用户名: 密码: 验证码:
嗜热类磷酸三酯酶的内酯酶分子进化以提高对有机磷杀虫剂的降解活力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自二十世纪五十年代以来,有机磷化合物已被广泛地用于农用杀虫剂。由于有机磷化合物能不可逆抑制动物神经系统中的乙酰胆碱酯酶,破坏神经传递,因此对人及家畜等脊椎动物具有极强的毒副作用。由于杀虫剂的过量和连续使用,许多地区土地、水生态系统被有机磷化合物污染,对人类健康构成巨大威胁。目前去除有机磷污染物的方法(漂白处理、碱水解、焚烧或填埋处理等)反应条件剧烈、副产物具有毒性及腐蚀性,限制了广泛应用。微生物来源的磷酸三酯酶(PTE, EC3.1.8.1)可以广泛水解有机磷杀虫剂,具有环保和原位解毒优势,提供了生物修复新途径。由于磷酸三酯酶均来源于常温微生物,较低的生物学稳定性限制了其实际应用。因此,应用生物技术手段,研发生物学稳定性好、广谱、高效的有机磷杀虫剂降解酶势在必行。通过检索细菌基因组数据库,我们发现嗜热细菌Geobacillus kaustophilus HTA426基因组DNA中含有一个磷酸三酯酶(命名为GkaP)编码序列GK1506(GenBank ID:3183579),我们对该基因进行了异源表达,并对重组蛋白的酶学性质、催化机制及分子进化等方面开展了系统研究。
     重组GkaP具有优异的生物稳定性,它能够有效的水解各种内酯,以及“非专一性”的磷酸三酯酶活力及酯酶活力。因此GkaP应该被归类到近年来新命名的类磷酸三酯酶的内酯酶(posphotriesterase-like lactonase, PLL)家族。酶的催化“非专一性”是趋异进化成新功能的一个显著特征,研究酶的“非专一性”有助于我们理解蛋白的进化及其祖先,因此GkaP成为了研究磷酸三酯酶趋异进化的理想模式酶。为了探索GkaP独特的“非专一性”催化机制,我们对其金属中心附近热点(hot-spot)氨基酸的功能进行了研究,发现Tyr99位点可能与磷酸三酯酶的趋异进化密切相关。其中一个突变体Y99L对乙基对氧磷的催化效率(kcat/Km)提高11倍,但对δ-癸内酯的催化效率降低15倍,使得底物选择性产生了157倍的转化。对Y99L晶体结构分析表明,突变导致了相邻的loop7发生了大约6.6的向外偏移,这种精细的构象变化可能增加了活性中心的柔性,有利于对磷酸三酯底物识别和催化。我们还选择了假定的质子穿梭路径相关的残基(R230和G209)进行了研究。动力学数据表明突变体G209D的磷酸三酯酶和内酯酶活性分别提高了10倍和3倍,该突变体的晶体结构显示一个水分子与R230和D209分别形成了氢键,这导致R230的侧链构象发生偏转最终使得loop7区域背离活性中心发生大约2的移动。我们推测底物结合loop (loop7)的向外偏移可能创造了更大的底物结合空间,使得更有利于酶对不同底物的催化。我们的工作表明通过少数氨基酸取代可能影响底物结合loop区的动态和构象分布,从而改变“非专一性”酶对底物识别和催化的能力。这些结果对于理解“非专一性”酶的催化机制提供了新的线索。
     蛋白质工程技术是提高酶的催化效率、改变底物选择性的有效方法。我们以GkaP为模板进化其潜在的有机磷水解能力。结合理性设计和随机突变的策略,经过四轮的突变和筛选(大约10,000个克隆),获得了若干磷酸三酯酶活力显著提高的突变体。其中最优的突变体26A8C对于有机磷杀虫剂乙基对氧磷(ethyl-paraoxon)的催化效率相比野生型提高了232倍。除此,该突变体对于其它有机磷杀虫剂例如对硫磷(parathion)、地亚农(diazinon)和氯螨硫磷(chlorpyrifos)的活力提高了19-497倍,极大地拓宽了对有机磷杀虫剂的选择性。同时该突变体的内酯酶活力具有766倍的减少,使得GkaP由一个“非专一性”内酯酶转变成了“专一性”的有机磷水解酶。突变体26A8C含有8个氨基酸的取代:F28I、Y99L、T171S、F228L、N269S、V270G、W271C、G273D。通过结构分析发现大部分突变位点(F228L、N269S、V270G、W271C和G273D)均位于底物结合loop7和8上,进一步证明这两段表面loop在磷酸三酯酶乃至整个酰胺水解酶超家族对底物选择性具有重要作用。我们的工作不但有利于揭示磷酸三酯酶的趋异进化机制而且表明GkaP具有极大的进化潜力,它可以通过实验室进化手段创造高效的催化剂从而为有机磷毒物的降解提供潜在的解决方案。
Synthetic organophosphate (OP) compounds have been widely used as agriculturalpesticides since the1950's. More than100OP pesticides are in use worldwide. Continuousand excessive use of OP compounds has led to the contamination of many terrestrial andaquatic ecosystems. OP compounds are highly toxic due to irreversible inhibitacetylcholinesterase (AChE) and disrupt neurotransmission in the central nervous system forall vertebrates. Currently, decontamination of OP compounds utilizes bleach treatment,alkaline hydrolysis, or incineration. In all cases, the conditions are harsh, and the byproductscan be toxic and corrosive. Therefore, enzymatic degradation of OP compound has receivedconsiderable attention since it provides the possibility of both environmentally friendly and insitu detoxification. The phosphotriesterase (PTE, EC3.1.8.1) within the amidohydrolasesuperfamily can hydrolyze a broad range of OP compounds, including most OP pesticides andCWAs. The phosphotriestrerase has been recognized an ideal candidate for OP detoxification.We are interested in developing more robust phosphotriesterase that can be used asbioremediation tools. By searching bacterial genomic database, we found the locus tagGK1506(GenBank ID:3183579) from Geobacillus kaustophilus HTA426encoding aputative phosphotriesterase (GkaP). The GK1506gene was cloned and heterologousexpressed in Escherichia coli. A systematic study was carried out to reseach its enzymaticproperties, catalytic mechanism and molecular evolution.
     The recombinant GkaP possessed exceptional biological stability. It was also found toproficiently hydrolyze various lactones, and exhibited promiscuous phosphotriesterase andesterase activities. It shoule be classified into newly emerging phosphotriesterase-lilelactonase (PLL) family. Enzyme promiscuity is a dominant feature for divergent evolution ofnew catalysts. A better understanding of catalytic promiscuity can improve our knowledge ofprotein evolution and ancestry. Therefor, GkaP becomes an ideal model to study enzymepromiscuousty. We investigated the function of hot spots in the active site by site-directedmutagenesis approach. We found that position99in the active site was closely related tosubstrate discrimination. One evolved variant, Y99L, exhibited an11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, butshowed a15-fold decrease toward the lactonase substrate δ-decanolactone, with a157-foldinversion of substrate specificity. Structural analysis of Y99L revealed that the mutationcauses a~6.6outward shift of adjacent loop7, which may increase the flexibility of theactive site and facilitate organophosphate substrate accommodation and catalysis. To furtherexplore the catalytic mechanism, the hypothetical proton shuttle pathway was constructed forresidues Asp266, Arg230, and Gly209. Mutation G209D increased both the phosphotriesteraseand lactonase activities by up to10-and3-fold, respectively. Structural analysis of G209Dvariant identified two simultaneous hydrogen bond bridges between a water molecule andArg230and Asp209, which resulted in a conformational fluctuation of the Arg230side chain anda~2shift of the adjacent loop7. Our results demonstrate that a limited mutation in apromiscuous enzyme may lead to alterations in the dynamics and conformational distributionof substrate-binding loop, which benefit for an alternative binding substrate and efficientcatalysis. These findings provide a new clue for understanding the catalytic mechanism of thepromiscuous enzyme.
     Protein engineering techniques are powerful methods to reshaping enzymatic proficiencyand specificity. We selected GkaP as a template to evolve its ancillary OPs hydrolyticcapability. By combining rational and random mutagenesis strategies, we successfullyobtained several active variants after four rounds of mutation and screening (~10,000colonies). Among these, the best variant26A8C demonstrated232-fold improvement overthe wild-type enzyme in reactivity (kcat/Km) for OP pesticide ethyl-paraoxon. This superiorvariant also exhibited high hydrolytic activities over17-497-fold for several targeted OPpesticides, including parathion, diazinon and chlorpyrifos. Concomitantly, the variant26A8Cshowed a767-fold decrease in lactonase activity, producing specialized for OP rather thanlactone hydrolysis. The variant26A8C accumulated eight mutations: F28I, Y99L, T171S,F228L, N269S, V270G, W271C and G273D. The analysis for the mutagenesis sites in theGkaP structure revealed that the key mutations leading to higher phosphotriesterase activityare located in loops7and8(F228L, N269S, V270G, W271C and G273D), In theamidohydrolase superfamily members in particular, loops7and8are most often involved incontacting the ligands in the active site and determining substrate specificity. These results notonly permit us to obtain further insights into the divergence evolution of plosphotriesterasebut also suggested that laboratory evolution of GkaP may lead to potential biological solutionsfor efficient decontamination of neurotoxic OP compounds.
引文
[1] Mulbry W, Ahrens E, Karns J. Use of a field-scale biofilter for the degradation ofthe organophosphate insecticide coumaphos in cattle dip wastes. Pestic. Sci.1998,52:268-274.
    [2] Singh BK. Organophosphorus-degrading bacteria: ecology and industrialapplications. Nat. Rev. Microbiol.2009,7:156-164.
    [3] Sogorb MA, Vilanova E, Carrera V. Future applications of phosphotriesterases inthe prophylaxis and treatment of organophosporus insecticide and nerve agentpoisonings. Toxicol Lett.2004,15:219-233.
    [4] Theriot CM, Grunden AM. Hydrolysis of organophosphorus compounds bymicrobial enzymes. Appl. Microbiol. Biotechnol.2011,89:35-43.
    [5] Ecobichon DJ. Toxic effects of pesticides. In: Klaassen, C.D.(Ed.), Casarett andDoull’s Toxicology: The Basic Science of Poisons,6th edR McGraw-Hill, NewYork,2001. pp.763-810.
    [6] Sethunathan N, Yoshida T. A Flavobacterium sp. that degrades diazinon andparathion. Can. J. Microbiol.1973,19:873-875.
    [7] Munnecke DM. Enzymatic hydrolysis of organophosphate insecticides, a possiblepesticide disposal method. Appl. Environ. Microbiol.1976,32:7-13.
    [8] Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR.Identification of a plasmid-borne parathion hydrolase gene from Flavobacteriumsp. by southern hybridization with opd from Pseudomonas diminuta. Appl.Environ. Microbiol.1986,51:926-930.
    [9] Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG. Identification ofan opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl.Environ. Microbiol.2002,68:3371-3376.
    [10] Siddavattam D, Khajamohiddin S, Manavathi B, Pakala SB, Merrick M.Transposon-like organisation of plasmid-borne organophosphate degradation(opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol.2003,69:2533-2539.
    [11] Horne I, Qiu X, Russell RJ, Oakeshott JG. The phosphotriesterase gene opdA inAgrobacterium radiobacter P230is transposable, FEMS Microbiol. Lett.2003,222:1-8.
    [12] Raushel FM, Holden HM. Phosphotriesterase: an enzyme in search of its naturalsubstrate. Adv. Enzymol. Relat. Areas Mol. Biol.2000,74:51-93.
    [13] Dumas DP, Caldwell SR, Wild JR, Raushel FM. Purification and properties ofthe phosphotriesterase from Pseudomonas diminuta. J. Biol. Chem.1989,264:19659-19665.
    [14] Kolakowski JE, DeFrank JJ, Harvey SP, Szafraniec LL, Beaudry WT, Lai K,Wild JR. Enzymatic hydrolysis of the chemical warfare agent VX and itsneurotoxic analogues by organophosphorus hydrolase. Biocatal. Biotransform.1997,15:297-312.
    [15] Hong SB, Raushel FM. Stereochemical constraints on the substrate specificity ofphosphotriesterase. Biochemistry1999,38:1159-1165.
    [16] Hong SB, Raushel FM. Stereochemical preferences for chiral substrates by thebacterial phosphotriesterase. Chem. Biol. Interact.1999,119-120:225-234.
    [17] Benning MM, Kuo JM, Raushel FM, Holden HM. Three-dimensional structureof phosphotriesterase: an enzyme capable of detoxifying organophosphatenerve agents. Biochemistry1994,33:15001-15007.
    [18] Benning MM, Kuo JM, Raushel FM, Holden HM. Three-dimensional structureof the binuclear metal center of phosphotriesteras. Biochemistry1995,34:7973-7978.
    [19] Omburo GA, Kuo JM, Mullins LS, Raushel FM. Characterization of the zincbinding site of bacterial phosphotriesterase. J. Biol. Chem.1992,267:13278-13283.
    [20] Seibert CM, Raushel FM. Structural and catalytic diversity within theamidohydrolase superfamily. Biochemistry2005,44:6383-6391.
    [21] Benning MM, Hong S-B, Raushel FM, Holden HM. The binding of substrateanalogs to phosphotriesterase. J. Biol. Chem.2000,275:30556-30560.
    [22] Vanhooke JL, Benning MM, Raushel FM, Holden HM. Three-dimensionalstructure of the zinc-containing phosphotriesterase with the bound substrateanalog diethyl4-methylbenzylphosphonate. Biochemistry1996,35:6020-6025.
    [23] Aubert SD, Li Y, Raushel FM. Mechanism for the hydrolysis oforganophosphates by the bacterial phosphotriesterase. Biochemistry2004,43:5707-5715.
    [24] Lewis VE, Donarski WJ, Wild JR, Raushel FM. The Mechanism andstereochemical course at phosphorus of the reaction catalyzed by a bacterialphosphotriesterase. Biochemistry1988,27:1591-1597.
    [25] Caldwell SR, Raushel FM. Detoxification of organophosphate pesticides using anylon based immobilized phosphotriesterase from Pseudomonas diminuta. ApplBiochem Biotechnol.1991,31:59-73.
    [26] Gill I, Ballesteros A. Degradation of organophosphorus nerve agents byenzyme-polymer nanocomposites: efficient biocatalytic materials for personalprotection and large-scale detoxification. Biotechnol. Bioeng.2000,70:400-410.
    [27] LeJeune KE, Russell AJ. Biocatalytic nerve agent detoxification in fire fightingfoams. Biotechnol Bioeng.1999,62:659-665.
    [28] Mulchandani P, Mulchandani A, Kaneva I, Chen W. Biosensor for directdetermination of organophosphate nerve agents.1. Potentiometric enzymeelectrode. Biosens. Bioelectron.1999,14:77-85.
    [29] Mulchandani A, Pan S, Chen W. Fiber-optic enzyme biosensor for directdetermination of organophosphate nerver agents. Biotechnol. Prog.1999,15:130-134.
    [30] Mulchandani A, Mulchandani P. Amperometric thick-film strip electrodes formonitoring organophosphate nerve agents based on immobilizedorganophosphorus hydrolase. Anal. Chem.1999,71:2246-2249.
    [31] Shim H, Hong SB, Raushel FM. Hydrolysis of phosphodiesters throughtransformation of the bacterial phosphotriesterase. J. Biol. Chem.1998,273:17445-17450.
    [32] Roodveldt C, Tawfik DS. Shared promiscuous activities and evolutionaryfeatures in various members of the amidohydrolase superfamily. Biochemistry2005,44:12728-12736.
    [33] O’Brien PJ, Herschlag D. Catalytic promiscuity and the evolution of newenzymatic activities. Chem. Biol.1999,6:R91-R105.
    [34] Khersonsky O, Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary andmechanistic aspects. Curr. Opin. Chem. Biol.2006,10:498-508.
    [35] Babtie A, Tokuriki N, Hollfelder F. What makes an enzyme promiscuous? Curr.Opin. Chem. Biol.2010,14:200-207.
    [36] Nobeli I, Favia AD, Thornton JM. Protein promiscuity and its implications forbiotechnology. Nat. Biotechnol.2009,27:157-167.
    [37] Schrader G. Organische phosphor verbindungen als neuartige Insektizide. Angew.Chem.1950,62:471-473.
    [38] Afriat L, Roodveldt C, Manco G, Tawfik DS. The latent promiscuity of newlyidentified microbial lactonases is linked to a recently diverged phosphotriesterase.Biochemistry2006,45:13677-13684.
    [39] Hawwa R, Aikens J, Turner RJ, Santarsiero BD, Mesecar AD. Structural basis forthermostability revealed through the identification and characterization of ahighly thermostable phosphotriesterase-like lactonase from Geobacillusstearothermophilus. Arch. Biochem. Biophy.2009,488:109-120.
    [40] Xiang D, Kolb P, Fedorov A, Meier M, Federov E, Nguyen T, Sterner R, Almo S,Shoichet B, Raushel FM. Functional annotation and three-dimensional structureof Dr0930from Deinococcus radiodurans, a close relative of phosphotri esterasein the amidohydrolase superfamily. Biochemistry2009,48:2237-2247.
    [41] Porzio E, Merone L, Mandrich L, Rossi M, Manco G. A new phosphotriesterasefrom Sulfolobus acidocaldarius and its comparison with the homologue fromSulfolobus solfataricus. Biochimie2007,89:625-636.
    [42] Campbell JH, Lengyel JA, Langridge J. Evolution of a second gene forbeta-galactosidase in Escherichia coli. Proc. Natl. Acad. Sci. USA1973,70:1841–1845.
    [43] Arnold FH. Directed evolution: creating biocatalysts for the future. ChemicalEngineering Science1996,51:5091-5102.
    [44] Turner NJ. Directed evolution of enzymes for applied biocatalysis. TrendsBiotechnol.2003,21:474-478.
    [45] Chica RA, Doucet N, Pelletier JN. Semi-rational approaches to engineeringenzyme activity: combining the benefits of directed evolution and rational design.Curr. Opin. Biotechnol.2005,16:378-384
    [46] Shah K, Liu Y, Deirmengian C, Shokat KM. Engineering unnatural nucleotidespecificity for Rous sarcoma virus tyrosine kinase to uniquely label its directsubstrates. Proc. Natl. Acad. Sci. U S A1997,94:3565-3570.
    [47] Jackson CJ, Weir K, Herlt A, Khurana J, Sutherland TD, Horne I, Easton C,Russell RJ, Scott C, Oakeshott JG. Structure-based rational design of aphosphotriesterase. Appl. Environ. Microbiol.2009,75:5153-5156.
    [48] Wu F, Li WS, Chen-Goodspeed M, Sogorb MA, Raushel FM. Rationallyengineered mutants of phosphotriesterase for preparative scale isolation of chiralorganophosphates. J. Am. Chem. Soc.2000,122:10206-10207.
    [49] Kapoli P, Axarli IA, Platis D, Fragoulaki M, Paine M, Hemingway J, Vontas J,Labrou NE. Engineering sensitive glutathione transferase for the detection ofxenobiotics. Biosens. Bioelectron.2008,24:498-503.
    [50] Mandecki W. Mutagenesis of conserved residues within the active site ofEscherichia coli. Alkaline phosphatase yields enzymes with increased kcat.Protein Eng.1991,4:801-804.
    [51] Declerck N, Machius M, Huber R, Caillardin C. Probing structural determinantsspecifying high thermostability in Bacillus licheniformis α-amylase. J. Mol. Biol.2000,301:1041-1057.
    [52] Choudhury D, Biswas S, Roy S, Dattagupta JK. Improving thermostability ofpapain through structure-based protein engineering. Protein Eng. Des. Sel.2010,23:457-67.
    [53] Ochoa-Leyva A, Soberón X, Sánchez F, Argüello M, Montero-Morán G,Saab-Rincón G. Protein design through systematic catalytic loop exchange in the(beta/alpha)8fold. J. Mol. Biol.2009,387:949-964.
    [54] Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S,Minshull J, Arnold FH. A family of thermostable fungal cellulases created bystructure-guided recombination. Proc. Natl. Acad. Sci. USA2009,106:5610-5615.
    [55] Mileni M, Johnson DS, Wang Z, Everdeen DS, Liimatta M, Pabst B,Bhattacharya K, Nugent RA, Kamtekar S, Cravatt BF, Ahn K, Stevens RC.Structure-guided inhibitor design for human FAAH by interspecies active siteconversion. Proc. Natl. Acad. Sci. USA2008,105:12820-12824.
    [56] Moore JC, Arnold FH. Directed evolution of a para-nitrobenzyl esterase foraqueous-organic solvents. Nat. Biotechnol.1996,14:458-467.
    [57] May O, Nguyen PT, Arnold FH. IInverting enantioselectivity by directedevolution of hydantoinase for improved production of L-methionine. Nat.Biotechnol.2000,18:317-320.
    [58] R thlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J,Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS,Baker D. Kemp elimination catalysts by computational enzyme design. Nature2008,453:190-195.
    [57] W rsd rfer B, Woycechowsky KJ, Hilvert D. Directed evolution of a proteincontainer. Science2011,331:589-592.
    [60] Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, Ben-DavidM, Leader H, Margalit R, Silman I, Sussman JL, Tawfik DS. Directed evolutionof hydrolases for prevention of G-type nerve agent intoxication. Nat. Chem. Biol.2011,7:120-125.
    [61] Leung DW, Chen E, Goeddel DV. A method for random mutagenesis of a definedDNA segment using a modified polymerase chain reaction. Technique1989,1:11-15.
    [62] Caldwell RC, Joyee GF. Randomization of genes by PCR mutagenesis. PCRMethods Appl.1992,2:28-33.
    [63] Stemmer WPC. DNA shuffling by random fragmentation and reassembly in vitrorecombination for molecular evolution. Proc. Natl. Acad. Sci. USA1994,91:747-751.
    [64] Kikuchi M, Ohnishi K, Harayama S. An effective family shuffling method usingsingle stranded DNA. Gene2000,243:133-137.
    [65] Shao Z, Zhao H, Giver L. Random priming in vitro recombination: an effectivetool for directed evolution. Nucl Acids Res.1998,26:681-685.
    [66] Coco WM. RACHITT: Gene family shuffling by Random Chimeragenesis onTransient Templates. Methods Mol. Biol.2003,231:111-127.
    [67] Chaparro-Riggers JF, Polizzi KM, Bommarius AS. Better library design:data-driven protein engineering. Biotechnol. J.2007,2:180-191.
    [68] Abécassis V, Pompon D, Truan G. High efficiency family shuffling based onmulti-step PCR and in vivo DNA recombination in yeast: statistical andfunctional analysis of a combinatorial library between human cytochrome P4501A1and1A2. Nucleic Acids Res.2000,28: E88.
    [69] Reetz MT, Carballeira JD, Vogel A. Iterative saturation mutagenesis on the basisof B factors as a strategy for increasing protein thermostability. Angew. Chem.Int. Ed.2006,45:7745-7751.
    [70] Peimbert M, Segovia L. Evolutionary engineering of a beta-Lactamase activityon a D-Ala D-Ala transpeptidase fold. Protein Eng.2003,16:27-35.
    [71] Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, WadeRC, Tsuda M, Nagata Y, Damborsky J. Redesigning dehalogenase access tunnelsas a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol.2009,5:727-733.
    [72] Scanlan TS, Reid RC. Evolution in action. Chem. Biol.1995,2:71-75.
    [73] Hawwa R, Larsen SD, Ratia K, Mesecar AD. Structure-based and randommutagenesis approaches increase the organophosphate-degrading activity of aphosphotriesterase homologue from Deinococcus radiodurans. J. Mol. Biol.2009,393:36-57.
    [74] Merone L, Mandrich L, Porzio E, Rossi M, Müller S, Reiter G, Worek F, MancoG. Improving the promiscuous nerve agent hydrolase activity of a thermostablearchaeal lactonase. Bioresour. Technol.2010,101:9204-9212.
    [75] Merone L, Mandrich L, Rossi M, Manco G. A thermostable phosphotriesterasefrom the archaeon Sulfolobus solfataricus: cloning, overexpression andproperties. Extremophiles2005,9:297-305.
    [76] Hartleib J, Rüterjans H. High-yield expression, purification, and characterizationof the recombinant diisopropylfluorophosphatase from Loligo vulgaris, ProteinExpr. Purif.2001,21:210-219.
    [77] Scharff EI, Koepke J, Fritzsch G, Lücke C, Rüterjans H. Crystal structure ofdiisopropylfluorophosphatase from Loligo vulgaris. Structure2001,9:493-502.
    [78] Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE. Theeffect of the human serum paraoxonase polymorphism is reversed with diazoxon,soman and sarin. Nat. Genet.1996,14:334-336.
    [79] Costa LG, Richter RJ, Li WF, Cole T, Guizzetti M, Furlong CE. Paraoxonase(PON1) as a biomarker of susceptibility for organophosphate toxicity.Biomarkers2003,8:1-12.
    [80] La Du BN, Aviram M, Billecke S, Navab M, Primo-Parmo S, Sorenson RC,Standiford TJ. On the physiological role(s) of the paraoxonases. Chem. Biol.Interact.1999,119-120:379-388.
    [81] Jakubowski H. Calcium-dependent human serum homocysteine thiolactonehydrolase. A protective mechanism against protein N-homocysteinylation. J. Biol.Chem.2000,275:3957-3962.
    [82] Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA.Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr.Opin. Lipidol.1996,7:69-76.
    [83] Draganov DI, La Du BN. Pharmacogenetics of paraoxonases: a brief review.Naunyn Schmiedebergs Arch. Pharmacol.2004,369:78-88.
    [84] Lusis AJ. Atherosclerosis. Nature2000,407:233-241.
    [85] Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, DvirH, Ravelli RB, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS.Structure and evolution of the serum paraoxonase family of detoxifying andanti-atherosclerotc enzymes. Nature Struct.&Mol. Biol.2004,11:412-419.
    [86] Khersonsky O, Tawfik DS. Structure-reactivity studies of serum paraoxonasePON1suggest that its native activity is lactonase. Biochemistry2005,44:6371-6382.
    [87] Cheng TC, Harvey SP, Chen GL. Cloning, expression and nucleotide sequence ofa bacterial enzyme for decontamination of organophosphorus nerve agents. Appl.Environ. Microbiol.1996,62:1636-1641.
    [88] Vyas NK, Nickitenko A, Rastogi VK, Shah SS, Quiocho FA. Structural insightsinto the dual activities of the nerve agent degrading organophosphateanhydrolase/prolidase. Biochemistry2010,49:547-559.
    [89] Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY. Plasmid-borne catabolism ofmethyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem.Biophys. Res. Commun.2005,334:1107-1114.
    [90] Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG, Rao Z, Zhang XE.Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J.Mol. Biol.2005,353:655-663.
    [91] Takami H, Inoue A, Fuji F, Horikoshi K. Microbial flora in the deepest sea mudof the Mariana Trench. FEMS Microbio. Lett.1997,152:279-285.
    [1] Munnecke DM. Enzymatic hydrolysis of organophosphate insecticides, a possiblepesticide disposal method. Appl. Environ. Microbiol.1976,32:7-13.
    [2] Sethunathan N, Yoshida T. A Flavobacterium sp. that degrades diazinon andparathion. Can. J. Microbiol.1973,19:873-875.
    [3] Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG. Identification ofan opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl.Environ. Microbiol.2002,68:3371-3376.
    [4] Rochu D, Beaufet N, Renault F, Viguié N, Masson P. The wild type bacterialCo2+/Co2+-phosphotriesterase shows a middle-range thermostability. Biochim.Biophys. Acta.2002,1594:207-218.
    [5] Rochu D, Viguié N, Renault F, Crouzier D, Froment MT, Masson P. Contributionof the active-site metal cation to the catalytic activity and to the conformationalstability of phosphotriesterase: temperature-and pH-dependence. Biochem. J.2004,380:627-633.
    [6] Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computedatlas of surface topography of proteins with structural and topographical mappingof functionally annotated resiudes. Nucleic Acid Res.2006,34:W116-W118.
    [7] Takami H, Inoue A, Fuji F, Horikoshi K. Microbial flora in the deepest sea mud ofthe Mariana Trench. FEMS Microbio. Lett.1997,152:279-285.
    [8] Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S,Uchiyama I. Thermoadaptation trait revealed by the genome sequence ofthermophilic Geobacillus kaustophilus. Nucleic Acids Res.2004,32:6292-6303.
    [9] Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual,2001,3rd.Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
    [10] Davis JC, Averill BA. Evidence for a spin-coupled binuclear iron unit at theactive site of the purple acid phosphatase from beef spleen. Proc. Natl. Acad. Sci.USA1982,79:4623-4627.
    [11] Xiang D, Kolb P, Fedorov A, Meier M, Federov E, Nguyen T, Sterner R, Almo S,Shoichet B, Raushel FM. Functional annotation and three-dimensional structureof Dr0930from Deinococcus radiodurans, a close relative of phosphotri esterasein the amidohydrolase superfamily. Biochemistry2009,48:2237-2247.
    [1] Takami H, Inoue A, Fuji F, Horikoshi K. Microbial flora in the deepest sea mud ofthe Mariana Trench. FEMS Microbio. Lett.1997,152:279-285.
    [2] Roodveldt C, Tawfik DS. Shared promiscuous activities and evolutionary featuresin various members of the amidohydrolase superfamily. Biochemistry2005,44:12728-12736.
    [3] Chapman E, Wong CH. A pH sensitive colorimetric assay for the high-throughputscreening of enzyme inhibitors and substrates: a case study using kinases. Bioorg.Med. Chem.2002,10:551-555.
    [4] Juhász T, Szeltner Z, Polgár L. Properties of the prolyl oligopeptidase homologuefrom Pyrococcus furiosus. FEBS Lett.2006,580:3493-3497.
    [5] Rochu D, Beaufet N, Renault F, Viguié N, Masson P. The wild type bacterialCo2+/Co2+-phosphotriesterase shows a middle-range thermostability. Biochim.Biophys. Acta.2002,1594:207-218.
    [6] Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotesevolvability. Proc. Natl. Acad. Sci. USA2006,103:5869-5874.
    [7] Dumas DP, Caldwell SR, Wild JR, Raushel FM. Purification and properties of thephosphotriesterase from Pseudomonas diminuta. J. Biol. Chem.1989,264:19659-19665.
    [8] Rochu D, Viguié N, Renault F, Crouzier D, Froment MT, Masson P. Contributionof the active-site metal cation to the catalytic activity and to the conformationalstability of phosphotriesterase: temperature-and pH-dependence. Biochem. J.2004,380:627-633.
    [9] Afriat L, Roodveldt C, Manco G, Tawfik DS. The latent promiscuity of newlyidentified microbial lactonases is linked to a recently diverged phosphotriesterase.Biochemistry2006,45:13677-13684.
    [10] O’Brien PJ, Herschlag D. Catalytic promiscuity and the evolution of newenzymatic activities. Chem. Biol.1999,6:R91-R105.
    [11] Babtie A, Tokuriki N, Hollfelder F. What makes an enzyme promiscuous? Curr.Opin. Chem. Biol.2010,14:200-207.
    [12] Nobeli, I., Favia, A.D., and Thornton JM. Protein promiscuity and itsimplications for biotechnology. Nat. Biotechnol.2009,27:157-167.
    [13] Omburo GA, Kuo JM, Mullins LS, Raushel FM. Characterization of the zincbinding site of bacterial phosphotriesterase. J. Biol. Chem.1992,267:13278-13283.
    [1] Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, LecomteC, Rossi M, Masson P, Manco G, Chabriere E. Structural basis for naturallactonase and promiscuous phosphotriesterase activities. J. Mol. Biol.2008,379:1017-1028.
    [2] Vanhooke JL, Benning MM, Raushel FM, Holden HM, Three-dimensionalstructure of the zinc-containing phosphotriesterase with the bound substrateanalog diethyl4-methylbenzylphosphonate. Biochemistry1996,35:6020-6025.
    [3] Watkins LM, Mahoney HJ, McCulloch J K, Raushel FM. Augmented hydrolysisof diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J.Biol. Chem.1997,272:25596-25601.
    [4] Kuo JM, Chae MY, Raushel FM. Perturbations to the active site ofphosphotriesterase. Biochemistry1997,36:1982-1988.
    [5] Lewis VE, Donarski WJ, Wild JR, Raushel FM. Mechanism and stereochemicalcourse at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase.Biochemistry1988,27:1591-1597.
    [6] Raushel FM. Bacterial detoxification of organophosphate nerve agents. Curr. Opin.Microbiol.2002,5:288-295.
    [7] Aubert SD, Li Y, Raushel FM. Mechanism for the hydrolysis of organophosphatesby the bacterial phosphotriesterase. Biochemistry2004,43:5707-5715.
    [8] Wong KY, Gao J. The reaction mechanism of paraoxon hydrolysis byphosphotriesterase from combined QM/MM simulations. Biochemistry2007,46:13352-13369.
    [9] Zheng L, Baumann U, Reymond JL. An efficient one-step site-directed andsite-saturation mutagenesis protocol. Nucleic Acids Res.2004,32:e115.
    [10] Hermann JC, Ghanem E, Li Y, Raushel FM, Irwin JJ, Shoichet BK. Predictingsubstrates by docking high-energy intermediates to enzyme structures. J. Am.Chem. Soc.2006,128:15882-15891.
    [11] Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp:computed atlas of surface topography of proteins with structural and topographicalmapping of functionally annotated resiudes. Nucleic Acid Res.2006,34:W116-W118.
    [12] Horne I, Qiu X, Ollis DL, Russell RJ, Oakeshott JG. Functional effects of aminoacid substitutions within the large binding pocket of the phosphotriesterase OpdAfrom Agrobacterium sp. P230. FEMS Microbiol. Lett.2006,259:187-194.
    [13] Jackson CJ, Foo JL, Tokuriki N, Afriat L, Carr PD, Kim HK, Schenk G, TawfikDS, Ollis D L. Conformational sampling, catalysis, and evolution of the bacterialphosphotriesterase. Proc. Natl. Acad. Sci. USA2009,106:21631-21636.
    [14] diSioudi B, Grimsley JK, Lai K, Wild JR. Modification of near active siteresidues in organophosphorus hydrolase reduces metal stoichiometry and alterssubstrate specificity. Biochemistry1999,38:2866-2872.
    [15] Yang H, Carr PD, McLoughlin SY, Liu JW, Horne I, Qiu X, Jeffries CM, RussellRJ, Oakeshott JG, Ollis DL. Evolution of an organophosphate-degrading enzyme:a comparison of natural and directed evolution. Protein Eng.2003,16:135-145.
    [16] Jackson CJ, Liu JW, Coote ML, Ollis DL. The effects of substrate orientation onthe mechanism of a phosphotriesterase. Org. Biomol. Chem.2005,3:4343-4350.
    [17] Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL. Incrystallocapture of a Michaelis complex and product-binding modes of a bacterial
    phosphotriesterase. J. Mol. Biol.2008,375:1189-1196.
    [1] Scanlan TS, Reid RC. Evolution in action. Chem. Biol.1995,2:71-75.
    [2] Hawwa R, Larsen SD, Ratia K, Mesecar AD. Structure-based and randommutagenesis approaches increase the organophosphate-degrading activity of aphosphotriesterase homologue from Deinococcus radiodurans. J. Mol. Biol.2009,393:36-57.
    [3] Merone L, Mandrich L, Porzio E, Rossi M, Müller S, Reiter G, Worek F, Manco G.Improving the promiscuous nerve agent hydrolase activity of a thermostablearchaeal lactonase. Bioresour. Technol.2010,101:9204-9212.
    [4] Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, LecomteC, Rossi M, Masson P, Manco G, Chabriere E. Structural basis for naturallactonase and promiscuous phosphotriesterase activities. J. Mol. Biol.2008,379:1017-1028.
    [5] Tokuriki N, Stricher F, Serrano L, Tawfik DS. How protein stability and newfunctions trade off. PLoS Comput. Biol.2008,4:e1000002.
    [6] Romero PA, and Arnold FH. Exploring protein fitness landscapes by directedevolution. Nat. Rev. Mol. Cell Biol.2009,10:866-876.
    [7] Wang X, Minasov G, Shoichet BK. Evolution of an antibiotic resistance enzymeconstrained by stability and activity trade-offs. J. Mol. Biol.2002,320:85-95.
    [8] Bloom JD, Arnold FH. In the light of directed evolution: Pathways of adaptiveprotein evolution. Proc. Natl. Acad. Sci. U. S. A.2009,106:9995-10000.
    [9] Rochu, D., Beaufet, N., Renault, F., Viguié, N., and Masson, P. The wild typebacterial Co2+/Co2+-phosphotriesterase shows a middle-range thermostability.Biochim. Biophys. Acta.2002,1594:207-218.
    [10] Morley KL, Kazlauskas RJ. Improving enzyme properties: when are closermutations better? Trends Biotechnol.2005,23:231-237.
    [11] Seibert CM, Raushel FM. Structural and catalytic diversity within theamidohydrolase superfamily. Biochemistry2005,44:6383-6391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700