用户名: 密码: 验证码:
几种转运蛋白的功能理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转运蛋白质可以协助具有生物活性的分子穿过特定环境介质(如细胞膜或水溶液),在药物的投送,释放,吸收,及神经信号传导过程中起到关键作用。因此研究具有生物活性的小分子与其载体蛋白结合后的转运和释放问题对于生命科学基础研究和应用都具有十分重要的现实意义,是当前生命科学和药剂学等领域的研究热点。分子的转运与释放问题研究涉及许多生物化学与生物物理的重要基础问题:比如分子识别选择性与专一性问题;配体诱导受体构象变化与构象选择机理;分子结合和释放控制因素等。因此,研究分子的转运与释放不仅对于理解生物体调控机制提供支持,更为重要的是,可为开发高效,安全的药物投送系统提供必要的理论基础。
     近年来,随着信息技术的快速发展,分子模拟方法已经成为研究生物体系作用机制及其动态过程的重要手段之一,为从分子、亚基甚至原子层次上了解生命现象及揭示其本质规律提供了一种有效的手段,并为相应的实验工作提供有力的理论支持。在当前论文工作中,我们主要通过分子模拟方法系统研究了小分子通过其对应的转运蛋白的结合,转运,释放问题。
     本论文主要工作内容包括以下三部分:
     1.分子模拟研究来自南方居所蚊虫气味结合蛋白配体释放机理
     信息素结合蛋白可以转运具有疏水性质的信息素分子通过水介质到达其相应的蛋白受体。致乏库蚊子的气味结合蛋白作为一种结合产卵信息素((5R,6S)-6-乙酰氧基-5-十六内酯:MOP)其在传感产卵信号中起到关键作用。然而,目前产卵信息素(MOP)从气味结合蛋白的释放机理还不清楚。当前这个研究工作中,我们利用常规分子动力学模拟方法、主成分分析和本质动力学采样方法揭示了产卵信息素(MOP)从气味结合蛋白的释放路径和释放过程。进一步分析表明:产卵信息素分子(MOP)的内在的柔性、气味结合蛋白对产卵信息素分子(MOP)相互作用的分布和气味结合蛋白的局部构象变化是控制产卵信息素分子释放的关键因素。
     2.分子模拟研究新制癌菌素的发色团分子的释放机理
     新制癌菌素作为一种抗肿瘤的发色团分子的携带蛋白在临床和医药研发有很多重要的应用,比如它已经作为一种药物投送系统在临床治疗中使用。目前发色团分子从新制癌菌素的释放过程仍然是不清楚的,在当前这个研究工作中,我们利用常规分子动力学模拟方法和本质动力学采样方法揭示了发色团分子从结合蛋白的释放路径和释放过程,模拟结果与Chin等人基于实验结果提出的发色团分子释放模型是一致的[J Biol Chem281:16025,2006]。进一步分析结果表明:携带蛋白的的loop区域(loop99-104)的构象变化和其第78号氨基酸(Phe78)的侧链运动是控制发色团分子释放的关键因素;而loop99-104是释放过程发生的重要前提条件。
     3.多尺度分子模拟研究来自于无类囊体蓝藻的五聚体门控离子通道门控机理
     五聚体门控离子通道是一个重要膜蛋白家族,在生理学过程中起到重要作用。我们以来自无类囊体蓝藻(Gloebacter violaceus:GLIC)的五聚体门控离子通道X-ray结构为模型,进行总共1.05μs的粗粒化分子模拟,并结合原子级分子模拟方法,观察到其离子通道的闭合和相应的四级结构扭转。我们发现其位于跨膜区组成通道的M2螺旋通过倾斜-旋转(指向通道中心)的协调运动来完成通道闭合。进一步分析并结合前人的实验结果,我们提出了描述该离子通道门控过程的“连锁反应”机理:由单独亚基的M2螺旋前部构象变化引发,使该亚基发生整体的构象变化,并且将这种变化传递到了邻近的亚基,进而带动整个通道的构象变化,最终完成通道的闭合。
Transporter proteins can facilitate bioactive small molecules through specificenvironmental medias (such as the cell membrane or aqueous solution), and play akey role in the delivery, release, absorption of the drug and nerve signaling processes.Studying the transport and release of bioactive small molecule with its carrier proteinfor basic research and applications of bioscience is very important, and is also thecurrent hot topic in the life sciences and pharmacy. The process of molecular transportand release involving many basic questions of biochemistry and biophysics: such asselective and specificity of molecular recognition; ligand-induced conformationalchanges or conformational selection mechanism; drug molecule controllable releasingfactors. Therefore, carrying out researches for molecular transport and release notonly make me understand well for biological system regulatory mechanism, it is moreimportant that provide the crucial theoretical basis for the development of efficient,safe drugs delivery system.
     In recent years, with the rapid development of information technology, molecularsimulation has become an important means for studying the mechanism of biologicalsystems and their dynamic processes and can give us much information forunderstanding and revealing the essential rules of the phenomenon of life frommolecular subunits or even atomic-level, and also can provide strong theoreticalsupport for the experimental works. In this thesis work, I have studied on themechanism transporting and releasing of molecules assisted by transporter proteinusing molecular simulation methods.
     The main contents include the following three parts:
     1. Molecular simulations study of Ligand-release mechanism in an odorant-bindingprotein from the southern house mosquito
     Pheromone-binding proteins (PBP) transport hydrophobic pheromones throughthe aqueous medium to their receptors. The odorant binding protein (OBP) of Culexquinquefasciatus (CquiOBP1), which binds to an oviposition pheromone(5R,6S)-6-acetoxy-5-hexadecanolide(MOP), plays a key role in sensing ovipositioncues. However, so far the mechanism of MOP-release from the protein is unclear. Therefore, in this contribution the process and pathway of the MOP-release fromCquiOBP1are determined by conventional MD, essential dynamics and essentialdynamics sampling. The detailed analysis of the release process suggests the intrinsicflexibility of MOP, the distribution of contacts with MOP and local conformationalchanges of CquiOBP1are crucial.
     2. Molecular simulations of neocarzinostatin chromophore release mechanism
     Neocarzinostatin (NCS) is an antitumor chromophore carrier protein with manyapplications in clinical use such as drug delivery system; however, so far itschromophore-releasing mechanism remains unclear. In this contribution the processand pathway of the chromophore releasing from holoprotein are revealed byconventional molecular dynamics simulations and essential dynamics (ED) samplingmethod. The results are consistent with the model for ligand release proposed by D.HChin et al.(J. Biol. Chem.,2006,281,16025–16033). The further analysis suggeststhat the conformational changes of loop99–104and motions of side-chain of residuePhe78are important factors for chromophore release; the opening state of loop99-104is a precondition for the release of ligand.
     3. Multi-scale Molecular Simulations Study on the Gating Mechanism in a PentamericLigand-gated Ion Channel from Gloebacter Violaceus
     Pentameric ligand-gated ion channels belong to an important family ofmembrane proteins and play key roles in physiological processes. Based on the X-raystructure of prokaryotic pentameric ligand-gated ion channels from Gloebacterviolaceus (GLIC), we performed a total of1.05μs coarse-grained molecularsimulations, combining with atomic-level molecular simulation, and observed thepore closure and corresponding quaternary twist. We found that the pore closure by aconcerted motion of rotating-tilting (toward the pore) of helices M2. Combining withprevious experimental results, a model of describing the conformational transition forchannel gating process is derived from our simulations: the top of the M2helix occurslarge conformational fluctuations, followed by a global conformational changes of thewhole subunit; this process passes from one subunit to the neighbor one, finally,leading to the entire channel conformational changes, such as a “chain-reaction”.
引文
[1] Ishima,R., and Torchia, D.A. Protein dynamics from NMR. Nat.Struct.Biol.2000.7,740–743.
    [2] Nicholson,L.K.,Yamazaki,T.,Torchia,D.A.,Grzesiek,S.,Bax,A.,Stahl,S.J.,Kaufman,J.D.,Wingfield,P.T., Lam, P.Y.S., Jadhav,P.K., Hodge, C.N., Domaille,P.J.,and Chang,C.-H. Flexibility and function in HIV-1protease. Nat.Struct.Biol.1995.2,274–280.
    [3] Lu,H.P., Xun,L., and Xie,X.S.. Single-moleculeenzymatic dynamics. Science.1998,282,1877–1882
    [4] Thorpe,I.F., and Brooks,C.L.3rd. Molecular evolution of affinity and flexibility inthe immune system. Proc.Natl.Acad. Sci.U.S.A.2007.104,8821–8826.
    [5] Astumian,R.D. Thermodynamics and kinetics of a brownian motor. Science.1997.276,917–922.
    [6] SEELIGER D, DE GROOT B L. Conformational Transitions upon LigandBinding: Holo-Structure Prediction from Apo Conformations.2010, PLoS ComputBiol,6(1):
    [7] Henzler-Wildman,K.A., Lei,M., Thai,V., Kerns,S.J., Karplus,M., and Kern,D.Ahierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature.2007.450,913–916.
    [8] Henzler-Wildman,K., and Kern,D. Dynamic personalities of proteins. Nature.2007.450,964–972.
    [9] Vander Vries, E.,Schutten,M.,and Boucher,C.A.(2011).The potential for multidrug-resistant influenza. Curr.Opin.Infect.Dis.2011.24,599–604.
    [10] Karplus,M., and Petsko,G.A.. Molecular dynamics simulations in biology.Nature.1990.347,631–639.
    [11] Adcock,S.A.,and McCammon,J.A. Molecular dynamics: survey of methods forsimulating the activity of proteins. Chem.Rev.2006.106,1589–1615.
    [12] Pearlman,D.A.,Case,D.A.,Caldwell,J.W.,Ross,W.S.,Cheatham,T.E.I.,DeBolt,S.,Ferguson,D.,Seibel,G., and Kollman,P..AMBER, a package of computer programs forapplying molecular mechanics, normal mode analysis, molecular dynamics and freeenergy calculations to simulate the structural and energetic properties of molecules.Comp.Phys.Commun.1995.91,1–41.
    [13] Case,D.A.,Cheatham,T.E.,3rd,Darden,T.,Gohlke,H.,Luo,R.,Merz,K.M.Jr.,Onufriev,A.,Simmerling,C.,Wang,B., and Woods,R.J. The amber biomolecularsimulation programs. J. Comput.Chem.2005.26,1668–1688.
    [14] Brooks,B.R.,Brooks,C.L.3rd.,Mackerell,A.D.Jr.,Nilsson,L.,Petrella,R.J.,Roux,B.,Won,Y.,Archontis,G.,Bartels,C.,Boresch,S.,Caflisch,A.,Caves,L.,Cui,Q.,Dinner,A.R.,Feig,M.,Fischer,S.,Gao,J.,Hodoscek,M.,Im,W.,Kuczera,K.,Lazaridis,T.,Ma,J.,Ovchinnikov,V.,Paci,E.,Pastor,R.W.,Post,C.B.,Pu,J.Z.,Schaefer,M.,Tidor,B.,Venable,R.M.,Woodcock,H.L.,Wu,X.,Yang,W., York,D.M.,and Karplus,M. CHARMM: thebiomolecular simulation program. J. Comput.Chem.2009.30,1545–1614.
    [15] McCammon,J.A, Gelin, B R, Karplus,M. Dynamics of folded proteins. Nature,1977,267:585-90.
    [16] Lindorff-Larsen,K., Maragakis,P., Piana,S., Eastwood,M.P., Dror,R.O., andShaw,D.E. Systematic validation of protein force fields against experimental data.PLoSONE.20127:e32131.
    [17] Dror,R.O.,Jensen,M.O.,Borhani, D.W., and Shaw, D.E.(2010).Exploring atomicresolution physiology on a femtosecond to millisecond timescale using moleculardynamics simulations. J. Gen.Physiol.2010.135,555–562.
    [18] Karplus,M., and McCammon,J.A.. Molecular dynamics simulations ofbiomolecules. Nat. Struct. Biol.2002.9,646–652.
    [19] Karplus,M., and Kuriyan, J. Molecular dynamics and protein function. Proc.Natl.Acad.Sci.U.S.A.2005.102,6679–6685.
    [20] Dodson,G.G.,Lane,D.P.,and Verma,C.S.(2008).Molecular simulations of proteindynamics: new windows on mechanisms in biology. EMBO Rep.9,144–150.
    [21] Autore,F.,Bergeron,J.R.,Malim,M. H.,Fraternali,F.,andHuthoff, H..Rationalisationof the differences between APOBEC3G structures from crystallography and NMRstudies by molecular dynamics simulations. PLoS ONE.2010.5:e11515.
    [22] Marti-Renom,M.A., Stuart,A.C., Fiser,A., Sanchez,R., Melo,F., andSali,A..Comparative protein structure modeling of genes and genomes. Biomol.Struct.2000.29,291–325.
    [23] Sanchez,R., Pieper,U., Melo,F., Eswar,N., Mirkovic,N., and Sali,A.. Proteinstructure modeling for structural genomics. Nat.Struct.Biol.2000.7(Suppl.),986–990.
    [24] Baker, D., and Sali, A.Protein structure prediction and structural genomics.Science.2001.294,93–96.
    [25] Alder B J, WainWright T E. Phase Transition for a hard sphere system [J]. JChem Phys,1957,27(5):1208-9.
    [26] R. S. Mulliken, Robert S. Mulliken Life of a Scientist; Ransil, B. J., Ed.;Springer Verlag:1989.
    [27] L. Nyland, J. Prins, R.Y. Huai, J. Hermans, H.C. Kum, L. Wang, J. Parall.Distrib. Comp.,1997,47,125
    [28] D. Brown, J.H.R. Clarke, M. Okuda, T. Yamazaki, Comput. Phys. Comm.1993,74,67
    [29] K. Esselink, P.A.J. Hilbers, Comput. Phys. Comm.,1993,106,101-107
    [30] K. Esselink, P.A.J. Hilbers, Comput. Phys. Comm.,1993,106,108-114
    [31] D. Brown, H. Minoux, B. Maigret, Comput. Phys. Comm.,1997,103,170
    [32] Alder B. J., Wainwright T. E., J. Chem. Phys.1957,26,1208
    [33] Alder B. J., Wainwright T. E., J. Chem. Phys.1959,31,459
    [34] Rahman A., Phys. Rev.1964,136A,405
    [35] Berger O, EDHOLM O, JAHNIG F. Molecular dynamics simulations of a fluidbilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, andconstant temperature [J]. Biophys J,1997,72(5):2002-13.
    [36] Gu K, Watkins C B, Koplik J. Molecular dynamics simulation of the equilibriumliquid-vapor interphase with solidification [J]. Fluid Phase Equilib,2010,297(1):77-89.
    [37] Jia Y X, Li H L, Wang M, et al. Carbon nanotube: Possible candidate forforward osmosis [J]. Sep Purif Technol,2010,75(1):55-60.
    [38] Liang Z, Tsai H L. Molecular dynamics simulations of self-diffusion coefficientand thermal conductivity of methane at low and moderate densities [J]. Fluid PhaseEquilib,2010,297(1):40-45.
    [39] Memari P, Lachet V, Rousseau B. Molecular simulations of the solubility ofgases in polyethylene below its melting temperature [J]. Polymer,2010,51(21):4978-84.
    [40] NOREYAN A, AMAR J G. Molecular dynamics simulations of nanoscratchingof3C SiC [J]. Wear,2008,265(7-8):956-62.
    [41] Park S H, Yoo S J, Chang C S. The properties of low energy neutral particles in aneutral beam source: A molecular dynamics study [J]. Thin Solid Films,2010,518(22):6408-11.
    [42] Servantie J, Atilgan C, Atilgan A R. Depth dependent dynamics in the hydrationshell of a protein [J]. J Chem Phys,2010,133(8):085101
    [43] Valone S M, Uberuaga B P, LiuX Y, et al. Cascade-driven mixing at metal oxideinterfaces [J]. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms,2010,268(19):3114-6.
    [44] ZEIDLER A, SALMON P S, MARTIN R A, et al. Structure of liquid and glassyZnCl2[J]. Phys Rev B,2010,82(10):104208
    [45] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalender Physik,1927,389:457-484.
    [46] ANDREW R L. Molecular Modelling:Principles and Application [M]. London:Addison Wesley Longman,1996.
    [47] MAITLAND G C,RIGBY M, SMITH E B, et al. Intermolecular Forces
    [M].Oxford: Clarendon Press,1981.
    [48]陈凯先,蒋华良,嵇汝运.计算机辅助药物设计-原理、方法及应用[M].上海:上海科学技术出版社,2000.
    [49] BROOKS B R, BRUCCOLERI R E,OLAFSON B D, et al. CHARMM:AProgram for macromolecuar energy, minimization,and dynamics calculations [J].Journal of Computational Chemistry,1983,4:187-217.
    [50] MACKRELL A D, BASHFORD D, BELLOTT, et al. All-Atom EmpiricalPotential for Molecular Modeling and Dynamics Studies of Proteins [J]. The Journalof Physiacl Chemistry B,1998,102:3586-3616.
    [51] MACKRELL A D, WIORKIEWICZ-KUCZERA J, KARPLUS M. An all-atomempirical energy function for the simulation of nucleic acids [J].Journal of theAmercian Chemical Society,1995,117:11946-11975.
    [52] PAVELITES J J,GAO J, BASH P A,et al. A molecualr mechanics force field forNAD+,NADH, and the pyrophosphate groups of nucleotides [J]. Journal ofComputational Chemistry,1997,18:221-239.
    [53] WEINER S J, KOLLMAN P A, CASE D A,et al. A new force field for molecularmechanical simulation of nucleic acids and proteins [J]. Journal of the AmericanChemical Society,1984,106:765-784.
    [54] CORNELL W D,COEPLAK P, BAYLY C I,et al. A Second Generation ForceField for the Simulation of Proteins,Nucleic Acids,and Organic Molecules [J]. Journalof the American Chemical Society,1995,117:5179-5197.
    [55] KOLLMAN P A. Advances and Continuing Challenges in Achieving Realisticand Predictive Simulations of the Properties of Organic and Biological Molecules [J].Accounts of Chemical Redearch,1996,29:461-469.
    [56] DUAN Y, WU C, CHOWDHURY S, et al. A Point-charge force field formolecular mechanics simulations of proteins based on condensed-phase quantummechanical calculations [J]. Journal of Computational Chemistry,2003,24:1999-2012.
    [57] SCHULER L D, DAURA X, VAN GUNSTEREN W F. An improvd GROMOS96force field for aliphatic hydrocarbons in the condensed phase [J].Journal ofComputational Chemistry,2001,22:1205-1218.
    [58] VAN GUNSTEREN W F, BILLETER S R, EISING A A, et al. BiomolecularSimulation:The GROMOS96Manual and Uesr Guide [M]. Zurich, Griningen:Hochschulverlag AG an der ETH Zurich and BIOMOS b.v.,1996.
    [59] OTT K-H, MEYER B. Paramerrization of FROMOS force field foroligosaccharides and assessment of efficiency of molecular dynamics simulations [J].Journal of Computational Chemisty,1996,17:1068-1084.
    [60] ANDREWS D H. The Relation Between the Raman Spectra and the Structure ofOrganic Molecules [J]. Physical Review,1930,36:544-554.
    [61] HILL T L. On Steric Effects [J].The Journal of Chemical Physics,1946,14:465-465.
    [62] WESTHEIMSE F H, MAYER J E. Theory of the Racemization of OpticallyActive Derivatives of Dipheny [J]. The Journal of Chemical Phusics,1946,14:733-738.
    [63] WESTHEIMSE F H. Steric Effect in Organic Chemistry [M]. New,York:JohnWiley and sons,1956.
    [64] HENDRICKSON J B. Molecular Geometry I Machine Comoutation of theCommon Rings [J]. Journal of the American Chemical Society,1961,83:4537-3547.
    [65] ALLINGER N L, MILLER M A, VAN CATLEDGE F A,et al. Conformationalanalysis. LVII. The calculation of the conformational structures of hydrocarbons bythe Westheimer-Hendrickson-Wiberg method [J]. Journal of the American ChemicalSociety,1967,89:4345-4357.
    [66] LIFSON S, WARSHEL A. Consistent Force Field for Calculations ofConformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-AlkaneMolecules [J]. The Journal of Chemical Physics,1968,49:5116-5129.
    [67] ANDREW R L. Molecular Modelling: Principles and Application [M].London:Addison Wesley Longman,1996.
    [68] BURKERT U,ALLINGER N L. Molecular Mechanics [M]. WashingtonD.C:American Chemical Society,1982.
    [69] EVITT M,LIFSON S. Refinement of Protein Conformations Using aMacromlecular Energy Minimization Procedure [J]. Journal of MolecularBiology,1969,46:269-279.
    [70] R. Flecher. Practical Methods of Optimization, Vol.1UnconstrainedOptimization,1980, John Wiley&Sons, New York
    [71] FLETCHER R, REEVES C M. Function minimization by conjugate gradients [J].Comput.J.,1964,7:149-154.
    [72] POWELL M J D. Restart procedures for the conjugate gradient method [J].Mathematical Programming,1977,12:241-254.
    [73] VAN GUNSTEREN W F, KARPLUS M. A method for constrained energyminimization of macromolecules [J]. Journal of ComputationalChemisty,1980,1:266-274.
    [74] SHANNO D F. Conditioning of quasi-Newton methods for functionminimization [J]. Math. Comput,1970,24:647-656.
    [75] BROYDEN C G. The Convergence of a Class of Double-rank MinimizationAkgorithms:2.The New Algorithm [J]. J. Int. Math. Appl.,1970,6:222-231.
    [76] GOLDFARB D A. A family of variable metric methods derived by variationalmeans [J]. Math. Comput.,1970,24:23-26.
    [77] FLETCHER R. A new approach to variable mertic algorithms [J]. The ComputerJournal,1970,13:317-322.
    [78] M. Karplus, G. A. Petsko, Molecular Dynamics Simulations in Biology. Nature.1990,347(6294):631~639
    [79] M. Karplus, J. A. McCammon, Molecular Dynamics Simulations ofBiomolecules. Nat Struct Mol Biol.2002,9(9):646~652
    [80] ALLEN M P,TILDESLEY D J. Computer Simulation of Liquids [M]. New York:Clarendon Press,1987.
    [81] GEAR C W. Numerical Initial Value Problems in Ordinary Differential Equations
    [M]. Englewood Cliffs, NJ: Prentice-Hall,1971.
    [82] HOCKENY R W. The potential calculation and some applications [J]. MethodsComput.Phys.,1970,9:136-211.
    [83] POTTER D. Computational Physics [M]. New York: Wiley,1972.
    [84] Swope W C, Andersen H C, Berens P H, et al. A computer simulation method forthe calculation of equilibrium constants for the formation of physical clusters ofmolecules:Application to small water clusters [J]. J. Chem. Phys.,1982,76:637-649.
    [85] Essmann U, Perera L, Berkowitz M L,et al. A Smooth Particle Mesh EwaldMethod [J]. J Chem Phys,1995,103(19):8577-8593.
    [86] EWALD P P. Die Berechnung optischer und elektrostatischer Gitterpotentiale [J].Ann Phys-Berlin,1921,369(3):253-287.
    [87] Brown D, Clarke J H R. A comparison of constant energy,constant temperatureand constant pressure ensembles in molecular dynamics simulations of atomic liquids[J]. Molecular Physics,1984,51:1243-1252.
    [88] Andersen H C. Molecular dynamics simulations at constant pressure and/ortemperature [J]. The Journal of Chemical Physics,1980,72:2384-2393.
    [89] HAILE J M, GRABEN H W. Molecular dynamics simulations extended tovarious ensembles. I. Equilibrium properties in the isoenthalpic–isobaric ensemble [J].The Journal of Chemical Physics,1980,73:2412-2419.
    [90] BERENDSEN H J C, POSTMA J P M, GUNSTEREN W F V,et al. Moleculardynamics with coupling to an external bath [J]. The Journal of ChemicalPhysics,1984,81:3684-3690.
    [91] NOSE S. A unified formulation of the constant temperature molecular-dyanmicsmethods [J]. J Chem Phys,1984,81:511-519.
    [92] HOOVER W G. CANONICAL DYNAMICS-EQUILIBRIUM PHASE-SPACEDISTRIBUTIONS [J]. Phys Rev A,1985,31:1695-1697.
    [93]陈正隆,徐为人,汤立达,分子模拟的理论与实践.化学工业出版社:2007
    [94] SHAW D E, MARAGAKIS P, LINDORFF-LARSEN K, et al. Atomic-LevelCharacterization of the Structural Dynamics of Proteins [J].Science,2010,330:341-346.
    [95] RYCKAERT J P, CICCOTTI G, BERENDSEN H J C. Numerical integration ofthe cartesian equations of motion of a system with constraints: molecular dynamics ofn-alkanes.[J]. Journal of Computational Physics,1977,23:327-341.
    [96] HESS B,BEKKER H, BERENDSEN H J C,et al.LINCS: A linear constraintsolver for molecular simulations [J]. J Comput Chem,1997,18:1463-1472.
    [97] BEKKER H, VAN DEN BERG J P, AND WASSENAAR T A. A method toobtain a near-minimal-volume molecular simulation of a macromolecule,usingperiodic boundary conditions and rotational constraints,[J]. J Comput Chem,2004,25:1037–1046.
    [98] Marrink S J, Risselada J, Yefimov S, et al. The MARTINI forcefield:coarsegrained model for biomolecular simulations [J]. J Phys Chem B,2007,111(27):7812-7824.
    [99] Marrink S J, de Vries A H, Mark A E. Coarse grained model for semiquantitativelipid simulations [J]. J Phys Chem B,2004,108(2):750-760.
    [100] Pelosi, P., Baldaccini, N.E., and Pisanelli. A.M. Identification of a specificolfactory receptor for2-isobutyl-3-methoxypyrazine.(1982).Biochem. J.201,245–248.
    [101] Vogt, R.G., and Riddiford, L.M. Pheromone binding inactivation by mothantennae.(1981). Nature.293,161–163.
    [102] Steinbrecht, R.A., Laue, M., and Ziegelberger, G. Immunolocalization of insectodorant-binding proteins—a comparative-study.(1995). Chem. Senses.20,109–110.
    [103] Tegoni, M., Campanacci, V., and Cambillau, C. Structural aspects of sexualattraction and chemical communication in insects.(2004). Trends Biochem. Sci.29,257–264.Ulrich Essmann, Lalith Perera, and Max L. Berkowitz, Tom Darden, Hsing Lee, andLee G. Pedersen. A smooth particle mesh Ewald method.(1995). The Journal ofChemical Physics.103,8577-8593.
    [104] Horst R, Damberger F, Luginbühl P, Güntert P, Peng G, Nikonova L, Leal WS,Wüthrich K. NMR structure reveals intramolecular regulation mechanism forpheromone binding and release.(2001). Proc Natl Acad Sci USA.98,14374–14379.
    [105] Lautenschlager C, Leal WS, and Clardy J. Coil-to-helix transition and ligandrelease of Bombyx mori pheromone-binding protein.(2005). Biochem Biophys ResCommun.335,1044–1050.
    [106] Lee D, Damberger FF, Peng G, Horst R, Güntert P, Nikonova L, Leal WS,Wüthrich K. NMR structure of the unliganded Bombyx mori pheromonebindingprotein at physiological pH.(2002).FEBS Lett.531,314-318.
    [107] Sandler BH, Nikonova L, Leal WS, and Clardy J. Sexual attraction in thesilkworm moth: Structure of the pheromone-binding-protein-bombykol complex.(2000). Chem Biol.7,143–151.
    [108] Wojtasek H, Leal WS. Conformational change in the pheromone-bindingprotein from Bombyx mori induced by pH and by interaction with membranes.(1999).J Biol Chem.274,30950–30956.
    [109] Damberger FF, Ishida Y, Leal WS, Wüthrich K. Structural basis of ligandbinding and release in insect pheromone-binding proteins: NMR structure ofAntheraea polyphemus PBP1at pH4.5.(2007). J Mol Biol.373,811–819.
    [110] Mohanty S, Zubkov S, Gronenborn AM. The solution NMR structure ofAntheraea polyphemus PBP provides new insight into pheromone recognition bypheromone-binding proteins.(2004). J Mol Biol.337,443–451.
    [111] Laurence BR, Pickett JA. Erythro-6-acetoxy-5-hexadecanolide, the majorcompound of a mosquito attractant pheromone.(1982). J Chem Soc Chem Commun.59–60.
    [112] Leal WS, Barbosa RM, Xu W, Ishida Y, Syed Z, Latte N, Chen AM, Morgan TI,Cornel AJ, Furtado A. Reverse and conventional chemical ecology approaches for thedevelopment of oviposition attractants for Culex mosquitoes.(2008). PLoS ONE.3e3045.
    [113] Yang Mao, Xianzhong Xu, Wei Xu, Yuko Ishida, Walter S. Leal, James B. Ames,and Jon Clardy. Crystal and solution structures of an odorant-binding protein from thesouthern house mosquito complexed with an oviposition pheromone.(2010).Proc NatlAcad Sci USA.107,19102-19107.
    [114] Laughlin JD, Ha TS, Jones DN, Smith DP. Activation of pheromone-sensitiveneurons is mediated by conformational activation of pheromone-binding protein.(2008). Cell.133,1255–1265.
    [115] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,Cheeseman, J.R.,… Pople J.A.(2004). Gaussian03, Revision C.02. Wallingford, CT:Gaussian, Inc.
    [116] Cornell, W.D., P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. et.al ASecond Generation Force Field for the Simulation of Proteins, Nucleic Acids, andOrganic Molecules.(1995). Journal of the American Chemical Society.117,5179-5197.
    [117] Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.; Impey,Roger W.; Klein, Michael L. Comparison of simple potential functions for simulatingliquid water.(1983). The Journal of Chemical Physics.79,926–935.
    [118] Berendsen, H.J.C., D. van der Spoel, and R. van Drunen. GROMACS: Amessage-passing parallel molecular dynamics implementation.(1995).ComputerPhysics Communications.91,43-56.
    [119] Lindahl, E., B. Hess, and D. van der Spoel. GROMACS3.0: a package formolecular simulation and trajectory analysis.(2001). Journal of Molecular Modeling.7,306-317.
    [120] Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C.Comparison of multiple Amber force fields and development of improved proteinbackbone parameters.(2006).Proteins: Struct., Funct., Bioinf.65,712–725.
    [121] Darden, Tom; York, Darrin; Pedersen, Lee. Particle mesh Ewald: An N-log(N)method for Ewald sums in large systems.(1993).The Journal of Chemical Physics.98,10089-10092.
    [122] Essmann, Ulrich., Perera, Lalith, Berkowitz, Max L., Darden,Tom, Lee, Hsing,&Pedersen, Lee G.(1995). A smooth particle mesh Ewald method. The Journal ofChemical Physics,103,8577–8593.
    [123] van Aalten, D.M., Findlay, J.B., Amadei, A., Berendsen, H.J.C. Essentialdynamics of the cellular retinol-binding protein–evidence for ligand-inducedconformational changes.(1995). Protein Engineering.8,1129–1135.
    [124] van Aalten D.M, Amadei A, Linssen A.B, Eijsink V.G, Vriend G, Berendsen H.J.The essential dynamics of thermolysin: confirmation of the hinge-bending motion andcomparison of simulations in vacuum and water.(1995).Proteins tructure Functionand Bioinformatics.22,45–54.
    [125] Karsten Suhre.,Yves-Henri Sanejouand. ElNemo: a normal mode web server forprotein movement analysis and the generation of templates for molecularreplacement.(2004). Nucleic Acids Research.32, W610–W614.
    [126] Amadei, A., A. B. M. Linssen, B. L. de Groot, D. M. van Aalten, and H. J. C.Berendsen. An efficient method for sampling the essential subspace of proteins.(1996).J. Biomol. Struct. Dyn.13,615–625.
    [127] de Groot, B. L., A. Amadei, R. M. Scheek, N. A. van Nuland, and H. J. C.Berendsen. An extended sampling of the configurational space of HPr from E. Coli..(1996).Proteins: Struct. Funct. Genet.26.314–322.
    [128] Amadei., Linssen, A. B. M., Berendsen, H. J. C. Essential dynamics of proteins.(1993). Proteins.17,412-425.
    [129] de Groot, B. L., A. Amadei, D. M. F. van Aalten, and H. Berendsen.Toward anexhaustive sampling of the configurational spaces of the two forms of the peptidehormone guanylin.(1996). J. Biom. Struct. Dyn.13,741–751.
    [130] Caves, L. S., Evanseck, J. D.&Karplus, M. Locally accessible conformationsof proteins: multiple molecular dynamics simulations of crambin.(1998). Protein Sci.7,649–666.
    [131] Wallace, A., R. Laskowski, and J. Thornton. LIGPLOT: a program to generateschematic diagrams of protein-ligand interactions.(1995). Protein Eng.8,127-134.
    [132] Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, TsurudaJM. Kinetics and molecular properties of pheromone binding and release.(2005).Proc Natl Acad Sci USA.102,5386–5391.
    [133] Nicolaou KC, Dai WM, Angew Chem Int Ed Engl30:1387,1991.
    [134] Maeda H, Konno T, in Maeda H, Edo K, Ishida N (eds.), Neocarzinostatin: ThePast, Present and Future of an Anticancer Drug, Springer-Verlag, New York Inc., pp.227_267,1997.
    [135] Mohanty S, Sieker LC, Drobny GP, Biochem33:10579,1994.
    [136] Sudhahar GCP, Balamurugan K, Chin DH, J Biol Chem275:39900,2000.
    [137] Okuno Y, Iwashita T, Sugiura Y, J Am Chem Soc122:6848,2000.
    [138] Nozaki S, Tomioka Y, Hishinuma T, Inoue M, Nagumo Y, Tsuruta LR, HayashiK,Matsumoto T, Kato Y, Ishiwata S, Itoh K, Suzuki T, Hirama M, Mizugaki M, JBiolChem131:469,2002.
    [139] Heyd B, Pecorari F, Collinet B, Adjadj E, Desmadril M, Minard P, Biochem42:5674,2003.
    [140] Urbaniak MD, Muskett FW, Finucane MD, Caddick S, Woolfson DN, Biochem41:1731,2002.
    [141] Urbaniak MD, Bingham JP, Hartley JA, Woolfson DN, Caddick S, J Med Chem47:4710,2004.
    [142] Nicaise M, Valerio-Lepiniec M, Minard P, Desmadril M, Protein Sci13:1882,2004.
    [143] Caddick S, Muskett FW, Stoneman RG, Woolfson DN, J Am Chem Soc128:4204,2006.
    [144] Perez J, Vachette P, Russo D, Desmadril M, Durand D, J Mol Biol308:721,2001.
    [145] Russo D, Durand D, Calmettes P, Desmadril M, Biochem40:3958,2001.
    [146] Mispelter J, Lefevre C, Adjadj E, Quiniou E, Favaudon V, J Biomol NMR5:233,1995.
    [147] Izadi-Pruneyre N, Quiniou E, Blouquit Y, Perez J, Minard P, Desmadril M,Mispelter J, Adjadj E, Protein Sci10:2228,2001.
    [148] Takashima H, Yoshida T, Ishino T, Hasuda K, Ohkubo T, Kobayashi Y, J BiolChem280:11340,2005.
    [149] P. Hariharan, W. C. Liang, S. H. Chou and D. H. Chin, A new model for ligandrelease. Role of side chain in gating the enediyne antibiotic. J. Biol. Chem.,2006,281,16025–16033.
    [150] Kim, K. H., Kwon, B. M., Myers, A. G., and Rees, D. C. Crystal structure ofneocarzinostatin, an antitumor protein-chromophore complex. Science.1993262,1043–1046.
    [151] Teplyakov A, Obmolova G, Wilson K, Kuromizu K.Crystal structure ofapo-neocarzinostatin at0.15-nm resolution. Eur J Biochem.1993,213,737-741.
    [152] M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.Gonzalez, and J. A. Pople, Gaussian03, Revision C.02. Gaussian, Inc., WallingfordCT,2004.
    [153] W.D. Cornell, P. Cieplak, C.I. Bayly&P.A. Kollman. Application of RESPcharges to calculate conformational energies, hydrogen bond energies, and freeenergies of salvation. J. Am. Chem. Soc.1993,115,9620-9631.
    [154] Wang B, Merz KM.Jr. Importance of loop dynamics in the neocarzinostatinchromophore binding and release mechanisms. Phys Chem Chem Phys.2010,12,3443-3449.
    [155] Hariharan P, Sudhahar CG, Chou SH, Chin DH. Lipid bilayer-assisted releaseof an enediyne antibiotic from neocarzinostatin chromoprotein. Biochemistry.2010,49,7722-7732.
    [156] Hilf, R.J.; Dutzler, R. Nature.2009,457,115.
    [157] Zhu F; Hummer, G. Biophys J.2009,97,2456.
    [158] Cheng X; Ivanov, I; Wang H;Sine, S.M.; McCammon J.A. Biophys J.2009,96,4502.
    [159] Taly, A.; et al. Biophys J.2005,88,3954.
    [160] Spoel, D.V.D.; Lindahl, E; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen,H.J.C. Journal of Computational Chemistry.2005,26,1701.
    [161] Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.;Marrink, S. J. J. Chem. Theory Comput.2008,4,819.
    [162] Rzepiela, A. J.; Sch€afer, L. V.; Goga, N.; Risselada, H. J.; A. H. de Vries;Marrink, S. J. J. Comp. Chem.2010,31,1333.
    [163] Smart, O.S.; Neduvelil, J.G.; Wang X.; Wallace, B. A.; Sansom, M. S. J. Mol.Graph.1996,14,354.
    [164] Purohit, P.; Mitra, A.; Auerbach, A. Nature.2007,446,930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700