2007,24(11):57-62.
    [95]张家滨,陈国平.基于随机子空间的递推在线模态识别算法[J].振动与冲击,2009,28(8):42-45.
    [96]张家滨.基于子空间算法的结构模态参数识别与在线监测研究[D].博士学位论文.南京:南京航空航天大学,2009.
    [97]张家滨,陈国平.利用响应数据识别模态参数的子空间在线递推算法[J].振动工程学报,2009,22(1):26-30.
    [98]常军.随机子空间方法在桥梁模态参数识别中的应用研究[D].博士学位论文.上海:同济大学,2006.
    [99]樊江玲.基于输出响应的模态参数辨识方法研究[D].博士学位论文.上海:上海交通大学,2007.
    [100]汤宝平,章国稳,孟利波.基于模态能量的随机子空间虚假模态剔除[J].华中科技大学学报,2012,40(3):94-98.
    [101]常军,孙利民,张启伟.随机子空间识别方法计算效率的改进[J].地震工程与工程振动,2007,27(3):88-94.
    [102]禹丹江.土木工程结构模态参数识别[D].博士学位论文.福州:福州大学,2006.
    [103]禹丹江,任伟新.基于经验模式分解的随机子空间识别方法[J].地震工程与工程振动,2005,25(5):63-68.
    [104] S.M. Moore, J.C.S. Lai, K. Shankar. ARMAX modal parameter identification in the presenceof unmeasured excitation—I: Theoretical background[J]. Mechanical Systems and SignalProcessing,2007,21:1601-1615.
    [105]张颖.三跨连续箱梁桥的模态试验研究[J].试验技术与试验机,2007,(1),14-17.
    [106]詹胜,高赞明,徐幼麟等.大型建筑物环境振动模态分析的归总方法[J].暨南大学学报,1999,20(1):28-33.
    [107]李惠彬,秦权钱,良忠.青马悬索桥的时域模态识别[J].土木工程学报,2001,34(5):52-56.
    [108]闵志华,孙利民,孙智.基于小波变换和奇异值分解的模态参数识别方法[J].同济大学学报,2009,37(4):460-465.
    [109]闵志华,孙利民,孙智,淡丹辉.环境激励下基于小波变换和奇异值分解的结构模态参数识别[J].振动工程学报,2009,22(2):142-149.
    [110]章国稳,汤宝平,唐光武.基于数据缩减的分频段小波模态参数快速识别[J].振动工程学报,2012,25(1):49-54.
    [111]汤宝平,章国稳,孟利波.用分层抽样和复Morlet小波识别短样本模态参数[J].重庆大学学报,2009,32(12):1381-1385.
    [112]何启源;汤宝平;程发斌.基于修正Morlet小波的自适应模态参数识别[J].中国机械工程,2007,18(20):2076-2480.
    [113] Joseph Lardies, Stéphane Gouttebroze. Identification of modal parameters using the wavelettransform[J]. International Journal of Mechanical Sciences,2002,44(11):2263-2283.
    [114] C. Pislaru, J.M. Freeman, D.G. Ford. Modal parameter identification for CNC machine toolsusing Wavelet Transform[J]. International Journal of Machine Tools and Manufacture,2003,43(10):987-993.
    [115] Silvano Erlicher, Pierre Argoul. Modal identification of linear non-proportionally dampedsystems by wavelet transform[J]. Mechanical Systems and Signal Processing,2007,21(3):1386-1421.
    [116] Thien-Phu Le, Pierre Argoul. Continuous wavelet transform for modal identification usingfree decay response[J]. Journal of Sound and Vibration,2004,277(1-2):73-100.
    [117] Thien-Phu Le, Patrick Paultre. Modal identification based on continuous wavelet transformand ambient excitation tests[J] Journal of Sound and Vibration,2012,331(9):2023-2037.
    [118] B.F. Yan, A. Miyamoto, E. Bruhwiler. Wavelet transform-based modal parameteridentification considering uncertainty[J]. Journal of Sound and Vibration,2006,291(1-2):285-301.
    [119] ROGER GHANEM, FRANCESCO ROMEO. A WAVELET-BASED APPROACH FORTHE IDENTIFICATION OF LINEAR TIME-VARYING DYNAMICAL SYSTEMS[J].Journal of Sound and Vibration,2000,234(4):555-576.
    [120] J. Slavic, I. Simonovski, M. Boltezar. Damping identification using a continuous wavelettransform: application to real data[J]. Journal of Sound and Vibration,2003,262:291-307.
    [121] S. Gouttebroze, J. Lardies. On using the wavelet transform in modal analysis. MechanicsResearch Communications,2001,28(5):561-569.
    [122] Sun Z, Chang C C. Covariance-driven wavelet technique for structural damage assessment[J]. Smart Structures and Systems,2006,2(2):127-140.
    [123]刘宁.系统模态参数辨识的连续小波方法研究[D].博士学位论文.天津:天津大学,2005.
    [124]任宜春.基于小波分析的结构参数识别方法研究[D].博士学位论文.长沙:湖南大学,2007.
    [125]王超.基于小波变换的时变结构参数识别研究[D].博士学位论文.长沙:中南大学,2009.
    [126]汤宝平,何启源,孟利波.短样本条件下提高HHT识别模态参数精度的方法[J].振动、测试与诊断,2011,31(1):6-10.
    [127]汤宝平;何启源;蒋恒恒.利用小波去噪和HHT的模态参数识别[J].振动、测试与诊断,2009,29(2):197-200.
    [128]陈隽,徐幼麟. HHT方法在结构模态参数识别中的应用[J],振动工程学报,2003,16(3):383-388.
    [129] J.Chen, Y.L. Xu, R.C. Zhang.Modal parameter identification of Tsing Ma suspension bridgeunder Typhoon Victor: EMD-HT method[J].Journal of Wind Engineering an IndustrialAerodynamics,2004,92:805-827.
    [130] Van Overschee P, De Moor B. Subspace Algorithms for the Stochastic IdentificationProblem[C] Proceedings of the30th IEEE Conference on Decision and Control, Brighton,1991:1321-1326.
    [131] Edwin Reyndersa,Guido De Roecka. Reference-based combined deterministic–stochasticsubspace identification for experimental and operational modal analysis[J]. MechanicalSystems and Signal Processing,2008,22(3):617–637.
    [132] Jiangling Fan, Zhiyi Zhang, Hongxing Hua. Data processing in subspace identification andmodal parameter identification of an arch bridge[J]. Mechanical Systems and SignalProcessing,2007,21(4):1674-1689.
    [133]徐士代.环境激励下工程结构模态参数识别[D].博士学位论文.南京:东南大学,2006.
    [134]史东锋,许锋,申凡.结构在环境激励下的模态参数辨识[J].航空学报,2004,25(2):125-129.
    [135]吴亚锋.子空间系统辨识方法及其在复杂结构中的应用[D].博士学位论文.西安:西北工业大学,2000.
    [136] IBRAHIM S R. Random decrement technique for modal identification of structures[J]. JSpacecraft,1977,14(11):696-698.
    [137] James G H, Carne T G, Lauffer J P. The Natural Excitation Technique for modal parameterextraction from operating structures[J]. Modal Analysis: Int J Analytical and ExperimentalModal Analysis,1995,10(4):260-277.
    [138] A.V. Ovanesova, L.E. Suárez. Applications of wavelet transforms to damage detection inframe structures[J]. Engineering Structures,2004,26(1):39-49.
    [139] Andrew White, Jung-Wuk Hong, Soonsung Hong. Parameter estimation for wavelettransformed ultrasonic signals[J]. NDT&E International,2011,44(1):32-40.
    [140] Benjamin J. Kadlec, Daniel E. Goldstein, David A. Yuen. Visualization of waveletcompressed mantle convection data[J]. Physics of the Earth and Planetary Interiors,2007,163(1–4):292-298.
    [141] Ruzzene M, Fasana A, Garibaldi L, etal. Natural frequencies and dampings identificationusing wavelet transform: application to real data [J]. Mechanical Systems and SignalProcessing,1997,11(2):207-218.
    [142] J. Schoukens, T. Dobrowiecki, and R. Pintelon. Parametric and non-parametric identifcationof linear systems in the presence of nonlinear distortions[J]. Automatic Control,1998,43(2):176–191.
    [143] Y. Rolain, J. Schoukens, and R. Pintelon. Order estimation for linear time-invariant systemsusing frequency domain identification methods[J]. Automatic Control,1997,42(10):1408–1417.
    [144] Bart Peeters, Herman Van der Auweraer, Frederik Vanhollebeke, etaL. Operational modalanalysis for estimating the dynamic properties of a stadium structure during a footballgame[J], Shock and Vibration,2007,14(4):1070-9622.
    [145] H. Van der auweraer and B. Peeters. Discriminating physical poles from mathematical polesin high order systems: use and automation of the stabilization diagram[C]//Proceedings ofIMTC2004, Como Italy,2004:18–20.
    [146] Bendat J.S., Piersol A.G. Engineering Application of Correlation and Spectral Analysis[M].New York: John Wiley&Sons,1993.
    [147] Hermans L.,Van der Auweraer H. Modal Testing and Analysis of Structures underOperational Conditions: Industrial Applications[J].Mechanical Systems and SignalProcessing.1999,13(2):193-216.
    [148]王济. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [149]赵常举.采用工作振动响应的机械结构的健康监测方法的研究[D].硕士学位论文.太原:太原理工大学,2010.
    [150]高新波.模糊聚类分析及应用[M].西安:西安电子科技大学出版社,2004.
    [151]董书伟,应怀樵,刘晓平.环境激励下的最小二乘复频域法的改进[C]//第十八届全国振动与噪声高技术及应用会议.北京,2005:198-204.
    [152]刘三阳等.线性代数[M].北京:高等教育出版社,2004.
    [153] J.N. Juang and R. S. Pappa. Effects of Noise on Modal Parameters Identified by theEigensystem Realization Algorithm[J]. Journal of Guidance, Control, and Dynamics,1986,9(3):294-303.
    [154] K.Y. Sanliturk, O. Cakar. Noise elimination from measured frequency response functions[J].Mechanical Systems and Signal Processing,2005,19(3):615-631.
    [155] George H. James, Thomas G. Carrie, James P. Lauffer. The Natural Excitation Technique(NExT) for Modal Parameter Extraction From Operating Wind Turbines(R). California:Sandia National Laboratories,1993.
    [156] J.K. VANDIVER, A.B. DUNWOODY, R.B. CAMPBELL, etal. A mathematical basis forthe Random Decrement vibration signature analysis technique[J]. Journal of MechanicalDesign,1982,104(2):307–313.
    [157]孙鑫晖,张令弥,王彤.基于奇异值分解的频响函数降噪方法[J].振动、测试与诊断,2009,29(3):325-328.
    [158]胡广书.数字信号处理[M].北京:清华大学出版社,2003.
    [159]秦树人.机械工程测试原理与技术[M].重庆:重庆大学出版社,2005.
    [160] B. Cauberghe. Applied frequency-domain system identification in the field of experimentaland operational modal analysis[D], PhD Thesis, Brussel, Vrije Universiteit,2004.
    [161] P. Guillaume, P. Verboven, S. Vanlanduit. Frequency-domain maximum likelihoodidentification of modal parameters with confidence intervals[C]//the InternationalConference on Noise and Vibration Engineering. Leuven Belgium,1998:16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700