用户名: 密码: 验证码:
碳纤维纺丝过程的协同智能控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维纺丝过程是一个具有高度复杂性的工业过程,其组成环节多样,工作环境各异,整个生产过程随时间变化频繁,相应的产品质量要求高且数量巨大,使得对碳纤维纺丝过程建立可靠、高效、连续的控制体系,成为工程控制领域极具挑战性的任务之一。生物体高效调控机制,是设计新颖的智能化控制算法的灵感来源。碳纤维纺丝过程所具有的高度复杂和行为不确定等特点,以及严格的控制要求和质量要求,与生物体自身的特点相似,具有应用生物启发的智能控制手段的潜力。本论文在生物体神经-内分泌-免疫综合调控体系的基础上,抽象其调节机理设计智能化的协同控制器(体系)及其控制方法,并应用在以碳纤维纺丝过程为典型代表的复杂工业生产过程中,以提高生产过程控制水平,实现生产过程智能化协同运作。本论文的主要贡献如下:
     (1)对生物神经-内分泌-免疫综合调控机制进行阐述,重点介绍神经系统与内分泌系统的协调作用,内分泌系统对机体的调控机理和神经系统与免疫系统的互补调节模式,对不同系统之间的具体作用方式进行分析,为下文根据碳纤维纺丝过程不同方面的特点建立多样化的智能协同控制器(体系)提供理论保证。
     (2)基于生物体神经-内分泌调节系统的多变量控制机理,抽象智能协同解耦控制策略应用于碳纤维纺丝过程凝固浴多变量控制中,并根据凝固浴的特点将解耦机制推广到多元。该协同智能解耦机制将互相耦合的变量作用完全隔离,而具体算法的复杂度并不高,有利工业生产实践。实验结果表明,相对传统解耦控制方法,所提出的基于神经-内分泌解耦调节机理的协同智能控制方法能够对凝固浴的多个耦合受控变量进行有效的独立控制,且具有良好的过渡过程响应。
     (3)基于生物体多级内分泌反馈调节机理,设计内分泌多级反馈协同智能控制体系,针对碳纤维纺丝过程的牵伸工序的工艺要求和设备组成,将其抽象为多个需进行信息交换的工作单元的组合体,从而能够应用所设计的协同智能控制体系。实验结果表明,所提出的多级反馈协同智能控制体系能够有效地将牵伸过程的各个部分联系起来,通过高效的协同调节保证纤维牵伸率的持续稳定。
     (4)基于生物体内分泌系统激素调控原理,针对纤维生产过程不易获取精确工作模型的现实情况,以数据驱动思想为基础,嵌入基于激素调控原理的增强环节提出基于激素调控原理的数据驱动智能控制器,并应用于纤维牵伸过程中丝条张力的动态控制。根据激素调控增强单元和数据驱动控制器的不同作用模式,可以引申出具有不同工作特性的数据驱动控制器实例。实验结果表明,该智能控制器有效地提高了数据驱动控制的灵敏度和准确性,有利于被控对象保持在持续稳定的工作状态。
     (5)基于生物体神经系统和免疫系统协作模式,针对纤维生产过程对产品分析和整体优化的要求,设计免疫机制增强的神经网络优化模型,提出双向纺丝工艺建模和智能优化方法及其专家系统,形成双向智能优化体系,不仅有助于科研人员对纤维生产过程进行深入研究,而且对纤维生产单位以较小的代价进行合理的制造工艺优化和纤维产品设计,具有积极的意义。
     最后,对全文的研究内容进行了总结,指出了目前研究工作中存在的不足,并对该领域下一步的研究方向进行了展望。
The spinning process of the carbon fiber is one of the industrial processes that yield high complexity and high uncertainty. Its components and the corresponding devices differ with the detailed conditions that the whole manufacturing process asks for, and the requirements for the adequate quantity and excellent quality of the as-spun fiber should be met simultaneously. Consequently, these features make the establishment of a reliable, effective and integrated control system for the carbon fiber spinning process a giant task with great challenges. The natural creatures provide inspirations for designing novel intelligent control algorithms. The features that the spinning process of carbon fiber enjoys, e.g. the high complexity and uncertainty, are similar to those in the natural creatures, which reveal the potential of applying bio-inspired control and regulating methods to the manufacturing process. Based on the principle regulating mechanisms of the natural livings and human body, e.g. the neuro-endocrine-immune system, this work makes designing of the intelligent and cooperative controllers and their corresponding algorithms. The generated intelligent schemes can be used in the controlling and optimization of the carbon fiber spinning process or other similar large-scale industrial manufacturing processes so that the control performance of such systems can be raised, and the cooperative mechanisms can also be realized during the production. The main contributions of this thesis lie in:
     (1) An introduction of the neuro-endocrine-immune regulation mechanism that has been widely accepted is made. The cooperative mechanisms between the neural system and the endocrine system, the regulating principles of the endocrine system towards the host body and the complementary regulating mode between the neural system and the immune system are the key points in it. The detailed interacting modes among these systems are also analyzed. This part lays a theoretical foundation for building different types of intelligent controllers (systems) for the spinning procedures with features in different working conditions and quality requirements on the basis of such comprehensive bio-inspired regulating mechanism.
     (2) An intelligent cooperative decoupling controlling scheme based on the neuroendocrine regulating mechanism for the multivariable tuning is derived to conduct the control of the coagulation bath in the carbon fiber spinning process which also has several variables to be controlled simultaneously. According to the requirements of the coagulation bath, the original decoupling scheme is also expanded to multiple variables. The proposed intelligent cooperative decoupling mechanism has the ability to separate the coupling variables from each other while the detailed decoupling procedure is still kept simple, which brings benefits for the industrial realization of such mechanism. Experiment results show the proposed intelligent cooperative decoupling scheme can maneuver the variables of the coagulation bath independently and effectively, while keeping good transient response at the same time.
     (3) A multi-layered intelligent cooperative control scheme based on the endocrine feedback regulation of human body is proposed. The stretching process of the carbon fiber spinning system is taken as the object of the proposed scheme. After analyzing the production requirements and configuration of the stretching process, it can be generalized to a combination of different working units that ask for information exchange among them, which therefore makes it possible to apply the proposed control scheme. Experiment results show that the proposed multi-layered intelligent cooperative control scheme can connect the different parts of the stretching process together with efficiently, and a long-term stability of the stretching ratio can therefore be guaranteed through the cooperative regulation.
     (4) The natural endocrine regulation principle is taken as the foundation of a series of novel intelligent controllers, and a data-driven intelligent controller based on such mechanism is proposed to solve the controlling problem of the spinning process whose accurate model is difficult to acquire. The proposed controller roots from the idea of data-driven control but also embedded with an endocrine regulating module as an enhancement. Meanwhile, a series of instances of such kind of intelligent controller can be deducted due to the different working modes. Experiment results on the stretching process of the fiber production indicate that the proposed controller raise the agility and accuracy of the original data-driven controller, which is beneficial for maintaining the target plant at a stable working status for long time.
     (5) A bi-directional process modeling and intelligent optimizing approach with its expert system for spinning production is proposed based on the cooperative mechanism of the neural system and immune system. This model has not only the potential of acquiring reasonable configurations for the spinning process, but also the ability to conduct prediction and assessment for the produced fiber products. Such computerized solution provides the academicians with a useful tool for analyzing the details of the fiber production, meanwhile has great meaning for the fiber manufacturing unit and related people to optimize the production techniques and design new fiber products at a lower cost.
     Finally, a conclusion is made for the whole contents of this dissertation with the disadvantages of the current work being noted, and the perspectives of this field for the next step have also been discussed.
引文
[1]张跃,陈英斌,刘建武,严生虎,沈介发.聚丙烯腈碳纤维的研究进展[J].纤维复合材料,2009,(3):7-10.
    [2]罗益锋.国外PAN原丝及碳纤维专利分析报告(1)[J].高科技纤维与应用,2006,10(6):1.
    [3]陈杰,吴永兴,张振声等.国内碳纤维发展态势分析[J].高科技纤维与应用,2007,32(2):22.
    [4]Toray industries Inc. Manufacture of Acrylic Fibers by Dry-wet Spinning Method with Improved Production Efficiency and Good Yam Qualities by Controlling Coagulation Liquid Surface Fluctuation Index [P]. JP 11 350244.1999.
    [5]Toray industries Inc. Manufacture of AN Polymer Fibers with Reduced Yam Breakage and Spinning Stability for a Long Period by Controlling Variation of Distance Between the Spinneret Surface and the Coagulating Liquid Surface by Float Balla on the Coagulating Liquid Surface [P]. JP 11 350245.1999.
    [6]Toray Industries Inc. Acrylic fibers for producing carbon fibers [P]. US4496631, 1985-01-29.
    [7]黄军辉,傅沈文.模糊控制理论的发展及应用[J].中国科技信息,2006,(12):303-305.
    [8]陈霞,陈志巧,王毅,王秀芳.模糊预测控制技术的应用研究[J].煤矿现代化,2006,(5):40-42.
    [9]罗熊,孙增圻.计算智能方法优化设计模糊控制系统:现状与展望[J].控制与决策,2007,22(9):961-967.
    [10]李秋红,许光华,孙健国.航空发动机小波神经网络PID控制[J].航空动力学报,2009,24(4):875-879.
    [1]]孙志峻,黄卫清.超声电机驱动多关节机器人的类PID小波神经网络控制[J].机械工程学报,2009,45(3):215-221.
    [12]李磊,朱齐丹高双.动态模糊神经网络在并联平台控制中的应用[J].系统仿真学报,2009,21(8):2338-2340.
    [13]王良勇,柴天佑,方正.考虑驱动系统动态的机械手神经网络控制及应用[J].自动化学报,2009,35(5):622-626.
    [14]李凤宇,张大发,王少明,崔长领,刘颖.基于遗传算法的蒸发器水位PID控制研究[J].原子能科学技术,2008,42(增刊):137-141.
    [15]石秀华,孟祥众,杜向党,曹银萍.基于多岛遗传算法的振动控制传感器优化配置[J].振动、测试与诊断.2008,28(1):62-66.
    [16]陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用[J].机械工程学报,2008,44(2):196-200.
    [17]张听,宋建峰,田毅,张欣.基于多目标遗传算法的混合动力电动汽车控制策略优化[J].2009,45(2):36-40.
    [18]王建国,丁根芳,覃艳.基于遗传算法和梯度算法压电层合结构的最优形状控制[J].固体力学学报,2008,29(1):59-65.
    [19]文晓聪,张会生,张玲霞.一种基于遗传算法的联合功率和速率控制算法[J].系统仿真学报,2008,20(18):4956-4959.
    [20]陶波,丁汉,熊有伦.基于嵌入式Internet的工业控制[J].测控技术,2001,20(8):5-9.
    [21]黄海,张柯,张建明,王树青.基于Agent技术的网络控制系统研究[J].仪器仪表学报,2008,29(8):1679-1686.
    [22]吕永根,王华平,潘鼎.聚丙烯腈碳纤维的产业化及装置[J].高科技纤维与应用,2009,34(2):1-8.
    [23]陈达俊.聚丙烯腈碳纤维工厂设计实践[J].江苏纺织,2008,(8):50-54.
    [24]杜彩霞,赵镇尧,宋立平.工业化生产聚丙烯腈碳纤维原丝纺丝设备的研讨[J].纺织机械,2001,(4):10-12.
    [25]张风翻.国产碳纤维规模化生产及应用值得注意的几个问题[J].高科技纤维与应用,2005,30(6):1-7.
    [26]郑昆颖.年产200tPAN碳纤维及500t原丝项目设计[J].上海建设科技,2007,(3):6-7.
    [27]于宽,马中全.碳纤维生产线炉温群监控系统设计[J].山东建筑工程学院学报,1999,14(3):61-64.
    [28]朱波,蔡旬,钱宇白,刘伟.新型碳纤维生产线计算机控制系统研制[J].工业加热,2002,(1):18-19.
    [29]张明,曾毅,孙晓军.用于碳纤维生产的变频调速系统[J].自动化与仪表,1999,14(3):37-39.
    [30]王效良,马思乐,吴皓.T-M集散控制系统在碳纤维生产中的应用[J],电气传动,1997,(6):42-43.
    [31]王永初.智能控制理论与系统的发展评述[J].华侨大学学报(自然科学版),2004,25(1):1-4.
    [32]刘宝,丁永生.一种基于免疫存储记忆的智能控制器的设计与实现[J].控制与决策,2005,20(10):1169-1172.
    [33]张向锋,任立红,丁永生.基于免疫应答的神经网络优化设计及其分类应用[J].哈尔滨工程大学学报,2006,27(增刊):219-222.
    [34]刘宝,张中炜,丁永生.基于生长激素双向调节原理的解耦控制[J].东南大学学报(自然科学版),2006,36(增刊Ⅰ):5-8.
    [35]韩华,刘宝,朱晓建,丁永生.一种基于免疫应答机制的噪声智能控制器[J].计算机仿真,2007,24(3):160-163.
    [36]刘宝,丁永生,王君红.一种基于内分泌超短反馈机制的智能控制器[J].计算机仿真,2008,25(1):188-191.
    [37]刘宝,丁永生,王君红.基于NEI调节机制的非线性智能优化控制器[J].控制与决策,2008,23(10):1159-1162.
    [38]刘宝,丁永生.一种新颖的基于内分泌激素调控的智能控制器[J].计算机仿真,2006,23(2):129-132.
    [39]L.-H. Fang, Z.-Z. Wu. A.-G. Wu, and A.-H. Zheng, "Fuzzy immune self-regulating PID control of networked control system," in Proceedings of the 2006 International Conference on Intelligent Agents, Web Technologies and Internet Conference, International Conference on Computational Intelligence for Modeling, Control and Automation, Nov.28-Dec.1,2006, pp.74.
    [40]J. R. Castro, O. Castillo, P. Melin, A. Rodriguez-Diaz, and L. G. Martinez, "Intelligent control using an interval type-2 fuzzy neural network with a hybrid learning algorithm," in Proceedings of the 2008 IEEE International Conference on Fuzzy Systems, Jun.1-6,2008, pp.893-900.
    [41]P. Marino, F. P. Fontan, M. A. Dominguez, and S. Otero, "Networked biological system by wireless sensors," in Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and Vision, Dec.17-20,2008, pp. 218-222.
    [42]A. Aswani, and C. Tomlin, "Topology based control of biological genetic networks," 2008 47th IEEE Conference on Decision and Control (CDC), Dec.9-11, 2008, pp.781-786.
    [43]A. Eisenhower, and I. Mezic, "A mechanism for energy transfer leading to conformation change in networked nonlinear systems," 2007 46th IEEE Conference on Decision and Control (CDC), Dec.12-14,2007, pp.3976-3981.
    [44]B.-S. Chen, W.-S. Wu, Y.-c. Wang, and W.-H. Li, "On the robust circuit design schemes of biomedical networks:steady-state approach," IEEE Trans. on Biomedical Circuits and Systems, vol.1, no.2, pp.91-104, Feb.2007.
    [45]R. J. Kier, J. C. Ames, R. D. Beer, and R. R. Harrison, "Design and implementation of multipattern generators in analog VLSI," IEEE Trans. on Neural Networks, vol.17, no.4, pp.1025-1038, Jul.2006.
    [46]J. Timmis, and M. Neal, "Artificial homeostasis:integrating biologically inspired computing", www.cs.kent.ac.uk/2003/1586/content.pdf, Apr.15,2010.
    [47]P. Vargas, R. Moioli, and L. N. de Castro, et al, "Artificial homeostasis:a novel approach," in Proc. ECAL 2005, Lecture Notes on Artificial Intelligence, vol.3630, pp.754-763,2005.
    [48]黄国锐.人工内分泌模型及其应用研究[D].中国科学技术大学博士学位论文,中国:合肥,2003,6.
    [49]H. O. Besedovsky, and E. Sorkin, "Network of immune-neuroendocrine interaction," Clinical and Experimental Immunology, vol.27 no.1, pp.1-12, Jan. 1977.
    [50]谢蜀生.神经-内分泌-免疫网络[J].科技导报,1994,(8):11-12,64.
    [51]胡格,穆祥,段慧勤,杨佐君,高立云.免疫、神经和内分泌系统间的关系[J].动物医学进展,2003,24(1):5-7.
    [52]I. M. Kvetnoy, "Neuroimmunoendocrinology:Where is the field for study?" Neuroendocrinology Letter, vol.23, pp.119-120,2002.
    [53]I. G. Akmaev, "Problems and prospects in development of neuroimmunoendocrinology," Problemy Endokrinologii-Moskva-Meditsina, vol.45, no.5, pp.3-7,1999.
    [54]王玢,左明雪.人体及动物生理学[M].北京:高等教育出版社,2001,7.
    [55]A. V. Nandedkar, and P. K. Biswas, "A granular reflex fuzzy min-max neural network for classification," IEEE Transactions on Neural Networks, vol.20, no.7, pp.1117-1134, Jul.2009.
    [56]B. Erkmen, N. Kahraman, R. A. Vural, and T. Yildrim, "Conic section function neural network circuitry for offline signature recognition," IEEE Transactions on Neural Networks, vol.21, no.4, pp.667-672, Apr.2010.
    [57]D. Golmohammadi, R. C. Creese, H. Valian, and J. Kolassa, "Supplier selection based on a neural network model using genetic algorithm," IEEE Transactions on Neural Networks, vol.20, no.9, pp.1504-1519, Sept.2009.
    [58]T. Orlowska-Kowalska, and M. Kaminski, "FPGA implementation of the multilayer neural network for the speed estimation of the two-mass drive system," IEEE Transactions on Industrial Informatics, vol.7, no.3, pp.436-445, Aug.2011.
    [59]A. Gomperts, A. Ukil, and Z. Zulfluh, "Development and implementation of parameterized FPGA-based general purpose neural networks for online applications," IEEE Transactions on Industrial Informatics, vol.7, no.1, pp.78-89, 2011.
    [60]A. O. Tarakanov, "Immunocomputing for intelligent intrusion detection," IEEE Computational Intelligence Magazine, vol.3, no.2, May 2008.
    [61]L.-C. Jiao, Y.-Y. Li, M.-G. Gong, and X.-R. Zhang, "Quantum-inspired immune clonal algorithm for global optimization," IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, vol.38, no.5, pp.1234-1253, Oct.2008.
    [62]C.-H. Chen, C.-J. Lin, and C.-T. Lin, "Using an efficient immune symbiotic evolution learning for compensatory neuro-fuzzy controller," IEEE Transactions on Fuzzy Systems, vol.17, no.3, pp.668-682, Jun.2009.
    [63]C. Yan, G. K. Venayagamoorthy, and K. Corzine, "Hardware implementation of an AIS-based optimal excitation controller for an electric ship," IEEE Transactions on Industry Applications, vol.47, no.2, pp.1060-1070, Mar.-Apr.2011.
    [64]J. Timmis, M. Neal, and J. Thorniley, "An adaptive neuro-endocrine system for robotic systems," 2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, Mar.30-Apr.2,2009, pp.129-136.
    [65]J. Wei, "Intelligent control on work-in-progress inventory based on biological modulation mechanism," 2009 International Workshop on Intelligent Systems and Applications (ISA2009), May 23-24,2009, pp.1-4.
    [66]S. Wang, Z.-H. Chen, W.-J. Ma, and Q.-S. Ma, "Influence of heat treatment on physicalchemical properties of PAN-based carbon fiber," Ceram. Int., vol.32, no.3, pp.291-295, Mar.2006.
    [67]A. Sedghi, R. E. Farsani, and A. Shokufar, "The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties," J. Mater. Process. Tech., vol.198, no.1-3, pp.60-67, Mar.2008.
    [68]L.-J. Tan, H.-F. Chen, D. Pan, and N. Pan, "Investigating the spin ability in the dry-jet wet spinning of PAN precursor fiber," J. Appl. Polym. Sci., vol.110, pp.1997-2000, Aug.2008.
    [69]F. Ismail, M. A. Rahman, A. Mustafa, and T. Matsuura, "The effect of processing conditions on a polyacrylonitrile fiber produced using a solvent-free coagulation process," Mat. Sci. Eng. A, vol.485, no.1-2, pp.251-257, Jan.2008.
    [70]S. Nain, M. Sitti, A. Jacobson, T. Kowalewski, and C. Amon, "Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers," Macromol. Rapid Commun., vol.30, pp.1406-1412,2009.
    [71]M. Stoker and A. S. White, "Mechatronic cine-film copying using transputer control," Mechatronics, vol.10, no.7, pp.773-807, Jul.2000.
    [72]M. Karaman and C. Batur, "Draw resonance control for polymer fiber spinning process, " in Proc. Am. Cont. Conf., vol.4, pp.2155-2159, USA, June 24-26,1998.
    [73]J. R. Carrol and M. P. Givens, "Design elements of the modern spinning control system," in Proc. IEEE Annu. Text. Fiber Film Ind. Tech. Conf., pp.1-2, May 4-5, 1994.
    [74]A. Ghosh and S. K. Das, "Open-loop decoupling of MIMO plants," IEEE Trans. Autom. Control, vol.54, no.8, pp.1977-1981, Aug.2009.
    [75]M. Wu, J. Yan, J.-H. She, and W.-H. Cao, "Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens," IEEE Trans. Ind. Electron., vol.56, no.7, pp.2782-2792, Jul.2009.
    [76]H.-B. Liu, S.-Y. Li, and T.-Y. Chai, "Intelligent decoupling control of power plant main steam pressure and power output," Electr. Power Energy Syst., vol.25, no.10, pp.809-819, Dec.2003.
    [77]R. Marino and F. Cinili, "Input-output decoupling control by measurement feedback in four-wheel-steering vehicles," IEEE Trans. Control Syst. Technol., vol. 17, no.5, pp.1163-1172, Sept.2009.
    [78]C. Michioka, T. Sakamoto, O. Ichikawa, A. Chiba, and T. Fukao, "A decoupling control method of reluctance-type bearingless motors considering magnetic saturation," IEEE Trans. Ind. Appl., vol.32, no.5, pp.1204-1210, Aug.1996.
    [79]T.-L. Chien, C.-C. Chen, and C.-J. Huang, "Feedback linearization control and its application to MIMO cancer immunotherapy," IEEE Trans. Control Syst. Technol., vol.18, no 4, pp.953-961, July 2010.
    [80]M. Malabre and J. A. Torres-Munoz, "Block decoupling by precompensation revisited," IEEE Trans. Autom. Control, vol.52, no.5, pp.922-925, May 2007.
    [81]N. Prljaca and Z. Gajic, "Optimal control and filtering of weakly coupled linear discrete-time stochastic systems by the eigenvector approach," Automatica, vol.49, no.3-4, pp.135-142, Mar.2009.
    [82]C.-M. Lin and Y.-J. Mon, "Decoupling control by hierarchical fuzzy sliding-mode controller," IEEE Trans. Control Syst. Technol., vol.13, no.4, pp.593-598, July 2005.
    [83]G. Corani and G. Guariso, "Coupling fuzzy modeling and neural networks for river flood prediction," IEEE Tran. Syst., Man, Cybern. C, Appl. Rev., vol.35, no.3, pp. 382-390, Mar.2006.
    [84]Y. Fu and T.-Y. Chai, "Intelligent decoupling control of nonlinear multivariable systems and its application to a wind tunnel system," IEEE Trans. Control Syst. Technol., vol.17, no.6, pp.1376-1384, Nov.2009.
    [85]J. Liang, Z. Wang, Y. Liu, and X. Liu, "Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks," IEEE Trans. Neural Netw., vol.19, no.11, pp.1910-1921, Nov.2008.
    [86]S. S. Chunghtai and H. Wang, "A high-integrity multivariable robust control with application to a process rig," IEEE Trans. Control Syst. Technol., vol.15, no.4, pp. 775-785, Jul.2007.
    [87]J. Zhang, H.-S. Chung, and W.-L. Lo, et al., "Implementation of a decoupled optimization technique for design of switching regulators using genetic algorithms," IEEE Trans. Power Electron., vol.16, no.6, pp.752-763, Jun.2001.
    [88]M. Rashed, P. F. A. McConnell, and A. F. Stronach, "Nonlinear adaptive state-feedback speed control of a voltage-fed induction motor with varying parameters," IEEE Trans. Ind. Appl., vol.42, no.3, pp.723-732, May 2006.
    [89]D.-L. Yu, T.-K. Chang, and D.-W. Yu, "A stable self-learning PID control for multivariable time varying systems," Control Eng. Pract., vol.15, no.2, pp.1577-1587, Feb.2007.
    [90]Y. Quan and J. Yang, "Optimal decoupling control system using kernel method," J. Syst. Eng. Electron., vol.15, no.3, pp.364-370, Mar.2004.
    [91]L. S. Farhy, M. Straume, and M. L. Johnson, et al., "A construct of interactive control of the GH axis in the male," Am. J. Physiol. Reg. Integr. Comp. Physiol., vol.281, no.1, pp.38-51, Jan.2001.
    [92]D. M. Keenan, J. Licinio, and J. D. Veldhuis, "A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis," Proceedings of the National Academy of Sciences USA, vol.98, no.7, pp.4028-4033, Mar.2001.
    [93]S. Mitra and Y. Hayashi, "Bioinformatics with soft computing," IEEE Trans. Syst., Man, Cy., C Appl. Rev., vol.36, no.5, pp.616-635, May 2006.
    [94]Y.-S. Ding and B. Liu, "An intelligent bi-cooperative decoupling control approach based on modulation mechanism of internal environment in body," IEEE Trans. Control Syst. Technol., vol.19. no.3, pp.692-698, May.2011.
    [95]Y.-S. Ding, B. Liu, and L.-H. Ren, "A decoupling controller based on the inverse control and the bi-regulation principle of growth hormone," Dynam. Contin., Discrete Impul. Syst.-Ser. B, vol.14b, no.5, pp.679-694, Sept.2007.
    [96]J. R. Carroll, M. P. Givens, and R. Piefer, "Design elements of the modern spinning control system," IEEE Annu. Text., Fiber Film Ind. Tech. Conf., Greenville, USA, May.4-5,1994.
    [97]M. B. Bazbouz, G. K. Stylios, "Novel mechanism for spinning continuous twisted composite nanofiber yarns," Eur. Polym. J., vol.44, no.1, pp.1-12, Jan.2008.
    [98]F. Ismail, M. A. Rahman, A. Mustafa, and T. Masuura, "The effect of processing conditions on a polyacrylonitrile fiber produced by a solvent-free coagulation process," Mater. Sci. Eng.:A, vol.485, no.1-2, pp.251-257, Jun.2008.
    [99]C.-F. J. Kuo and C.-C. Fang, "An entire strategy for control of a calendar roller system:Part Ⅲ intelligent settling time-optimal control," Text. Res. J., vol.78, no. 1, pp.81-87, Jan.2008.
    [100]P. R. Pagilla, N. B. Siraskar, and R. V. Dwivedula, "Decentralized control of web processing lines," IEEE Trans. Control Syst. Technol., vol.15, no.1, pp.106-117, Jan.2007.
    [101]K.-H. Shin and S.-O. Kwon, "The effect of tension on the lateral dynamics and control of a moving web," IEEE Trans. Ind. Appl., vol.43, no.2, pp.403-411, Mar. 2007.
    [102]Y.-G. Li and C. D. Rahn,"Adaptive vibration isolation for axially moving beam,' IEEE/ASME Trans. Mechatronics, vol.5, no.4, pp.419-428, Dec.2000.
    [103]N. R. Abjadi, J. Soltain, J. Askari, and G. R. A. Markadeh, "Nonlinear sliding-mode control of a multi-motor web-winding system without tension control," IET Control Theory Appl., vol.3, no.4, pp.419-427, Mar.2008.
    [104]J. B. Yerashunas, J. A. D. Abreu-Garcia, and T. T. Hartley, "Control of lateral motion in moving webs," IEEE Trans. Control Syst. Technol., vol.11, no.5, pp. 684-693, Sept.2003.
    [105]M. R. Khan and A. Iqbal, "Extended Kalman filter based speeds estimation of series-connected five-phase two-motor drive system," Sim. Model. Pract. Theory, vol.17, no.7, pp.1346-1360, Aug.2009.
    [106]M. Jones, S. N. Vukosavic, and E. Levi, "Parallel-connected multiphase multidrive systems with single inverter supply," IEEE Trans. Ind. Electron., vol.56, no.5, pp. 2047-2057, Jun.2009.
    [107]F.-J. Lin and P.-H. Chou, "Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network," IEEE Trans. Ind. Electron., vol.56, no. 1, pp.178-193, Jan.2009.
    [108]Y. Xiao, K.-Y. Zhu, and H.-C. Liaw, "Generalized synchronization control of multi-axis motion systems," Control Eng. Pract., vol.13, no.7, pp.809-819, Jul. 2005.
    [109]J.-G. Juang, M.-T. Huang, and W.-K. Liu, "PID control using presearched genetic algorithms for a MIMO system," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol.38, no.5, pp.716-727, Sept.2008.
    [110]D. Mehmet, C. Hakan, and K. M. Cengiz, "Adaptive control of let-off system in weaving," J. Text. Inst., vol.100, no.2, pp.186-194, Mar.2009.
    [111]K.-Y. Lian, C.-S. Chiu, and P. Liu, "Semi-decentralized adaptive fuzzy control for cooperative multi robot system with H∞ motion/internal force tracking performance," IEEE Trans. Syst., Man, Cybern., B, Cybern., vol.32, no.3, pp.269-280, Jun.2002.
    [112]R.-J. Wai, "Robust control for nonlinear motor-mechanism coupling system using wavelet neural network," IEEE Trans. Syst., Man, Cybern., B, Cybern., vol.33, no. 3, pp.489-497, Jun.2003.
    [113]B. Liu, H. Han, and Y.-S. Ding, "A decoupling control based on the bi-regulation principle of growth hormone," Proceedings of the 2005 ICSC Congress on Computational Intelligence Methods and Applications, vol.2005, Istanbul, Turkey, Dec.15-17,2005.
    [114]J.-D. Cao, G.-R. Chen, and P. Li, "Global synchronization in an array of delayed neural networks with hybrid coupling," IEEE Trans. Syst., Man, Cybern., B, Cybern., vol.38, no.2, pp.488-497, Apr.2008.
    [115]N. Q. Dinh, and N. V. Afzulpurkar, "Neuro-fuzzy MIMO nonlinear control for ceramic roller kiln," Sim. Model. Pract. Theory, vol.15, no.10, pp.1239-1258, Nov.2007.
    [116]F.-J. Lin, H.-J. Hsieh, and P.-H. Chou, "Tracking control of a two-axis motion system via a filtering-type sliding-mode control with radial basis function network," IET Control Theory Appl., vol.4, no.4, pp.656-671, Apr.2010.
    [117]F. Claveau, P. Chevrel, and K. Knittel, "A 2DOF gain-scheduled controller design methodology for a multi-motor web transport system," Control Eng. Pract., vol.16, no.5, pp.609-622, May 2008.
    [118]S.-K. Jeong and S.-S. You, "Precise position synchronous control of multi-axis servo system," Mechatronics, vol.18, no.3, pp.129-140, Apr.2008.
    [119]W. Gueaieb, F. Karray, and S. Al-Sharhan, "A robust hybrid intelligent position/force control scheme for cooperative manipulators," IEEE/ASME Trans. Mechatronics, vol.12, no.2, pp.109-125, Apr.2007.
    [120]Z.-D. Wang, Y.-R. Liu, G.-L. Wei, and X.-H. Liu, "A note on control of a class of discrete time-delay stochastic systems with distributed delays and nonlinear disturbances," Automatica, vol.46, no.3, pp.543-548, Mar.2010.
    [121]Z.-D. Wang, G.-L. Wei, and G. Feng, "Reliable Hoo control for discrete-time piecewise linear systems with infinite distributed delays," Automatica, vol.45, no. 12, pp.2991-2994, Dec.2009.
    [122]Z.-D. Wang, D. W. C. Ho, Y.-R. Liu, and X.-H. Liu, "Robust Hoo control for a class of nonlinear discrete time-delay stochastic systems with missing measurements," Automatica, vol.45, no.3, pp.684-691, Mar.2009.
    [123]L. Scardovi, M. Arcak, and E. D. Sontag, "Synchronization of interconnected systems with applications to biochemical networks:An input-output approach," IEEE Trans. Autom. Control, vol.55, no.6, pp.1367-1379, Jun.2010.
    [124]P. M. Jones, "Cooperative problem solving in human-machine systems:theory, models, and intelligent associated systems," IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol.30, no.4, pp.397-407, Nov.2000.
    [125]Googol Corp. Programming guide for GT-series motion controller.
    [126]J.-Q. Han, "From PID to active disturbance rejection control," IEEE Transactions on Industrial Electronics, vol.56, no.3, pp.900-906, Mar.2009.
    [127]D. Rupp, and L. Guzzella, "Iterative tuning of internal model controllers with application to air/fuel radio control," IEEE Transactions on Control System Technology, vol.18, no.1, pp.177-184, Jan.2010.
    [128]P. Parpas, and B. Rustem, "An algorithm for the global optimization of a class of continuous minmax problems," Journal of Optimization Theory and Applications, vol.141, no.2, pp.461-473,2009.
    [129]D. Xu, and J. Huang, "Robust adaptive control of a class of nonlinear systems and its applications," IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, vol.57, no.3, pp.691-702, Mar.2010.
    [130]J. Darlington, C. C. Pantelides, B. Rustem, and B. A. Tanyi, "An algorithm for constrained nonlinear optimization under uncertainty," Automatica, vol.35, no.2, pp.217-228, Feb.1999.
    [131]Z.-S. Hou, and J.-X. Xu, "On data-driven control theory:The state of the art and perspective," Acta Automatica Sinca, vol.35, no.6, pp.650-667, Nov.2009.
    [132]M. Milanese, F. Ruiz, and M. Taragna. "Direct data-driven filter design for uncertain LTI systems with bounded noise," Automatica, vol.46, no.11, pp.1773-1784, Nov.2011.
    [133]P. Rapisarda, and H. L. Trentelman, "Identification and data-driven model reduction of state-space representations of lossless and dissipative systems for noise-free data," Automatica, vol.47, no.8, pp.1721-1728, Aug.2011.
    [134]F. Qi, and B. Huang, "Bayesian methods for control loop diagnosis in the presence of temporal dependent evidence," Automatica, vol.47, no.7, pp.1349-1356, Jul. 2011.
    [135]C.-J. Chien, and C.-Y. Yao, "Iterative learning of model reference adaptive controller for uncertain nonlinear systems with only output measurement," Automatica, vol.40, no.5, pp.855-864, May 2004.
    [136]J.-M. Lee, and J.-H. Lee, "Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes," Automatica, vol.41, no.7, pp.1281-1288, Jul.2001.
    [137]R. J. Povinelli, J. F. Bangura, N. A. O. Demerdash, and R. H. Brown, "Diagnostics of bar and end-ring connector breakage faults in polyphase induction motors through a novel dual track of time-series data mining and time-stepping coupled FE-state space modeling," IEEE Transactions on Energy Convention, vol.17, no.1, pp.39-46, Jan.2002.
    [138]Y.-Q. Wang, D.-H. Zhou, and F.-R. Gao, "Iterative learning model predictive control for multi-phase batch processes," Journal of Process Control, vol.18, no.6, pp.543-557, Jul.2008.
    [139]W. Erlhagen, A. Mukovskiy, E. Bicho, G. Panin, C. Kiss, A. Knoll, H. van Schie, and H. Bekkering, "Goal-directed imitation for robots:A bio-inspired approach to action understanding and skill learning," Robotics and Autonomous Systems, vol. 54, no.5, pp.353-360, May 2006.
    [140]M. Wu, J. Yan, J.-H. She, and W.-H. Cao, "Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens," IEEE Transactions on Industrial Electronics, vol.56, no.7, pp.2782-2792, Jul.2009.
    [141]C.-L. Lin, S.-H. Hsiao, and C.-K. Chen, "Balance of emulated MDOF human postural systems," International Journal of Engineering Service, vol.48, no.9, pp. 751-770, Sept.2010.
    [142]Y.-S. Ding, and B. Liu, "An intelligent bi-cooperative decoupling control approach based on modulation mechanism of internal environment in body," IEEE Transactions on Control Systems Technology, vol.19, no.3, pp.692-698, May 2011.
    [143]Y.-S. Ding, B. Liu, and L.-H. Ren, "Intelligent decoupling control system inspired from modulation of the growth hormone in neuroendocrine system," Dynamics of Continuous, Discrete & Impulsive Systems, Series B:Applications & Algorithms, vol.14, no.5, pp.679-693, May 2007.
    [144]J. C. Spall, "Multivariate stochastic approximation using a simultaneous perturbation gradient approximation," IEEE Transactions on Automatic Control, vol.37, no.3, pp.332-341, Mar.2002.
    [145]J. C. Spall, and J. A. Christion, "A model-free control of nonlinear stochastic systems with discrete-time measurements," IEEE Transactions on Automatic Control, vol.43, no.9, pp.1198-1210, Sept.1998.
    [146]L. S. Farhy, "Modeling of oscillations of endocrine networks with feedback," Methods in Enzymology, vol.384, pp.54-81,2004.
    [147]C.-S. Cho, B.-M. Chung, and M.-J. Park, "Development of real-time vision-based fabric inspection system," IEEE Transactions on Industrial Electronics, vol.52, no. 4, pp.1073-1079, Aug.2005.
    [148]C.-C. Wong, T. A. Dean, and J. Lin, "A review of spinning, shear forming and flow forming processes," International Journal of Machine Tools and Manufacture, vol. 43, no.14, pp.1419-1435, Nov.2003.
    [149]N. Yusof, and A. F. Ismail, "Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber:A review," Journal of Analytical and Applied Pyrolysis, vol.93, pp.1-13, Jan.2012.
    [150]W. Wei, Y.-P. Zhang, Y.-M. Zhao, J. Luo, H.-L. Shao, and X.-C. Hu, "Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution," Materials Science and Engineering:C, vol.31, no.7, pp.1602-1608, Oct.2011.
    [151]A. B. Sulong, J. Park, C.-H. Azhari, and K. Jusoff, "Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforced polyethylene fibers," Composites Part B:Engineering, vol.42, no.1, pp.11-17, Jan.2011.
    [152]Z.-M. Gou and A. J. McHugh, "Two-dimensional modeling of dry spinning of polymer fibers," Journal of Non-Newtonian Fluid Mechanics, vol.118, no.2-3,5, pp.121-136, Apr.2004.
    [153]K.-M. Lee, Z.-Y. Wei, and Z. Zhou, "Modeling by numerical reduction of modes for multivariable control of an optical-fiber draw process," IEEE Transactions on Automation Science and Engineering, vol.3, no.1, pp.119-130, Jan.2006.
    [154]A. Cay, I. Tarakcioglu, and A. Hepbasli, "Assessment of finishing processes by exhaustion principle for textile fabrics:An exegetics approach," Applied Thermal Engineering, vol.29, no.11-12, pp.2554-2561, Aug.2009.
    [155]D. H. Tan, C.-F. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko, and F. S. Bates, "Meltblown fibers:Influence of viscosity and elasticity on diameter distribution," Journal of Non-Newtonian Fluid Mechanics, vol.165, no.15-16, pp.892-900, Aug. 2010.
    [156]A. Duval, A. Bourmaud, L. Augier, and C. Baley, "Influence of the sampling area of the stem on the mechanical properties," Material Letters, vol.65, no.4, pp.797-800, Feb.2011.
    [157]H.-M. Hsu, Y. Hsiung, Y.-Z. Chen, and M.-C. Wu, "A GA methodology for the scheduling of yarn-dyed textile production," Expert Systems with Applications, vol. 36, no.10, pp.12095-12103, Dec.2009.
    [158]H.-W. Ding, L. Benyoucef, and X.-L. Xie, "A simulation-based multi-objective genetic algorithm approach for networked enterprises optimization," Engineering Applications of Artificial Intelligence, vol.19, no.6, pp.609-623, Sept.2006.
    [159]S. Sette, L. Boullart, and L. Van langenhove, "Using genetic algorithms to design a control strategy of an industrial process," Control Engineering Practice, vol.6, no. 4, pp.523-527, Apr.1998.
    [160]H. E. Kadi, "Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks-A review," Composite Structures, vol.73, no.1, pp.1-23, May 2006.
    [161]L. Arafeh, H. Singh, and S. K. Putatunda, "A neuro fuzzy logic approach to material processing," IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.29, no.3, pp.362-370, Aug.1999.
    [162]Y. Yu, C.-L. Hui, T.-M. Choi, and R. Au, "Intelligent fabric hand prediction system with fuzzy neural network," IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, vol.40, no.6, pp.619-629, Nov.2010.
    [163]M. Liu, M.-Y. Dong, and C. Wu, "A new ANFIS for parameter prediction with numeric and categorical inputs," IEEE Transactions on Automation Science and Engineering, vol.7, no.3, pp.645-653, Jul.2010.
    [164]X.-G. Deng, P. Vroman, X.-Y. Zeng, and B. Laouisset, "Intelligent decision support tools for multicriteria product design," in Proceedings of the 2010 IEEE International Conference on Systems, Man, and Cybernetics (SMC2010), Istanbul, Turkey, Oct.10-13,2010, pp.1223-1230.
    [165]Y.-K. Yang, R.-T. Yang, and C.-J. Tzeng, "Optimization of mechanical characteristics of short glass fiber and polytetrafluoroethylene reinforced polycarbonate composites using the neural network approach," Expert Systems with Applications, vol.39, no.3, pp.3783-3792, Feb.2012.
    [166]W.-Z. Yang, D.-L. Li, and L. Zhu, "An improved genetic algorithm for optimal feature subset selection from multi-character feature set," Expert Systems with Applications, vol.38, no.3, pp.2733-2740, Mar.2011.
    [167]L.-Z. Wang, Y.-S. Ding, K.-R. Hao, and X. Liang, "An immune-enhanced unfalsified controller for a high-speed spinning process," in Proceedings of the 6th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Shanghai, China, Dec.15-17,2011, pp.19-24.
    [168]N.-G. Zheng, Z.-H. Wu, M. Lin, L. T. Yang, and G. Pan, "Infrastructure and reliability analysis of electric networks for E-textiles," IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, vol.40, no.1, pp.36-51, Jan.2010.
    [169]P. F. Antonietti, P. Biscari, A. Tavakoli, M. Verani, and M. Vianello, "Theoretical study and numerical simulation of textiles," Applied Mathematical Modeling, vol. 35, no.6, pp.2669-2681, Jun.2011.
    [170]B. Balci, O. Keskinkan, and M. Avci, "Use of BDST and an ANN model for prediction of dye adsorption efficiency of Eucalyptus camaldulensis barks in fixed-bed system," Expert Systems with Applications, vol.38, no.1, pp.949-956, Jan. 2011.
    [171]L. Xu, Y. Wu, and Y. Nawaz, "Numerical study of magnetic electrospinning processes," Computers and Mathematics with Applications, vol.61, no.8, pp. 2116-2119, Apr.2011.
    [172]U. Thissen, R. van Brakel, A. P. de Weijer, W. J. Melssen, and L. M. C. Buydens, "Using support vector machines for time series prediction," Chemometrics and Intelligent Laboratory Systems, vol.69, no.1-2, pp.35-49, Nov.2003.
    [173]P. Zhou, T.-Y. Chai, and H. Wang, "Intelligent optimal-setting control for grinding circuits of mineral processing process," IEEE Transactions on Automation Science and Engineering, vol.6, no.4, pp.730-743, Oct.2009.
    [174]C.-J. Kuo, C.-F. Chien, and J.-D. Chen, "Manufacturing intelligence to exploit the value of production and tool data to reduce cycle time," IEEE Transactions on Automation Science and Engineering, vol.8, no.1, pp.103-111, Jan.2011.
    [175]S.-C. Horng, F.-Y. Yang, and S.-S. Lin, "Embedding evolutionary strategy in ordinary optimization for hard optimization problems," Applied Mathematical Modeling, vol.36, no.8, pp.3753-3763, Aug.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700