用户名: 密码: 验证码:
气泡静电纺产品成形机理及增韧应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米纤维是指直径小于100nm,长径比大于100的一维韧性固体材料。由于拥有高比表面积、高表面反应活性、高孔隙率、优良的热导与电导性能等诸多优点,纳米纤维在生物医用、催化过滤、传感器、复合材料等方面取得了广泛应用。相比于其他微米、纳米纤维的制备方法,静电纺丝是最直接、最有效的制备工艺,然而纤维细度较粗、副产品较多、产量较低等缺陷遏制了静电纺丝规模化、工业化的进程。为克服传统静电纺丝的发展瓶颈,气泡静电纺丝工艺应运而生。基于自然界蜘蛛纺丝的原理,气泡静电纺丝将气泡巧妙地引入纺丝过程,实现了优质高效地制备纳米纤维。
     本文从纺丝的工艺参数着手,分别研究了纺丝电压、接收距离以及气体流量对纺丝过程中气泡、射流及产品的影响,着重讨论了电压的作用。借助标度律法、N-S方程对电场中的粘性气泡进行分析,得到电压与纤维直径存在:d=[α(V-V0)]-1/4的函数关系,即d∝V1/4。揭示出电压越高,气泡静电纺纤维直径越小。进行实验验证,发现该规律与实验数据能够很好的吻合。然后,讨论了接收距离的改变对纤维细度的影响。发现接收距离增大,纤维总体细度下降,在8cm时纤维的平均直径与最小直径同时优化,分别为100nm和36nm。在对气体流量的研究中得出:流量增大,纤维的直径先增大后减小,纺丝产量大有提高,但纤维形貌变差。当流量为0.4L/min时,平均直径和最小直径达到最小,分别为97nm和50nm。
     溶液性能是最能影响气泡特性的参数集合。本文分别从溶液的粘度(浓度、分子量)、电导率、表面张力、溶剂等方面出发,讨论工艺过程与产品结构的变化,其中着重讨论了粘度的作用。运用标度律法分别讨论了粘度、浓度、直径三者之间的函数关系。通过PLA/DMF纺丝实验,得到溶液粘度与浓度存在关系:η∝c3,直径与浓度的关系为:d∝c2,于是推导出直径与粘度的关系满足:d∝η2/3。将粘度与纤维直径为坐标的函数点进行曲线拟合,得到函数关系:d∝η0.667,与理论推导结果完全吻合,由此可根据该关系对纤维产品进行调控。通过添加无机盐LiCl改善PLA/DMF的导电性能,发现随着电导率的增大,纤维形貌得到有效改善。但由于溶解度有限,溶解过饱和后电导率值恒定,再增大添加量反而导致产品形貌恶化。对表面张力的研究发现:添加非离子表面活性剂Span20的纺丝液粘度大幅降低,表面张力变化不大,导电率基本不变,纺丝产品只有微珠,无益于纺丝性能的改善。并通过将具有不同挥发性能的溶剂(二氯甲烷与N,N-二甲基甲酰胺)配比后配制纺丝液,可以制备表面多孔纳米纤维。
     电场中气泡与射流的动力学特征是本文研究的核心内容。使用高速摄影仪拍摄出电场中气泡的变形过程,计算并证明了气泡泰勒锥的临界半锥角为33.02°。运用达朗贝尔原理研究了电场中射流的方向性运动,阐明气泡膜破碎边缘形成“脖颈”形态的力学成因。根据量纲分析法并运用Π定理,得到射流初始速度与气泡膜厚度的关系:(V是初始速度,FE为电场力,h气泡膜的厚度,ρ为溶液的密度,σ为表面张力),进一步根据能量法推导出:V=λ/h(λ为常数,λ=λFE1/2ρ-1/2)。说明气泡膜的厚度决定射流的速度,证明了气泡静电纺丝过程多重射流的产生部位位于气泡的上半部分。讨论了气泡静电纺的产品成形规律:(1)当气泡膜的雷诺数满足气泡破碎形成子气泡及层级射流,纺丝产品由一级或二级射流以及膜碎片形成。(2)气泡膜在电场中撕裂出宽度为a的矩形膜:当a→h,纺丝产品为球形微珠,微球直径满足d=6h;(3)当a/h=4π,纺丝产品为截面圆形的柱状纤维,纤维直径满足d=4h;(4)当a>>h,形成扁平的带状纤维。
     本文将板壳振动理论引入产品成形分析。将撕裂出的矩形气泡膜视为矩形薄板,依据Rayleigh (?)去计算出薄板的固有频率为:(D为刚度)。于是,当h/a2<     借助流体力学软件Fluent进一步研究射流的动力学行为。通过模拟出纯电场的空间分布,有、无电场作用时射流的运动特性。并通过捕捉射流迹线图,以及纺丝实验验证,证实了气泡静电纺丝的射流也存在运动不稳定性。
     最后,本文对气泡静电纺纳米纤维膜的应用进行了初步探索。利用热塑性塑料优越的力学性能和纳米纤维膜高比表面积、高孔隙率的特性,制备不同厚度的聚醚酰亚胺纳米纤维膜改善碳纤维复合材料的层间韧性。发现不同膜厚度增韧的双悬臂梁(DCB)试件的Ⅰ型层间断裂值(GIc)均有所提高,特别是膜厚为0.058±0.007mm时,层合板的增韧效果最好,比未增韧试件提高了114.55%;特别是当裂纹长度a=100mm时,GIC值提高了211.27%。而通过界面的SEM照片证实了纳米纤维膜在层间界面通过桥联约束效应及钉锚作用有效提高了复合材料的层间断裂韧性。
Nanofibers are defined as ductile materials with diameter less than100nm and length diameter ration more than100. Nowadays, nanofibers could be comprehensively applied to bio-technology, environment, energy, medical treatment, filtration, sensor and other industries. Electrospinning, as one simple and straightforward fabrication process, is widely adopted. Whereas, the drawbacks in fibers output and fineness to some extent impose restrictions on the future development of Electrospinning. To get rid of those problems, based on the mechanism of spider spinning, Bubble-electrospinning applies viscous bubbles into electrospinning process to prepare nanofibers with high quality and efficiency. It is a fantastic technique, which can impove the output and reduce the fibers fineness effectively.
     In this research, in the beginning we discuss the effects of operating parameters(such as voltage, collecting distance, flow rate) and the solution property(such as viscosity, conductivity, surface tension, solvent volatility) on the bubble deformation process, the movement of jets and the morphology of as-spun nanofibers. The effects of voltage and solution viscosity are focused to be analyzed. The scaling laws about fiber diameter and voltage:d∝V4, and fiber diameter and viscosity:d∝η2/3, are respectively deduced. And both of their accuracies are confirmed by the experiment results.
     The dynamics characteristics of bubble and charged jets in the electric field are the core content of this thesis. The bubble rupture process is filmed by high speed camera. Accordingly, The half angle of taylor cone measured is33.02°, which is coincided with the theoretical value that is caculated theoretically. We analyze the directional motion of jets using d'Alembert principle, and discussed the reason why the rim of bubble forms neck-like configuration. Then, using dimension analysis, we obtain the relation between the initial velocity of a debris with the film thickness, which reads where FE is the electronic force, ρ is the liquid density and h is the film thickness. The constants λ and β can be determined by experiments. As a result, the initial velocity can be obtained by an energy approach. It can be predicted that smaller thickness results in a larger ejection velocity, this is the reasons why multiple jets from upper half of the bubble, because the upper half has smaller h than that of the bottom half. Through the analysis and discussions in detail, a law on the bubble-electrospun production formation is concluded:In case the ruptured film retracts to be daughter bubbles. The daughter bubbles may continues to be broken to form sub-daughter bubbles, and the process repeats until some a hierarchical ruptured bubble is pulled upwards to form a charged jet, nanofibers are obtained; when the thickness and the width of the jet satisfies h/a=4π,fibers are bubble-electrospun with diameter of4h; and when a→h, the thickness scales with the width, micro-spheres can be found.
     Furthermore, oscillation theory is introduced to elaborate the nanofibers shaping mechanism. A short strip sticked to a large piece of a ruptured film is formed, which is regarded as a thin rectangular plate. The plate's natural frequency fn can be caculated by Rayleigh's method approximately: In case far from the natural frequency, no pulsation occurs, and continuous strip-like fibers can be obtained; when h/a2≌fn/k, the plate pulsates (that is, they oscillate in size) at its natural frequency Consequently backbone-like fibers are formed. In case fe≌fn, the frequency of external excitation fe is close to fn, the plate resonates at the same time absorbs energy from external surroundings to maximum extent. The plate can't afford that, and then plate texture is damaged, micro-spheres are likely to be formed.
     With the aid of Fluent software, the space distribution of electric field is demonstrated vividly. And the jet motion is simulated under the circumstance whether the electric field exsits or not. The velocity contours show the bending instability happens when the jet flies to the collector. And this phenomenon can be verified from the optical photos of spinning process.
     At last, the application of bubble-electrospun nanofibers is explored. PEI nanofibers mebranes are used to improve the interfacial toughness of the carbon fiber reinforced composites. When the thickness of membrane is0.058±0.007mm, the value of GIC of DCB sample increases by114.55%in contrast to the untoughened, which is attributed to the nail-anchorage action.
引文
[1]王国彪著.纳米制造前沿,科学出版社,北京,2009.
    [2]Rao C, Cheetham A. Science and technology of nanomaterials:current status and future prospects[J]. J. Mater. Chem.,2001,11(12):2887-2894.
    [3]Zhou F L, Gong R H. Manufacturing technologies of polymeric nanofibres and nanofibre yarns[J]. Polymer International,2008,57(6):837-845.
    [4]Pike R D, Superfine microfiber nonwoven web, US Patents,1999.
    [5]Ellison C J, Phatak A, Giles D W, Macosko C W, Bates F S. Melt blown nanofibers:Fiber diameter distributions and onset of fiber breakup[J]. Polymer,2007, 48(11):3306-3316.
    [6]Podgorski A, Balazy A, Gradon L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters[J]. Chemical engineering science,2006,61(20):6804-6815.
    [7]Nakata K, Fujii K, Ohkoshi Y, Gotoh Y, Nagura M, Numata M, Kamiyama M. Poly (ethylene terephthalate) Nanofibers Made by Sea-Island-Type Conjugated Melt Spinning and Laser-Heated Flow Drawing[J]. Macromolecular rapid communications,2007,28(6):792-795.
    [8]Ochi T, Kishiro A, Nonaka S, Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them, US Patents,2003.
    [9]Anantharamaiah N, Verenich S, Pourdeyhimi B. Durable Nonwoven Fabrics via Fracturing Bicomponent Islands-in-the-Sea Filaments[J]. Journal of Engineered Fibers and Fabrics,2008,3(3):1-9.
    [10]Ohmory A, Yoshimochi H, Sano T, Kobayashi S, Naramura S, Satoh M, Fibrillatable fiber of a sea-islands structure, US Patents,1999.
    [11]Sahu R, Sinha-Ray S, Yarin A, Pourdeyhimi B. Drop impacts on electro spun nanofiber membranes[J]. Soft Matter,2012,8(14):3957-3970.
    [12]Liu W, Yeh Y C, Lipner J, Xie J, Sung H W, Thomopoulos S, Xia Y. Enhancing the Stiffness of Electrospun Nanofiber Scaffolds with Controlled Surface Coating and Mineralization[J]. Langmuir,2011,27(15):9088-9093.
    [13]Liu R, Cai N, Yang W, Chen W, Liu H. Sea-island polyurethane/polycarbonate composite nanofiber fabricated through electrospinning[J]. Journal of applied polymer science,2010,116(3):1313-1321.
    [14]Cloutier S, Manuel L M, Zboril V G, Flash spinning process for forming strong discontinuous fibres, EP Patent 0,597,658,1997.
    [15]Porter D, Vollrath F, Shao Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer[J]. The European Physical Journal E:Soft Matter and Biological Physics,2005,16(2):199-206.
    [16]Vollrath F, Knight D P. Liquid crystalline spinning of spider silk[J]. Nature, 2001,410(6828):541-548.
    [17]Rammensee S, Slotta U, Scheibel T, Bausch A. Assembly mechanism of recombinant spider silk proteins[J]. Proceedings of the National Academy of Sciences,2008,105(18):6590-6595.
    [18]Vepari C, Kaplan D L. Silk as a biomaterial[J]. Progress in polymer science, 2007,32(8):991-1007.
    [19]Scheibel T. Spider silks:recombinant synthesis, assembly, spinning, and engineering of synthetic proteins[J]. Microbial cell factories,2004,3(1):14.
    [20]Scheibel T,俞盈捷译.蜘蛛丝:从天然到生物启发的材料[J].国际纺织导报,2011,39(2):7-8.
    [21]Nova A, Keten S, Pugno N M, Redaelli A, Buehler M J. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils[J]. Nano letters,2010,10(7):2626-2634.
    [22]Bose G M. Recherches sur la cause et sur la veritable teorie de l'electricite, de 1'imprimerie de Jean Fred. Slomac,1745.
    [23]Formhals A, Process and Apparatus for Preparing Artificial Threads, US Patents,1934.
    [24]Zeleny J. Instability of electrified liquid surfaces[J]. Physical review,1917,
    [25]Formhals A, Method and apparatus for spinning, US Patents,1939. 10(1):1-6.
    [26]Taylor G. Electrically driven jets[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1969,313(1515):453-475.
    [27]Baumgarten P K. Electrostatic spinning of acrylic microfibers[J]. Journal of colloid and interface science,1971,36(1):71-79.
    [28]Simm W, Gosling K, Bonart R, von Falkai B, GB Patent 1346231,1972.
    [29]Larrondo L, St John Manley R. Electrostatic fiber spinning from polymer melts. Ⅰ. Experimental observations on fiber formation and properties[J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(6):909-920.
    [30]Thomson-Corporation. ISI Web of KnowledgeSM [DB/OL], [2012.06.6]. http://pcs.isiknowledge.com/analyze/ra.cgi.
    [31]尹协振,李芳.电雾化、电纺丝和带电射流稳定性研究[J].力学与实践.2009,31(1):1-7.
    [32]Shin Y, Hohman M, Brenner M, Rutledge G. Experimental characterization of electrospinning:the electrically forced jet and instabilities[J]. Polymer,2001,42(25): 9955-9967.
    [33]吴大诚,杜仲良,高绪珊编著.纳米纤维,化学工业出版社,北京,2003.
    [34]Qin X H, Wang S Y, Sandra T, Lukas D. Effect of LiCl on the stability length of electrospinning jet by PAN polymer solution[J]. Materials Letters,2005,59(24): 3102-3105.
    [35]Qin X H, Wan Y Q, He J H, Zhang J, Yu J Y, Wang S Y. Effect of LiCl on electrospinning of PAN polymer solution:theoretical analysis and experimental verification[J]. Polymer,2004,45(18):6409-6413.
    [36]Lin T, Wang H, Wang X. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene[J]. Nanotechnology, 2004,15(9):1375-1382.
    [37]Yao L, Haas T W, Guiseppi-Elie A, Bowlin G L, David. G. Simpson, Wnek G E. Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers[J]. Chemistry of materials,2003,15(9):1860-1864.
    [38]Rayleigh L. Theory of Sound, Dover Publications[J]. New York,1945:251.
    [39]Chandrasekhar S. Hydrodynamic and hydromagnetic stability, Dover Pubns, Newyork,1961.
    [40]Garmendia L, Smith I. The effects of an electrostatic field and air stream on water jet break-up length[J]. The Canadian Journal of Chemical Engineering,1975, 53(6):606-610.
    [41]Huebner A, Chu H. Instability and breakup of charged liquid jets[J]. Journal of Fluid Mechanics,1971,49(02):361-372.
    [42]Garmendia L. A simplified model of electro-aerodynamic atomization[J]. AIChE Journal,1977,23(6):935-938.
    [43]Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1882,14(87):184-186.
    [44]Mit-uppatham C, Nithitanakul M, Supaphol P, Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers:A Preliminary Report, Wiley Online Library,2004,216: 293-299.
    [45]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics,1995,35(2-3):151-160.
    [46]Spivak A, Dzenis Y, Reneker D. A model of steady state jet in the electrospinning process[J]. Mechanics research communications,2000,27:37-42.
    [47]Rutledge G C, Li Y, Fridrikh S, Warner S, Kalayci V, Patra P. Electrostatic spinning and properties of ultrafine fibers[J]. National Textile Center,2000:1-10.
    [48]Bunyan N, Chen I, Chen J, Farbood-Manesh S, White K, Control of deposition & orientation of electrospun nano-fibers,2002,6:36-37.
    [49]Jun Z, Bognitzki M, Hou H, Wendorff J, Greiner A, Crucial Parameters for electrospun polymer nanofibers,2002,2:84-87.
    [50]Fong H, Chun I, Reneker D. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40(16):4585-4592.
    [51]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro-and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002, 35(22):8456-8466.
    [52]Koombhongse S, Liu W, Reneker D H. Flat polymer ribbons and other shapes by electrospinning[J]. Journal of Polymer Science Part B:Polymer Physics,2001, 39(21):2598-2606.
    [53]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff J H. Nanostructured fibers via electrospinning[J]. Advanced Materials, 2001,13(1):70-72.
    [54]Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano letters,2004,4(5):933-938.
    [55]McCann J T, Marquez M, Xia Y. Highly porous fibers by electrospinning into a cryogenic liquid[J]. Journal of the American Chemical Society,2006,128(5): 1436-1437.
    [56]Yu J H, Fridrikh S V, Rutledge G C. Production of submicrometer diameter fibers by two-fluid electrospinning[J]. Advanced Materials,2004,16(17):1562-1566.
    [57]Jiang H, Hu Y, Zhao P, Li Y, Zhu K. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006,79(1):50-57.
    [58]Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J]. Advanced Materials,2003,15(22): 1929-1932.
    [59]Bazilevsky A V, Yarin A L, Megaridis C M. Co-electrospinning of core-shell fibers using a single-nozzle technique[J]. Langmuir,2007,23(5):2311-2314.
    [60]Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan P M, Linhardt R J. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids[J]. Biomacromolecules,2006,7(2):415-418.
    [61]Fang X, Reneker D. DNA fibers by electrospinning[J]. Journal of Macromolecular Science, Part B:Physics,1997,36(2):169-173.
    [62]Yoshimoto H, Shin Y, Terai H, Vacanti J. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering[J]. Biomaterials, 2003,24(12):2077-2082.
    [63]Li W J, Laurencin C T, Caterson E J, Tuan R S, Ko F K. Electrospun nanofibrous structure:a novel scaffold for tissue engineering[J]. Journal of biomedical materials research,2002,60(4):613-621.
    [64]Boland E D, Wnek G E, Simpson D G, Pawlowski K J, Bowlin G L. Tailoring tissue engineering scaffolds using electrostatic processing techniques:a study of poly (glycolic acid) electrospinning[J]. Journal of Macromolecular Science, Part A,2001, 38(12):1231-1243.
    [65]Stitzel J D, Pawlowski K J, Wnek G E, Simpson D G, Bowlin G L. Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold[J]. Journal of biomaterials applications,2001,16(1):22-33.
    [66]Matthews J A, Wnek G E, Simpson D G, Bowlin G L. Electro spinning of collagen nanofibers[J]. Biomacromolecules,2002,3(2):232-238.
    [67]Huang L, Apkarian R P, Chaikof E L. High-resolution analysis of engineered type I collagen nanofibers by electron microscopy[J]. Scanning,2001,23(6): 372-375.
    [68]Moroi Y, Fujita S, Fukagawa S, Mashino T, Goto T, Masuda T, Urabe K, Kubo K, Matsui H, Kagawa S. Clinical evaluation of allogeneic cultured dermal substitutes for intractable skin ulcers after tumor resection[J]. EJD,2004,14(3): 172-176.
    [69]Stock U A, Nagashima M, Khalil P N, Nollert G D, Herdena T, Sperling J S, Moran A, Lien J, Martin D P, Schoen F J. Tissue-engineered valved conduits in the pulmonary circulation[J]. The Journal of thoracic and cardiovascular surgery,2000, 119(4):732-740.
    [70]Sodian R, Sperling J S, Martin D P, Egozy A, Stock U, Mayer Jr J E, Vacanti J P. Technical report:fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering[J]. Tissue engineering,2000,6(2):183-188.
    [71]McManus M C, Boland E D, Koo H P, Barnes C P, Pawlowski K J, Wnek G E, Simpson D G, Bowlin G L. Mechanical properties of electrospun fibrinogen structures [J]. Acta biomaterialia,2006,2(1):19-28.
    [72]Nair L S, Bhattacharyya S, Laurencin C T. Development of novel tissue engineering scaffolds via electrospinning[J]. Expert opinion on biological therapy, 2004,4(5):659-668.
    [73]Khil M S, Bhattarai S R, Kim H Y, Kim S Z, Lee K H. Novel fabricated matrix via electro spinning for tissue engineering[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2005,72(1):117-124.
    [74]Lim T C, Ramakrishna S. Next generation Applications for Polymeric Nanofibres[J]. Nanotechnology,2005:137-147.
    [75]Coffee R A, Dispensing device and method for forming material, US Patents, 2001.
    [76]Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds [J]. Materials Science and Engineering:C,2007,27(3): 504-509.
    [77]He C L, Huang Z M, Han X J. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications[J]. Journal of Biomedical Materials Research Part A,2009,89(1):80-95.
    [78]Xie J, Wang C H. Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro[J]. Pharmaceutical research,2006,23(8): 1817-1826.
    [79]Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff J H, Greiner A. Poly (vinyl alcohol) nanofibers by electro spinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings[J]. Biomacromolecules,2005,6(3): 1484-1488.
    [80]Greiner A, Wendorff J, Yarin A, Zussman E. Biohybrid nanosystems with polymer nanofibers and nanotubes[J]. Applied microbiology and biotechnology, 2006,71(4):387-393.
    [81]Hajra M, Mehta K, Chase G. Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media[J]. Separation and purification technology, 2003,30(1):79-88.
    [82]Zhang Q, Welch J, Park H, Wu C Y, Sigmund W, Marijnissen J. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science,2010,41(2):230-236.
    [83]Kozlov M, Moya W, Tkacik G, REMOVAL OF MICROORGANISMS FROM FLUID SAMPLES USING NANOFIBER FILTRATION MEDIA, US Patent 2010/00826.
    [84]Emig D, Klimmek A, Raabe E, Dust filter bag containing nano non-woven tissue, US Patents,2002.
    [85]Dzenis Y A, Reneker D H, Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces, US Patents,2001.
    [86]Kim J, Reneker D H. Mechanical properties of composites using ultrafine electrospun fibers[J]. Polymer composites,1999,20(1):124-131.
    [87]刘玲,黄争鸣,董国华,袁国青,何创龙,韩晓建.层间环氧纳米纤维薄膜对层合板力学性能的影响[J].复合材料学报,2006,23(3):15-19.
    [88]刘玲,黄争鸣,周烨欣,徐贵营.超细纤维增强复合材料Ⅰ型层间断裂韧性分析[J].复合材料学报,2007,24(4):166-171.
    [89]黄智彬,李刚,李鹏,于运花,刘海洋,贾晓龙,杨小平.聚砜纳米纤维增韧CFRP的制备及性能[J].复合材料学报,2008,25(5):25-32.
    [90]Ding B, Kim J, Miyazaki Y, Shiratori S. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH< sub> 3 detection[J]. Sensors and Actuators B:Chemical,2004,101(3):373-380.
    [91]Kwoun S, Lee R, Han B, Ko F, A novel polymer nanofiber interface for chemical sensor applications, IEEE,2000,52-57.
    [92]刘雍,气泡静电纺丝技术及其机理研究,东华大学,上海,2008,博士
    [93]CN 101003916A(2007),刘雍,何吉欢,俞建勇,徐岚,刘丽芳.
    [94]CN 101050550A(2007),刘雍,俞建勇,何吉欢,徐岚,刘丽芳.
    [95]CN 101634050(2009),何吉欢,杨瑞瑞,任忠夫.
    [96]He J H, Liu Y, Xu L, Yu J Y, Sun G. BioMimic fabrication of electrospun nanofibers with high-throughput[J]. Chaos, Solitons & Fractals,2008,37(3): 643-651.
    [97]He J H. Nano Bubble Dynamics in Spider Spinning System[J]. Journal of Animal and Veterinary Advances,2008,7:207-209.
    [98]Liu Y, He J H, Yu J Y, Bubble-electrospinning:a novel method for making nanofibers, in Journal of Physics:Conference Series, IOP Publishing,2008,96: 12001.
    [99]Yang R, He J, Xu L, Yu J. Bubble-electrospinning for fabricating nanofibers[J]. Polymer,2009,50(24):5846-5850.
    [100]Yang R, He J, Yu J. Bubble-electrospinning for Fabrication of Nanofibers with Diameter of about 20nm[J]. Int. J. Nonlinear Sci,2010(11):163-164.
    [101]Liu Y, Ren Z F, He J H. Bubble electrospinning method for preparation of aligned nanofibre mat[J]. Materials Science and Technology,26(11):1309-1312.
    [102]Liu Y, Dong L, Fan J, Kang W, Wang R, Lan Xu C B W, Yu J. A mathematical model for bubble electrospinning[J]. Nonlinear Science Letters A,2010,1(3): 239-244.
    [103]任忠夫,单气泡静电纺成纤纳米纤维的机理,东华大学,上海,2011,博士.
    [104]He J H, Liu Y. Control of bubble size and bubble number in bubble electrospinning[J]. Computers & Mathematics with Applications,2012.
    [1]Yang R, He J, Xu L, Yu J. Bubble-electrospinning for fabricating nanofibers[J]. Polymer,2009,50(24):5846-5850.
    [2]He J H. From spider spinning to bubble electrospinning and from the wool structure to carbon super-nanotubes[J]. Materials Science and Technology,2010, 26(11):1273-1274.
    [3]He J H. Nano Bubble Dynamics in Spider Spinning System[J]. Journal of Animal and Veterinary Advances,2008,7:207-209.
    [4]He J H, Liu Y. Control of bubble size and bubble number in bubble electrospinning[J]. Computers & Mathematics with Applications,2012.
    [5]Yang R R, He J H, Xu L, Yu J Y. Effect of solution concentration on diameter and morphology of PVA nanofibres in bubble electrospinning process[J]. Materials Science and Technology,2010,26(11):1313-1316.
    [6]Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition,2007, 46(30):5670-5703.
    [7]刘雍,气泡静电纺丝技术及其机理研究,东华大学,上海,2008,博士
    [1]张伟,陈文义.流体力学,天津大学出版社,天津,2009.
    [2]Fong H, Chun I, Reneker D. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40(16):4585-4592.
    [3]Baumgarten P K. Electrostatic spinning of acrylic micro fibers [J]. Journal of colloid and interface science,1971,36(1):71-79.
    [4]He J H, Wan Y Q. Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers [J]. Fibers and Polymers 2008, Vol.9, No.2,140-142,2008.
    [5]Xu L. A mathematical model for electro spinning process under coupled field forces[J]. Chaos, Solitons & Fractals,2009,42(3):1463-1465.
    [6]Deitzel J, Beck Tan N, Kleinmeyer J, Rehrmann J, Tevault D, Reneker D, Sendijarevic I, McHugh A, Army Research Laboratory Technical Report, ARL-TR-1989,1989-1999.
    [7]Yang R R, He J H, Xu L, Yu J Y. Effect of solution concentration on diameter and morphology of PVA nanofibres in bubble electro spinning process[J]. Materials Science and Technology,2010,26(11):1313-1316.
    [8]Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Letters,2004,58(3):493-497.
    [9]Lee J S, Choi K H, Ghim H D, Kim S S, Chun D H, Kim H Y, Lyoo W S. Role of molecular weight of atactic poly (vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning[J]. Journal of applied polymer science,2004,93(4):1638-1646.
    [10]Thompson C, Chase G, Yarin A, Reneker D. Effects of parameters on nano fiber diameter determined from electrospinning model[J]. Polymer,2007,48(23):6913-6922.
    [11]Mit-uppatham C, Nithitanakul M, Supaphol P, Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers:A Preliminary Report, Wiley Online Library,2004,216:293-299.
    [12]Qin X H, Wang S Y, Sandra T, Lukas D. Effect of LiCl on the stability length of electrospinning jet by PAN polymer solution[J]. Materials Letters,2005,59(24): 3102-3105.
    [13]Qin X H, Wan Y Q, He J H, Zhang J, Yu J Y, Wang S Y. Effect of LiCl on electrospinning of PAN polymer solution:theoretical analysis and experimental verification[J]. Polymer,2004,45(18):6409-6413.
    [14]刘雍,气泡静电纺丝技术及其机理研究,东华大学,上海,2008,博士.
    [15]滕新荣.表面物理化学,化学工业出版社,北京,2009.
    [16]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics,1995,35(2-3):151-160.
    [17]Theron S, Zussman E, Yarin A. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer,2004,45(6): 2017-2030.
    [18]Zheng J, He A, Li J, Xu J, HanCC. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying[J]. Polymer, 2006,47(20):7095-7102.
    [19]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff J H. Nanostructured fibers via electrospinning[J]. Advanced Materials, 2001,13(1):70-72.
    [20]Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition,2007, 46(30):5670-5703.
    [21]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro-and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002, 35(22):8456-8466.
    [1]WuJ. Evidence of sea spray produced by bursting bubbles[J]. Science,1981, 212(4492):324-326.
    [2]Maclntyre F. Flow patterns in breaking bubbles[J]. Journal of Geophysical Research,1972,77(27):5211-5228.
    [3]Beerkens R G C, Schaaf J. Gas release and foam formation during melting and fining of glass[J]. Journal of the American Ceramic Society,2006,89(1):24-35.
    [4]Handa A, Emery A, Spier R. On the evaluation of gas-liquid interfacial effects on hybridoma viability in bubble column bioreactors[J]. Developments in biological standardization,1987,66:241.
    [5]Angenent L T, Kelley S T, Amand A S, Pace N R, Hernandez M T. Molecular identification of potential pathogens in water and air of a hospital therapy pool[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(13):4860-4865.
    [6]Blanchard D C, Syzdek L. Mechanism for the water-to-air transfer and concentration of bacteria[J]. Science,1970,170(3958):626-628.
    [7]Wilson C T R, Taylor G, The bursting of soap-bubbles in a uniform electric field, Cambridge Univ Press,1925,22:728-730.
    [8]Isenberg C. The science of soap films and soap bubbles, Dover Pubns, New York, 1992.
    [9]Boys C V. Soap bubbles, their colours and the forces which mold them, Dover Pubns, NewYork,1958.
    [10]Kitchener J. Foams and free liquid films[J]. Recent Progress in Surface Science, 1964,1:51-93.
    [11]Bird J C, de Ruiter R, Courbin L, Stone H A. Daughter bubble cascades produced by folding of ruptured thin films[J]. Nature,2010,465(7299):759-762.
    [12]Taylor G. The dynamics of thin sheets of fluid. Ⅲ. Disintegration of fluid sheets[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1959,253(1274):313-321.
    [13]Culick F. Comments on a ruptured soap film[J]. Journal of Applied Physics, 1960,31(6):1128-1129.
    [14]Taylor G. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1964, 280(1382):383-397.
    [15]Yarin A, Koombhongse S, Reneker D. Taylor cone and jetting from liquid droplets in electro spinning of nanofibers[J]. Journal of Applied Physics,2001,90(9): 4836-4846.
    [16]付泽民,高强度金属板多道次渐进折弯成形及回弹研究,华中科技大学,武汉,2010,博士
    [17]谈庆明.量纲分析,中国科学技术大学出版社,合肥,2005.
    [18]唐海,地形地貌对爆破振动波影响的实验和理论研究,中国科学院武汉岩土力学研究所,武汉,2007,博士.
    [19]韩清凯,孙伟编著.弹性力学及有限元法基础教程,东北大学出版社,沈阳,2009.
    [20]Debregeas G, De Gennes P G, Brochard-Wyart F. The life and death of'bare" viscous bubbles[J]. Science,1998,279(5357):1704-1707.
    [21]Tarkan H, Gelinas S, Finch J. Measurement of thickness and composition of a solvent film on a bubble[J]. Journal of colloid and interface science,2006,297(2): 732-737.
    [1]闻邦椿,刘树英,陈照波,李鹤编著.机械振动理论及应用,高等教育出版社,北京,2009.
    [2]袁熙,李舜酩.矩形薄板在不同边界条件下的固有振动分析[J].航空发动机,2005,31(3):39-43.
    [3]曹志远编著.板壳振动理论,中国铁道出版社,北京,1989.
    [4]韩强,黄小清,宁建国编著.高等板壳理论学,科学出版社,北京,2002.
    [5]何吉欢编著.流体力学广义变分原理,中国科学文化出版社,北京,2003.
    [6]Weaver W, Timoshenko S, Young D H. Vibration problems in engineering, Wiley-Interscience, Manhattan,1990.
    [7]Wei G, Zhao Y. Xiang Y. The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution[J]. International Journal of Mechanical Sciences,2001,43(8):1731-1746.
    [1]Feng J. The stretching of an electrified non-Newtonian jet:A model for electrospinning[J]. Physics of Fluids,2002,14:3912.
    [2]张凯,王瑞金,王刚编著.Fluent技术基础与应用实例,清华大学出版社,北京,2010.
    [3]李妮,静电纺射流和纳米纤维形成过程及纤网形态的研究,东华大学,上海,2008,博士.
    [4]吴有金,吴亚雷,许晓慧,褚家如.PZT溶胶液静电雾化雾场模拟[J].中国科学技术大学学报,2006,36(7):755-760.
    [5]Shin Y, HohmanM, Brenner M, Rutledge G. Experimental characterization of electrospinning:the electrically forced jet and instabilities [J]. Polymer,2001,42(25): 09955-09967.
    [6]Kowalewski T, Barral S, Kowalczyk T, Modeling Electrospinning of Nanofibers, in IUTAM Symposium on Modelling Nanomaterials and Nanosystems Springer,2009, 279-292.
    [7]Qin X H, Wang S Y, Sandra T, Lukas D. Effect of LiCl on the stability length of electrospinning jet by PAN polymer solution[J]. Materials Letters,2005,59(24): 3102-3105.
    [8]韩占忠,王敬,兰小平编.FLUENT:流体工程仿真计算实例与应用,北京理工大学出版社,北京,2004.
    [9]李桦,田正雨著.高超声速流动磁流体力学控制的数值模拟研究,国防科技大学出版社,长沙,2010.
    [10]赵秀艳,金属射流的MHD特性分析,山东农业大学,济南,2009,硕士
    [1]贺福,王茂章著.碳纤维及其复合材料,科学出版社,北京,1995.
    [2]陈平,王德中编著.环氧树脂及其应用,化学工业出版社,北京,2004.
    [3]Kim J, Reneker D H. Mechanical properties of composites using ultrafine electrospun fibers[J]. Polymer composites,1999? 20(1):124-131.
    [4]刘玲,黄争鸣,周烨欣,徐贵营.超细纤维增强复合材料Ⅰ型层间断裂韧性分析[J].复合材料学报,2007,24(4):166-171.
    [5]拉德C D,朗A C,肯德尔K N,迈根著C G E,王继辉,李新华译.复合材料液体模塑成型技术:树脂传递模塑,结构反应注射和相关的成型技术,化学工业出版社,北京,2004.
    [6]J.M.霍奇金森主编,白树林,戴兰宏,张庆明译.先进纤维增强复合材料性能测试,化学工业出版社,北京,2005.
    [7]ASTM D5528-01, Standard test method for model Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites,2007.
    [8]刘玲,黄争鸣,董国华,袁国青,何创龙,韩晓建.层间环氧纳米纤维薄膜对层合板力学性能的影响[J].复合材料学报,2006,23(3):15-19.
    [9]Kuwata M, Hogg P. Interlaminar toughness of interleaved CFRP using non-woven veils:Part 1. Mode-I testing[J]. Composites Part A:Applied Science and Manufacturing.2011,42(10):1551-1559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700