用户名: 密码: 验证码:
PB-g-PS胶乳改性水泥砂浆的性能及微观结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了聚丁二烯接技聚苯乙烯(PB-g-PS)和聚丁二烯接技聚苯乙烯甲基丙烯酸环氧丙酯(PB-g-PSG)胶乳,并用于改性水泥砂浆,考察了改性砂浆的性能与微观结构,利用FTIR、DSC、TG以及XRD等分析手段研究了胶乳含量、硅灰和偶联剂单独和结合对水泥水化作用的影响,具体主要做了如下几项工作:
     1、采用半连续种子乳液接技聚合技术,在聚丁二烯乳胶粒子上接技共聚苯乙烯,合成了PB-g-PS接技共聚物。研究了合成工艺条件对接技共聚反应的影响,结果发现,苯乙烯在聚丁二烯橡胶粒子上的接技效率和接技度随聚丁二烯对苯乙烯质量比的增加而降低,随反应温度的增加而增加,随引发剂浓度的增加呈先增加后降低的变化趋势,接技效率随单体滴加时间的增加而增加,接技度则呈先增加后降低的变化趋势。利用FTIR和1H NMR对PB-g-PS接技共聚物进行了表征,证明合成了目的产物。利用TEM对PB-g-PS乳胶粒子进行形态观察,接技物为球形粒子,且具有核壳结构。
     2、将质量比为70/30、50/50和30/70的三种PB-g-PS胶乳用于改性水泥砂浆,在固定流动度为175±5mm和固定水灰比为0.5两种控制方式,以及在混合养护和水养护的两种养护条件下,考察了PB-g-PS胶乳改性水泥砂浆的物理、力学性能。在固定流动度和混合养护条件下并与SD623羧基丁苯胶乳改性水泥砂浆作性能对比。研究发现,三种胶乳能够改善砂浆的和易性,降低水灰比提高减水率,减水率超过56%。能有效地提高新拌砂浆的保水作用,保水率最高达99%。能够显著降低改性砂浆水吸收速率,P/C比为20%时,24h改性砂浆的水吸收速率仅为0.156Kg/m2。三种胶乳改性砂浆的体积密度随聚灰比的增加呈先降低后增加或先增加后降低的变化趋势。聚合物改性砂浆的抗压、抗折强度随聚灰比的增加呈波动的变化趋势。对比三种胶乳改性砂浆的性能发现,质量比为50/50的胶乳改性砂浆性能好于70/30和30/70两种胶乳改性砂浆的性能。三种胶乳改性砂浆性能与SD623羧基丁苯胶乳改性水泥砂浆作性能对比发现,质量比为50/50的胶乳改性砂浆性能与SD623羧基丁苯胶乳改性水泥砂浆性能相当。
     3、利用SEM考察了PB-g-PS胶乳改性水泥砂浆的微观结构,研究发现,改性砂浆各组分紧密地结合在一起,砂浆结构更为致密。PB-g-PS胶乳在砂浆中可以形成膜结构。聚合物膜有时存在砂浆的孔洞中,有时存在于水化产物之间,有时也存在与水化产物与骨料之间。聚合物膜呈现为不同的形态,有时为树枝状结构、带状结构,有时形成了连续的互穿网络结构。改善了砂浆结构,有效的阻止了微裂纹的发展,填充和封闭了孔洞和缝隙,改善了砂浆的性能。
     4、在固定水灰比为0.45以及水养护的情况下,将硅灰和偶联剂加入到质量比为50/50的PB-g-PS胶乳改性水泥砂浆中。研究发现,硅灰的加入对改性砂浆的性能产生重要影响,硅灰加入适量时能够改善砂浆的结构,有利于性能的提高,但硅灰的加入量达15%时,由于未加减水剂,导致砂浆的流动性不好,硅灰发生团聚作用,从而使性能降低,硅灰适宜的加入量为水泥质量的10%;偶联剂的加入对砂浆的性能也产生重要影响,偶联剂的加入量为1.0%时,导致新拌砂浆流动度过大,使砂浆产生了更多的孔洞和裂缝,从而使性能降低。偶联剂的适宜加入量为水泥质量的0.6%;将硅灰、偶联剂同时加入到PB-g-PS胶乳改性水泥砂浆中时,在固定硅灰的加入量时,发现随偶联剂含量的增加,性能逐渐改善;在固定偶联剂的加入量时,随硅灰含量的增加性能也逐渐得到改善。利用SEM考察了改性砂浆的微观结构,微观结构分析表明:改性砂浆结构更加致密,观察到了树枝状结构以及氢氧化钙的六角形片状晶体结构。同时利用FTIR、DSC、TG以及XRD等分析手段研究了PB-g-PS胶乳、硅灰及偶联剂等对水泥水化作用的影响。结果表明:随聚灰比的增加,水泥水化程度呈先增加后降低的变化趋势,聚灰比为10%时,水泥水化程度最高:在相同聚灰比时,随硅灰含量的增加,水泥水化程度呈降低的变化趋势,硅灰含量为5%时,水化程度最高;在相同聚灰比时,随偶联剂含量的增加,水泥水化程度呈先增加后降低的变化趋势,偶联剂含量为0.6%时,水泥水化程度最高;固定硅灰含量时,随偶联剂含量增加,水泥水化程度呈先降低后增加的变化趋势,偶联剂含量为0.2%时,水泥水化程度最高;固定偶联剂含量时,随硅灰含量增加,水泥水化程度呈先增加后降低的变化趋势,硅灰含量为10%时,水泥水化程度最高。
     5、利用GMA对PB-g-PS胶乳进行改性,在PB-g-PS胶乳最佳制备工艺条件下,合成了质量比为50/50/0、50/49/1和50/46/4三种PB-g-PSG胶乳,并通过FTIR对合成的目的产物进行了表征。在固定水灰比为0.4以及混合养护条件下,考察了GMA含量对PB-g-PSG胶乳改性水泥砂浆的性能及微观结构的影响。研究发现,随GMA含量的增加,改性砂浆的性能也逐渐得到提高。同时利用FTIR和DSC考察了GMA对水泥水化作用的影响,发现Ca(OH)2含量随GMA含量的增加而减少,说明GMA与Ca(OH)2发生了螯合作用。利用SEM考察了改性砂浆的微观结构,在孔洞中观察到了Ca(OH)2的六角形的片状晶体结构,而且随GMA含量的增加孔洞中Ca(OH)2数量逐渐减少,进一步证明GMA与氢氧化钙发生了化学作用,与FTIR和DSC分析结果一致。
The paper synthesized polybutadiene-graft-polystyrene (PB-g-PS) latexes and polybutadiene-graft-polystyrene epoxypropyl methacrylate (PB-g-PSG), and be used to modify cement mortar. The properties and microstructure of modified mortar were investigated. The effect of PB-g-PS latex, silica fume and coupling agent on cement hydration were researched by FTIR、DSC、TG and XRD, the main works as follows:
     Graft copolymers of styrene (St) onto polybutadiene (PB) were prepared via semiconscious seeded emulsion grafting copolymerization method using a redox initiator system. The effect of initiator, reaction temperature, qualitys ratio of PB/PS, and monomer dropping time on the graft copolymerization were investigated. The results show that the grafting efficiency (GE) and degree of grafting (DG) increase with increase reaction temperature and decrease quality ratio of PB/PS.The GE and DG is increased with increase initiator content for low content, and then begin to decrease of higher content of initiator. The GE is increased with increase monomer dropping time. The DG is increased first, and then decreased with increase monomer dropping time. The synthesized PB-g-PS was confirmed by FTIR and1H NMR. The morphology and diameter of PB-g-PS latex particle were studied by TEM and laser diameter analyzer. The study show that PB-g-PS latex particle is ball-like, and have a core-shell shaped structure.
     The PB-g-PS latex with the mass ratios of70/30,50/50to30/70were used to modify cement mortar. In the fixed flow of175±5mm and a constant water-cement ratio(W/C) of0.5,and two curing methods(mixed curing methods:6d immersed in20℃water followed by21d at20℃,RH65%air; wet curing methods:27d immersed in20℃water).This study examines the effect of mass ratios of PB/PS on physical and mechanical properties of PB-g-PS latex-modified cement mortars, and compared with performance of the carboxyl SBR latex-modified cement mortar at fixed flow of175±5mm and mixed curing condition. The experimental results show that the three kinds of latex-modified mortars has a good workability, can decrease W/C, and improve water reduction rate, it exceeded56%. Its can improve the performance of mortar water retention during a certain range of P/C, and the maximum of water retention ratio are99%.The PB-g-PS latex can markedly reduce capillary water absorption rate, it reaches0.156Kg/m2at the P/C of20%and24h.The bulk density is decreased firstly, and increased with increase P/C,or is increased firstly, and then decreased.PB-g-PS latex can marked in influences much on the mechanical properties of modified mortars. The compressive and the flexural strength of the polymer modified mortar are fluctuated with increase P/C. By contrast, the properties of mass ratio of50/50latex modified mortar are best, and is almost with SD623carboxyl SBR latex-modified cement mortar.
     The polymer modified mortar structure was studied by SEM. The microstructure analysis showed that mortar constituents in PMMs are compactly joined with each other, and the structure is close. Polymer film has already formed in the polymer-modified cement mortars, which exist in cave, hydrates, and between hydrates and aggregate.The polymer film may acquire different structures. They may appear as branch-like, band-like, and dense network structure. The structure was improved because of addition of polymer to cement mortars. The development of little crackle was effective prevented, and the holes and chink were packed and closed. Hence, the performance of the mortar has been improved.
     In the constant water-cement ratio of0.45and using water curing methods. PB-g-PS latex with a mass ratio of50/50was used to modify cement mortar. This study examines the effects of silica fume and coupling agent content on properties and structure of latex modified cement mortar. The experimental results show that silica fume can marked in influences much on the properties of modified mortars. The suitable silica fume content can improve properties and structure of mortars. The flowability of mortar is bad at silica fume content of15%, and water-reducing agent not be added. Hence, the silica fume is aggregated, resulting in reducing performance. The suitable silica fume content is cement mass of10%; the coupling agent can also marked in influences much on the properties and structure of modified mortars. The flow of fresh mortar is bigger at coupling agent content of1.0%, which leaded in more caves and chink in PMMs. The suitable coupling agent content is cement mass of0.6%; the properties of modified mortar increase with increase silica fume and coupling agent content when its were added into PB-g-PS latex-modified mortars. The modified mortar structure was studied by SEM. The microstructure analysis showed that the structure is close.The tree structure and hexagonal sheet crystal structure of Ca(OH)2was seen.The effect of PB-g-PS latex, silica fume and coupling agent on cement hydration were researched by FTIR、DSC、TG and XRD. The experiments results show that the cement hydration increase with an increase of P/C for low P/C, and then begin to decrease of higher P/C, it reached a maximum at P/C of10%; with an increase silica fume content up to5%are accompanied by a significant increase in cement hydration, beyond this content, the cement hydration decrease markedly; it increase as the coupling agent content increase,the cement hydration increase and reaches a maximum at the content0.6%; at a constant silica fume content of15%, it can seen that as coupling agent content increase there is decrease in the cement hydration, at content of0.2%, it reaches a maximum value; at a fixed coupling agent content of0.6%,with an increase silica fume content, it causes an increase in the cement hydration, when the silica fume content was higher10%,the cement hydration decreased.
     The PB-g-PSG were synthesized at the best process conditions of PB-g-PS, and the quality ratios of polybutadiene to styrene and epoxypropyl methacrylate ranged from50/50/0,50/49/1to50/46/4. The PB-g-PSG be confirmed by FTIR, and was used to modify cement mortar in the constant water-cement ratio of0.4and mixed curing.This study examines the effects of GMA content and the P/C ratios on properties of PB-g-PSG latex modified cement mortar, and compared with performance of the carboxyl SBR latex-modified cement mortar. The study show that the flow of modified mortar is increased with increasing polymer-cement ratios, and is almost change with increasing GMA content. The four kinds of latex can markedly reduce capillary water absorption rate, and can marked in influences much on the mechanical properties of modified mortars. The compressive strength of PB-g-PSG are decreased with increasing P/C, and are lower than control mortar, and flexural strength of polymer modified mortars are increased with increasing P/C at P/C lower than10%, and are higher than control mortar. The maximum of flexural strength of polymer-modified mortar are9.65MPa. The effect of polymer on cement hydration was explored by FTIR and DSC, the analysis results showed that the cement hydration was influenced by GMA content and P/C. Polymer modified mortar structure was studied by SEM. The microstructure analysis showed that the mortar constituents of polymer-modified cement mortars are compactly joined, have ultimate improved properties. The hexagonal sheet crystal structure of Ca(OH)2was seen.
引文
1.吴中伟,陶有生.中国水泥与混凝土工业的现状与问题[J],硅酸盐学报,1999,27(6):734-748.
    2.吴中伟.高性能混凝土——绿色混凝土[J],混凝土与水泥制品,2000,(1):3-6.
    3.姚兵.我国混凝土技术的成就与发展趋势[J],混凝土,1997,(4):6-8.
    4.曹同玉.聚合物乳液合成原理性能及应用[M],北京:化学工业出版社,2006,16-26.
    5. Duck E W. Encyclopedia of polymer science and technology [M], John Wiley, New York,1996,801.
    6. Roe C P. Ind.Eng.Chem.1968,20:60.
    7.张会轩,戴英,杨海东.核壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制[J],应用化学,1997,14(3):93-95.
    8. Annemieke M A, Jolanda E D, Jenci K, Anton L G. Emulsifier free grafting of styrene and methyl methacrylate onto polybutadiene and determination of the copolymer microstructure[J], Polymer,1994,35:1636-1674.
    9. Zhao J, Huigen Y, Zuren P. Grating mechanism in SBR-St-MMA core-shell emulsion copolymerization [J], J.Appl. Polym. Sci,1994,53:1447-1452.
    10. LocatelliJ L, Riess G.. Influence de la solvatation preferentielle dans les reactions de greffage polydispersite en composition des copolymers SAN dans les resins ABS [J], Angew, Makromol Chem,1974,175:3523-3529.
    11. Locatelli J L,Riess G. Etude de copolymers gregges ABS:solvatation preferentielle du polybutadiene par les promoteurs[J], J. Polym. Sci:Polym Chem,1973, 11:3309-3320.
    12. Robert A H, Futamura S. Kinetics and mechanism of the polymerization of styrene-acrylonitrile in the presence of polybutadiene [J], J. Polym. Sci:Polym. Chem. Ed,1981,19:985-991.
    13. M Okubo. Control of particle morphology in emulsion polymerization [J], Makromol. Chem. Macromol.Symp.1990,35(36):307-325.
    14. Cho I., Lee K W. Morphology of latex particles formed by poly (methylmethacrylate)-seeded emulsion polymerization of styrene [J], J. Appl. Polym.Sci.1985,30(5):1903-1926.
    15. Lee D I., Ishikawa T. The formation of inverted core-shell latexes [J], J.Polym.Sci.Polym. Chem.Ed.1983,21 (1):147-154.
    16. Sunderg D, Cassassa A P, Pantaaopoulos J, et al. Reversible crosslinking in epoxy resins.I. Feasibility studies[J], J.Appl.Polym.Sci.1990,45(7):1425-1430.
    17. Berg J, Sunderg D, Kronberg B J. Polym.Mat.Sci.Eng,1989,6:327
    18. Berg J, Sunderg D, Kronberg B J. Microencapsulatiion of emulsified oil droplets by in-situ polymerization [J], Polym.Mat.Sci.Eng,1986,54:367-369.
    19. Waters JA. EP327199,1989.
    20. Lee S, Rudin A. Control of core-shell latex morphology:Polymer latexes [M], American:American Chemical Society,1992,234-254.
    21. Mellinger F, Willhelm M, Spiess H W et al. Quantitativw measurement of core coverage in core-shell particles by solid-state HNMR spin-diffusion experiments [J], Macromol.Chem.phys,1999,200:719-730.
    22. Wen-Hui L, Harald D H. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization [J], Macromolecules,2000,33:4350-4360.
    23. Williams D J. Thermal degradation of copolymers of styrene and acrylonitrile. I. Preliminary investigation of changes in molecular quality and the formation of volatile products [J], J. Polym. Sci:Part A-1:Polymer Chemistry,1970,8 (9):2657-2663.
    24. Okubo M, Yamada A, and Matsumoto T. Storage stability of reactive phenolic dispersions [J], J Polym Sci:PartA:Polym Chem,1980,16 (12):3219-3232.
    25.艾照全,周奇龙.高估含量聚合物乳液制备方法新进展[J],高分子通报,2004,3:43-48.
    26. Ito F, Ma G H, Nagai M, et al. Study on preparation of irregular shaped particle in seeded emulsion polymerization accompanied with regulated electrostatic coagulation by counter-ion species [J], Colloids Surf A,2003,216 (13):109-122.
    27. Wang T, Wang M Z. Mater Lett,2006,60 (20):2544.
    28. Hsiue G H, Kuo WJ, Huang Y P, et al. Microstructure and morphological characteristics of PS-SiO2 nanocomposites[J], Polymer,2000,41 (8):2813-2201.
    29. Castelvetro V, Vita C D. Nanostructured hybrid materials from aqueous polymer dispersions [J], Adv Colloid Interface Sci,2004,108-109:167-185.
    30.邵谦,王成国,朱云峰等.用于合成纳米苯丙乳液的纳米TiO2表面改性及表征[J],功能材料,2006,37(4):642-645.
    31. Cresson L. Improved manufacture of rubber road-acing, rubber-flooring, rubber-tiling or other rubber-lining, British Patent,191,474,12 Jan.1923
    32. Lefebure V.Improvemengts in or relating to concrete, cements, plasters and the like, British Patent,217,279,5 Jun.1924
    33. Critchley L, Bend A E. British Patent,369,561,1932.
    34. Okata K, Ohama Y. Standartization of testing methods for concrete polymer composites in Japan,4thInternational Kongress Polymer and Beton. Darmstadt,1984.
    35.买淑芳.混凝土聚合物复合材料及其应用[M],北京:科学技术文献出版社,1996.
    36. Zhong S, Cheng Z. Recent Progress of the Researches and Application of Polymers in Concrete in China,Proceedings of the 4thAsian Sympoisnm on Polymers in Concrete,2003:31-37.
    37. Lu J P.Proceedings of the Third Asia Symposium on Polymers in Concrete.Wang Peiming (editor),2000:72-78.
    38.科博尔.聚合物改性水泥砂浆:外墙保温饰面系统的理想黏结剂[J],新型建筑材料1999,(4):37-39.
    39.科博尔,Vinnapas可再分散乳胶粉优化的自流平水泥地面材料[J],新型建筑材料1999,(5):32-34.
    40. Zhong S Y, Chen Z Y. Properties of latex blends and it s modified cement mortars [J]. Cem. Concr. Res,2002,32:1515-1524.
    41.钟世云,谈慕华,陈志源.苯丙乳液改性水泥砂浆的抗氯离子渗透性[J],建筑材料学报,2002,5(4):393-398.
    42. Al Zahrani M M, Maslehuddin M, Al Dulaijian S U et al. Mechanical properties and durability characteristics of polymer and cement based repair materials [J], Cem. Concr.Comp,2003, (25):527-537.
    43. Singha N K, Mishraa P C, Singhb V K et al. Effect s of hydroxyethyl cellulose and oxalic acid on the properties of cement [J], Cem Concr Res,2003, (33):1319-1329.
    44. Milestone N B. Hydration oft ricalcium silicate in the presence of lignosulfonate, glucose and sodium gluconate [J], J Am Cer Soc,1979,62 (7-8):321-624.
    45. G M Van de Van. Colloidal hydrodynamics [M], New York:Academic Press,1989
    46. Czarnecki L. Concrete-polymer Composites:Challenges and Possibilities, Proceedings of the 4thAsian Sympoisnm on Polymers in Concrete,2003:3-15.
    47. L.C.Hollaway.The evolution of and the way forward for advanced polymer composites in the civil infrastructure [J], Construction and Building Materials 2003, 17:365-378.
    48. Czarnecki L. Stayus of polymer Concrete [J], Concrete Intrtnational Design and Construction,1985,7:47-53.
    49.杨志强,王东.聚合物对混凝土结构和性能影响的研究[J],混凝土与水泥制品,1995,(1):11-13.
    50. Ette W P.Kunstharze and Kunststoffdispersion fur Mortel and Beton. Dusseldorf: Beton-Verlag,1998.
    51. Bureau L, Alliche A., et al. Mechanical characterization of a styrene-butadiene modified mortar [J], Materials Science, Materials Science and Engineering:A 2001, 308(1-2):233-240.
    52. Ohama Y, Demura K, Hamatsu M,et al. Properties of polymer-modified mortar using styrene-butyl acrylate latexes with various monomer ratios [J], ACI Materials Journal,1991,88(1):56-61.
    53. Aggarwal L K, Thapliyal P C, Karade S R. Porperties of polymer-modified mortars using epoxy and acrylic emulsions[J], Construction and Building Materials,2007,21:379-383
    54.李芳,杨玉颖,秦峰.丁苯乳液改性水泥砂浆的物理性能[J],材料科学与工程,2004,22(2):254-258.
    55. Wongil H, Kyungju M, Wanki K.Properties of polymer-modified mortars based on methyl methacrylic latexes with emulsifier contents and various monomer ratios[J], Journal of Applied Polymer Science,2007,103:3010-3018.
    56. Pascal S, Alliche A, Pilvin P. Mechanical behaviour of polymer modified mortars [J], Materials Science and Engineering, A 2004,380:1-8.
    57.姜洪义,刘宙兴PVAC和SBR-60水泥混凝土的研究[J],武汉工业大学学报,1996,18(1):37-39.
    58.姜洪义,水中和.SBR-60聚合物水泥混凝土的研究[J],混凝土2000,11:44-45.
    59.梅迎军,王培铭,梁乃兴,李志勇.丁苯乳液对水泥砂浆吸水率和碳化深度的影响及其机理[J],建筑材料学报,2007(3):276-281.
    60. Shaker F A, Ei-Dieb A S, and Reda M M. Durability of styrene-butadiene latex modified concrete [J], Cem.Concr.Res,1997,27(5):711-720.
    61. Pei M S,Wanki K,Wongil H,Aaron J A.Yangseob S. Effects of emulsifiers on properties of poly(styrene-butyl acrylate)latex-modified mortars[J], Cement and Conceerte Research,2002,32:837-841.
    62. Vinckea E, Wanseele E V, Monteny J, et al. Influence of polymer addition on biogenic sulfuric acid attack of concrete [J], International Biodeterioration and Biodegradation,2002,49:283-292.
    63. Pei M S,Wanki K, Wongil H, Aaron J A, Yangseob S.Effects of Monomer Ratio on the Properties of Poly(methyl methacrylate butyl acrylate) Latex-Modified Mortars[J], Journal of Applied Polymer Science,2004,93:2403-2409.
    64. Saija L M.Waterproffing of Portland cement mortars with a specially desined polyacrylic latex [J], Cem.Concr.Res,1995,25(3):503-509.
    65.李建,王培铭,王茹.丁苯乳液改性水泥砂浆的力学性能与体积密度[J],建筑材料学报,2005,8(6):705-709
    66. Figovsky O, Beilin D, Blank N, Potapov J, Chernyshev V.Development of polymer concrete with polybutadiene matrix [J], Cem.Concr.Compos,1996,18:437-444.
    67.钱晓倩等.聚醋酸乙烯水泥砂浆的性能及其应用[J],化学建材,2001,4:5-8.
    68. Abdel-Fattah H, EI-Hawary M M.Flexural behavior of polymer conrete[J], Construction and Building Materials,1999,13:253-262.
    69. Gorninski J P, Molin D C D, Kazmierczak C S. Study of the modulus of elasticityof polymer concrete compounds and comparative assessment of polymer conrete and Portland cement conrete [J], Cem.Concr. Res,2004,34:2091-2095.
    70. Orak S. Investigation of vibration damping on polymer concrete with polyester resin [J], Cem.Concr. Res.2000,30:171-174.
    71. Liu J, Vipulanandan C.Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack[J], Tunnelling and Underground Space Technology,2001,16:311-321.
    72.Wang J G, Zhang S X,Yu H Q,Kong X Z,Wang X K, Gu Z M. Study of cement mortars modified by emulsifier-free latexes[J], Cemen and Concerte Composites, 2005,27:920-925.
    73.钟世云,陈志源,刘雪莲.三种乳液改性水泥砂浆研究[J],混凝土与水泥制品,2000,1:18-20.
    74. Wang R, Wang P M, Li X G. Physical chemical properties of styrene-butadiene rubber emulsion modified cement mortars [J], Cement and Concrete Research,2005, 35,900-906
    75. Schulze J.Influence of water-cement ratio and cement content on the properties of polymer-modified mortars [J], Cem.Concr. Res.1999,29:909-915.
    76.钟世云,谭慕华,陈志源.苯丙乳液改性水泥砂浆的抗氯离子渗透性[J],建筑材料学报,2002,5(4):393-398.
    77. Artemio P, Nandika A D, Todd S, Richard F R.Modification of cement mortar with recycled ABS [J], Cement and Concrete Research 2001,31:1003-1007.
    78. Xiong G J, Luo B, Wu X, Li G Y, Chen L Q. Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials[J], Cement and Concerte Composites 2006,28:97-101.
    79. Colak A. Properties of plain and latex modified Porland cement pastes and concretes with and without superplasticizer [J], Cem.Concr.Res,2005,35 (8):1510-1521.
    80. Chmielewska B, Czarnecki L, Sustersic J, Zajc A.The Influence of silane coupling agents on the polymer mortar [J], Cement and Concerte Composites, 2006,28:97-101.
    81. Ray I, Gupta AP.Efeect of latex and superplasticiser on Portland cement mortar in the fresh state, Cement and Concerte Composites,1994,16:309-316.
    82. Ray I, Gupta AP.Efeect of latex and superplasticiser on Portland cement mortar in the harden state, Cement and Concerte Composites 1995,17:9-21.
    83. Svegl F, Suput S J. Use of Aminosilane Coupling Agents in Cementitionus Materials [J], Macromol.Symp.2005,221:153-164.
    84. Sumathy C T, Dharakumar M, Saroja D S, Saccubai S.Modification of Cement Mortars by Polymer Latex[J], Journal of Applied Polymer Science,1997, 63:1251-1257.
    85. Fu X, Chung D D L.Degree of dispersion of latex particles in cement paste, as assessed by electrical resistivity measurement [J], Cem.Concr. Res.l996,26(7):985-991.
    86. Fu X, Chung D D L. Vibration damping admixtures for cement [J], Cem.Concr. Res.1996,26(1):69-75.
    87. Kim J H, Richard, Robertson E. Prevention of air void formation in polymer-modified cement mortar by pre-weting, Cem.Concr. Res.1997, 26(l):69-75.
    88. Saccubai S, Sarojadevi M, Ravamudan A Aghavan R. Polymer-impregnated portland cement mortars [J], Journal of Applied Polymer Science,1996,27(2):171-176.
    89. Jenni A, Holzer L, Zurbriggen R, Herwegh M. Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars[J],Cem.Concr. Res,2005,35:35-50.
    90. Gao J M, Qian C X, Wang B, Morino K.Experimengtal study on properties of polymer-modified cement mortars with silica fume [J], Cement and Concerte Composites,2002,32:41-45.
    91. Chen P W, Chung D D L. Effect of polymer addition on the thermal stability and thermal expansion of cement [J], Cem.Concr. Res,1995,25(3):465-469.
    92. Fu X, Chung D D L. Effect of polymer admixtures to cement on the bond strength and electrical contact resistivity between steel fiber and cement [J], Cem.Concr. Res1996,26(2):189-194.
    93. Fu X, Chung D D L.Effect of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific hear of cement paste [J], Cem.Concr. Res.1997,27(12):1799-1804.
    94.高建明,森野奎二.聚合物改性硅灰水泥砂浆性能的实验研究[J],混凝土与水泥制品,2000,5:8-10.
    95. Gao J M, Qian C X, Wang B, Morino K. Experimental study on properties of polymer-modified cement mortars with silica fume [J], Cem.Concr. Res.2002, 32:41-45.
    96.梅迎军,王培铭,马一平.纤维对丁苯乳液改性水泥砂浆干缩性能的影响[J],建筑材料学报,2006,9(3):260-265.
    97. Shi Z Q, Chung D D L. Improving the abrasion resistance of mortar by adding latex and carbon fibers[J], Cem.Concr. Res.1997,27(8):1149-1153.
    98. Ribeiro M C S, Reis J M L, Ferreira A J M, Marques A T.Thermal expansion of epoxy and polyester polymer mortars-plain mortars and fiber-reinforced mortars [J], Polymer Testing,2003,22:849-857.
    99.梅迎军,王培铭,李志勇.聚丙烯纤维和丁苯乳液对水泥砂浆性能的影响[J],建筑材料学报,2006,9(5):613-618.
    100.王茹.聚合物乳液改性水泥砂浆性能及机理研[D],同济大学,2005
    101. Ohama Y.Polymer-modified Mortars and Conceretes, in:V.S. Rama-chandran (Ed.), Concrete Admixtures Hand Book:Properties, Science and Technology, Noyes Oublications, Park Ridge.NJ, USA,1984:343.
    102. Konietzko A.Polymerspezifische auswerkungen auf das tragverhalten modifizierter zementgebundenen beton (PCC).Dissertation, Braunschweig,1988.
    103. Puterman M, Malorny W.Some doubts and ideas on the microstructure formation of PCC, in Sandrolini F(ed), Proceedings of Ⅸ International Congress on Polymers in Concrete,Bologna,1998,166-178.
    104. Ollitrault-Fichet R, Gauthier C, Clamen G, Bochl P.Microstrutural aspects in a polymer-modified[J], Cem.Concr. Res.1998,28(12):1687-1693.
    105. Su Z, Sujata K, Bijen J M, Jennings H M, Fraaij A L.The evolution of the microstructure in styrene acrylate polymer-modified cement pastes at the early stage of cement hydration[J], Advanced Cement Based Materials,1996,3:87-93.
    106.姚红云,梁乃兴,孙立军等.羧基丁苯聚合物改性混凝土性能及其机理,建筑材料学报[J],2005,8(1):30-36.
    107. Sakai E, Sugita J.Composite mechanism of polymer modified cement [J], Cem.Concr. Res.1995,25(1):127-135.
    108.钟世云,王培铭.聚合物改性后砂浆和混凝土的微观形貌[J],建筑材料学报,2004,7(2):168-173.
    109.方萍.丙苯乳液改性聚合物水泥力学性能和内部结构研究[J],混凝土,2001,3:46-49.
    110. Allan M L.Rheology of latex-modified gtouts [J], Cem.Concr. Res,1997,27(12): 1875-1884.
    111.王涛,许仲梓.环氧水泥砂浆的改性机理[J],南京化工大学学报,1997,2:26-32.
    112.李祝龙,梁乃兴.丁苯聚合物乳液对水泥水化硬化的影响[J],建筑材料学报,1999,2(1):6-10.
    113.姜洪义,殷仲海.NBS乳液一水泥砂浆共混体系的研究[J],混凝土,2002,2:29-31.
    114.王志宏,韩玉翠,王子明,王志元.溶液聚合水泥基复合材料的研究[J],混凝土与水泥制品,2000,4:18-20.
    115. Park C, Cho D W, Oh H硅酸盐水泥基无大孔胶凝材料中金属离子的作用[J],硅酸盐学报,1996,24(4):382-388.
    116.龙军,俞珂,李国鼎.聚合物与水泥水化物间的相互作用[J],混凝土,1995,(3):35-41.
    117.寿崇琦,李建华,佛勤超.PCA,EVA,SBR粉末乳液制聚合物水泥砂浆及其界面反应[J],山东建材,1998,4:8-9.
    118. Chandra S, Flodin P. Interactions of polymer and organic admixture on portland cement hydration [J], Cem Concr Res,1987,17:875-890.
    119. Singh N B, Sarita Rai. Effect of polymer polyvinyl alcohol on the hydration of cement with rice husk ash [J], Cem Concr Res,2001,25:231-239.
    120. Georgescu M, Puri A, Coarna M, et al.Thermoanalytical and inf rared spect roscopy investigations ofsome mineral pastes containing organic polymers [J], Cem.Concr.Res,2002,32:1269-1275.
    121. Sohn S, Hong S. Synthesis and application of poly (butad iene-g-acry lo nitr ile-styrene) core-shell rubber particles for use in epoxy resin toughening. I. Synthesis of poly (butadiene-g-acrylonitrile-styrene) [J], Journal of Applied. Polymer Science,1996,61 (8):1259-1264.
    122. Chern C S, Poehlein G W. Kinetics of grafting in semi-batch emulsion polymerization, paper No.14,130th ACS Meeting, Rubber Divission, Atlanta,1986.
    123.许绮,王培铭.桥面用丁苯胶乳改性水泥砂浆物理性能的研究[J],建筑材料学 报,2001,4(2):143-147.
    124.Afridi M U K,Ohama Y,Demura K,Iqbal M Z. Development of polymer by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars[J], Cem.Concr.Res,2003,33:1715-1721. Cement and Concerte Composites 1996,18:343-355.
    125.Ray I,Gupta A P, Biswas M. Physicalchemical studies on single and combined effects of latex and superplasticiser on portland cement mortar[J],
    126.李和平.胶黏剂[M],北京:化学工业出版社,2005,911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700