用户名: 密码: 验证码:
复杂地层油藏蒸汽注采数值模拟自适应网格法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽注采是稠油油藏开发的主要手段。对于复杂地层油藏蒸汽注采过程的数值模拟,其中一个困难在于计算流场中存在一个温度、饱和度剧烈变化的相变锋面。在锋面附近位置,物理量变化非常剧烈,计算网格的尺寸必须很小以满足计算精度的要求,如果对计算区域采用均匀网格计算,则计算量将难以忍受;另外,由于地层的复杂性,往往采用非结构化网格处理,这势必会增加数值离散上的复杂度,而若采用结构化网格,其尺度又会影响复杂区域的计算精度。因此,有必要建立高效而又精确的数值模拟手段,自适应网格法就是本文的主要研究内容。
     本文工作的目标是将自适应网格法应用于复杂地层稠油油藏蒸汽注采过程的数值模拟,并研究引入自适应网格法后遇到的相关数学物理问题。
     对均质油藏的自适应网格展开研究。利用结构化程序设计方案编写蒸汽注采自适应网格法程序,结构化的程序能够很方便地将后续研究工作引入,从而大幅度缩减数值程序的编写时间。二维与三维的均质油藏蒸汽辅助重力泄油(SAGD)算例显示,自适应网格法能大幅度提高模拟的计算速度,并且保持很高的计算精度。自适应网格结构也显示计算区域中的精细网格数量大幅度减少。
     在将自适应网格技术应用到非均质油藏的模拟中时,对于自适应网格系统中的各层次粗网格,采用重正化方法计算等效渗透率。为削减网格取向效应的影响,对二维蒸汽驱的模拟采用九点离散格式,并建立自适应网格系统下非均质油藏的控制方程的离散方法。二维非均质油藏SAGD算例和蒸汽驱算例显示,在此类油藏的模拟中,自适应网格法也能保持很高的计算精度,并且能大幅度提高计算速度。
     对于复杂断层油藏的模拟,本文提出将断层处理成渗透率极低的介质,从而将断层油藏类比于非均质油藏,对整个断层油藏划分均匀的结构化网格。对于网格系统中被断层穿过的网格,文中对其等效渗透率的处理提出按流体流通通道进行计算的方法,而不是直接将网格的等效渗透率置为极低值。对于同时被断层穿过的相邻网格,本文提出,在计算它们之间的流量时,必须考虑断层连续性的影响。对断层油藏划分结构化网格后,将自适应网格技术应用其中。自适应网格系统中网格粗化仅依据所选物理量的空间变化,不专门针对断层附近区域划分精细网格。断层区域将依据其附近物理量的变化适时地采用较粗网格计算,从而进一步提高自适应网格法程序的计算速度。对于断层区域附近各层次粗网格,采用重正化方法计算其等效渗透率。二维SAGD算例及蒸汽驱算例表明,将断层处理成渗透介质没有破坏断层本身的物理性质,而自适应网格法的引入大幅度提升了断层油藏模拟的计算速度,同时与全精细网格法相比,自适应网格法也保持了很高的计算精度。
     在对复杂边界油藏进行数值研究时,结构化网格往往难以划分。本文提出以一块较大的矩形区域覆盖整个计算区域,针对该矩形区域划分结构化网格的办法。网格结构中,位于边界外的网格并不参与计算,整个计算复杂度没有增加。为充分考虑边界的影响,本文采用界面渗透率代替网格渗透率进行数值计算的方案,对被边界穿过的界面提出渗透率的预处理方法。单相流的验证算例显示,该方案与预处理方法对于复杂边界的模拟能够取得很高的计算精度,即使在网格尺度较大的情况下,计算所得的解依然很接近收敛解。将自适应网格技术应用到复杂边界油藏的模拟中时,网格系统的粗化判据仅为所选物理量的空间变化,并不考虑网格是否位于边界。在计算过程中,计算边界附近会适时的采用粗网格,从而大幅度提高了计算速度。对于边界处的各层次粗网格,采用和精细网格同样的预处理方法计算其界面等效渗透率。二维水平井蒸汽驱算例以及SAGD算例显示,自适应网格法能保持很高计算速度,边界处适时地采用粗网格计算并不影响自适应网格法的计算精度。将文中方案与预处理方法推广到三维问题的计算,三维复杂地层地下水源热泵问题的模拟也显示出AMR计算效率与计算精度上的优势。
     综上,本文的工作是对复杂地层稠油油藏蒸汽注采数值模拟自适应网格算法及实施自适应网格算法时遇到的数学物理问题展开研究。文中的数值算例显示自适应网格算法在计算效率上有着巨大的优势,同时在计算精度上与全精细网格法非常吻合。希望自适应网格法能够对生产现场的复杂地层油藏蒸汽注采数值模拟带来帮助。
Steam injection is commonly used to recover heavy oils from petroleum reservoirs. Numerical simulation is a very difficult task, since high nonlinearity in the problem formulation may lead to very sharp thermal and saturation fronts. Because of these rapid variations of the physical quantities across the fronts, numerical grids must be fine enough to achieve reasonable accuracy. As a result, huge CPU time and memory are needed if applying a uniform fine grid to the whole calculation area. In addition, due to the complexity of the reservoir, unstructured meshes are widely used, which is bound to increase the complexity of the numerical discrete. If we use structured grids, the scale should be fine enough to satisfy the simulation accuracy of the complex region. Therefore, improving the calculation efficiency for such problems has great theoretical and practical interest, and the adaptive mesh refinement(AMR) technique is a class of strategies that address this problem.
     In this paper, we present an application of the AMR technique to the numerical simulation of steam thermal recovery processes in complex petroleum reservoirs. And several problems relevant to the AMR numerical simulations are carefully studied.
     For homogeneous reservoirs, we suggest using structured program design to write the AMR programs. We can easily check the flow-up studies and the preparation time of the numerical procedure can be substantially reduced. The numerical examples for2D and3D SAGD process shows that, the AMR technique results are fast compared with the solutions under referenced uniformly fine grids, and can give good accuracy. AMR grid structure shows that the number of fine grids of the reservoir is significantly reduced.
     For heterogeneous reservoirs, effective permeability of the coarse grids must be calculated while we apply the AMR techniques, and the renormalization method is adopted. To reduce the grid orientation effect, a nine-point, finite-difference reservoir simulator is applied to calculate the steam drive processes, and the AMR technique is also contained in the simulator.2D simulations of SAGD process and steam drive good accuracy, and the speed of the calculation is highly faster than the fine grid solutions.
     Before applying the AMR algorithm to the complex faulted reservoirs, we should divide structured grids first. Faults in reservoir are treated as porous media with ultra-low absolute permeability rather than internal boundary, and we could treat the faulted reservoirs as heterogeneous reservoirs. A simple method is given to calculate the permeability of the fine grids crossed by faults, and the permeability is calculated by the fluid flow channel rather than set very low values directly. When both grids are crossed by the same fault, we must consider the continuity of the fault while calculating the flow between the two grids. In the refinement criteria for deciding if the regridding is necessary, the local spatial variations of temperature and phase saturations are used as control values. As a result, coarse grids are applied around faults in the simulations until the steam front arrived, and the renormalization method is adopted to calculate the equivalent permeability of coarse grids in the AMR multi-level grid system.2D SAGD and steam drive examples show that treatment methods of the faults won't destroy the physical properties of the faults, and the AMR technique can still have a highly fast speed. Coarse girds used in faulted regions do not reduce the accuracy, and they are a very important part of reasons of the high calculating speed.
     When the AMR technique is applied to the numerical simulation of the steam injection process in complex boundary reservoir, there is a difficulty to divide structured grid system. A large rectangular area is used to cover the entire reservoir, and we provide structured grids to this area. The grids outside the boundary will not be involved in the calculation, so this method do not need extra memory. The permeability of grid interface is involved in the calculation instead of the grid permeability to consider the impact of the border comprehensively. Before implementing the AMR algorithm, the parameters on the fine cells on the reservoir boundary are pre-calculated, and a simple and effective pretreatment method is proposed for the grids across the impermeable layer and the porous media. Single-phase flow examples show that the computing solution of the equivalent permeability is very close to the converged solution according to the pretreatment method even the grid size is large. In the refinement criteria for deciding if the regridding is necessary, the local spatial variations of temperature and phase saturations are used as control values. As a result, the boundary area adopts the coarse grids automatically before the temperature and saturations fronts reach. The same pretreatment method is utilized to calculate the equivalent permeability of the coarse cells of different levels of AMR grids on the reservoir boundary.2D steam drive process with horizontal wells and SAGD process simulation show that the proposed AMR technique is fast with good accuracy. Adoption of the coarse grids rather than the fine grids in the boundary area, according to the AMR refinement criteria, does not reduce the accuracy of the simulations. The same method is applied to the3D simulation of groundwater heat pump system, and the AMR technique is still very successful.
     In summary, the object of this paper is to apply the AMR algorithm to the numerical simulation of steam thermal recovery process in complex petroleum reservoirs, and problems relevant to the AMR simulation are studied. The numerical results demonstrate that the AMR technique has a huge advantage in the calculation efficiency, and the accuracy is good compared with the fine grid solutions. We expect the AMR technique to have a practical help to the complex petroleum reservoir simulations in the future.
引文
郭福军,孙岩.1995.稠油油藏蒸汽吞吐年油汽比的变化规律及其预测方法[M].石油勘探与开发,22(5):54-56.
    韩大匡,陈钦雷,闫存章.1993.油藏数值模拟基础[M].北京:石油工业出版社.
    侯健,陈月明.1997.综合化的蒸汽吞吐注采参数优化设计[J].石油大学学报:自然科学版,21(3):36-39.
    胡见义.1988.重油资源的巨大潜力[J].石油勘探与开发,1:61-64.
    胡见义等.1989.中国重质油藏地质和地化特征[J].地球化学学报,15:26-30.
    胡见义,牛嘉玉.1998.中国重油和沥青砂资源[J].第七届重油及沥青砂国际会议论文集,卷一(上):23-32.
    孔祥言.1999.高等渗流力学[M].合肥:中国科学技术大学出版社.
    李平科,张侠.1996.蒸汽驱开发采收率预测新方法[J].石油勘探与开发.23(1):51-54.
    梁作利,唐清山.2000.稠油油藏蒸汽驱开发技术[J].特种油气藏,7(2):46-49.
    刘斌.1994.计算稠油油藏蒸汽吞吐阶段可采储量的方法[J].河南石油,8(1):43-45.
    刘文章.1991.稠油油田蒸汽吞吐转入蒸汽驱开采的技术策略[J].石油钻采工艺,13(4):45-50.
    罗海山.2009.裂缝性油藏稠油蒸汽注采数值模拟自适应网格法研究[博士论文].中国科学技术大学.
    罗海山,王晓宏,施安峰.2011.裂缝-孔隙油藏蒸汽辅助重力泄油过程的自适应网格数值计算[J].中国石油大学学报(自然科学版),35(1):140-145.
    陶文铨.1988.数值传热学[M].西安:西安交通大学出版社.
    陶文铨.2005.计算传热学的近代进展[M].北京:科学出版社.
    施安峰,王晓宏,贾江涛等.2012.复杂断层油藏蒸汽注采过程的自适应网格法[J].华中科学技术大学学报(自然科学版),40(3):118-122.
    王秉海,等.1993.胜利油区地质研究与勘探实践[M].东营:石油大学出版社.
    王平,李纪辅,李幼琼.1994.复杂断块油田详探与开发[M].北京:石油工业出版社.
    王威,马德胜,张鹰.1999.杜84块水平井开采数值模拟研究[J].西部探矿工程,11(1):24-27.
    王晓宏.2006.蒸汽热采稠油数值模拟的自适应网格法[J].中国工程热物理学会多相流学术 会议论文集,564-573.
    王选茹,程林松,刘双全等..2006.蒸汽辅助重力泄油渗流机理研究[J].西南石油学院学报,28(2):44-47.
    王燮培,等.1990.石油勘探构造分析[M].武汉:中国地质大学出版社。
    吴清松.2009.计算热物理引论[M].合肥:中国科学技术大学出版社.
    吴向红,叶继根,马远乐..2002.水平井蒸汽辅助重力驱油藏模拟方法[J].计算物理,19(11):549-552.
    徐明海.2001.非结构化网格的生成及其在多孔介质相变传热数值模拟中的应用[博士论文].西安交通大学.
    徐明海,王秋旺,陶文铨.2000.用于传热与流动计算的一种三角化部分新方法[J].清华大学学报(自然科学版),40(12):90-93.
    杨立强,陈月明,王宏远,田利.2007.超稠油直井-水平井组合蒸汽辅助重力泄油物理和数值模拟[J].中国石油大学学报,31(4):64-69.
    岳清山,赵洪岩.1997.蒸汽驱最优方案设计新方法[J].特种油气藏,4(4):19-23.
    张方礼,张丽萍等.2007.蒸汽辅助重力泄油技术在超稠油开发中的应用[J].特种油气藏,14(2):70-72.
    张义堂等.2006.热力采油提高采收率技术[M].北京:石油工业出版社.
    张锐.1999.稠油热采技术[M].北京:石油工业出版社.
    朱志宏,武俊学,1997.克拉玛依油田九7,九8区超稠油水平井蒸汽辅助重力泄油物理模拟研究[J].新疆石油科技,7(4)17-27.
    Aziz K.1993. Reservoir simulation grids:opportunities and problems[J]. SPE Pap25233,12th SPE symposium on reservoir simulation Held in New Orleans.
    Aziz K, Ramesh AB, Woo PT.1987. Fourth SPE comparative solution project:comparison of steam injection simulators[J]. Journal of Petroleum Technology 39(12):1576-1584.
    Aziz K, Settari A.1979. Petroleum Reservoir Simulation [M], Applied Science Publishers Ltd., London.
    Baliga R, Patankar S V.1980. A new finite element formulation for convection-diffusion problems[J]. Numerical Heat Transfer,3:393-409.
    Bastian P, Helmig R.1999. Efficient fully-coupled solution techniques for two phase flow in porous media. Parallel multigrid solution and large scale computations[J]. Adv. Water Resour., 23:199-216.
    Begg SH, King PR.1985. Modelling the effects of shales on reservoir performance:calculation of effective vertical permeability[J]. Soc Pet Eng Tech Paper 13529.
    Berger MJ, Colella P.1989. Local adaptive mesh refinement for shock hydrodynamics [J]. J. Comput. Phys.,82:64-84.
    Berger MJ, Oliger J.1984. Adaptive mesh refinement for hyperbolic partial differential equations[J]. J. Comput. Phys.,53:484-512.
    Brandt A.1977. Multi-level adaptive solution to boundary-value problems[J]. Math. Comput.31: 333-396.
    Butler RM.1991. Thermal Recovery of Oil and Bitumem[M]. Prentice Hall, Englewood Cliffs, N.J.
    Butler RM.1994. Steam-assister gravity drainage:concept, development, performance and future [J]. Journal of Canadian Petroleum Technology,33(2):44-50.
    Butler RM, McNab G.S, Lo HY.1981. Theoretical studies on the gravity drainage of heavy oil during in-situ steam heating[J], Canadian J. of Chem. Engineering,59:455-460.
    Butler RM, Stephens DJ.1981. The gravity drainage of steam heated to parallel horizontal wells[J]. JCPT, April-June:90-96.
    Chow L, Butler RM.1996. Numerical Simulation of the Steam-assisted Gravity Drainage Process (SAGD)[J]. JCPT,35:55-62.
    Coats KH, Modine AD.1983. A consistent method for calculating transmissibilities in nine-point difference equations[J]. SPE12248
    Coats KH, George WD, Marcum BE.1974. Three-dimensional simulation of steamflooding[J]. Trans. SPE of AIME,257:573-592.
    Dagan G..1989. Flow and Transport in Porous Formations[M]. Springer-Verlag, New York.
    Dendy JE, McCormick SF, Ruge JW, Russell TF, Schaffer S.1989. Multigrid methods for three-dimensional petroleum reservoir simulation[J], SPE 18409.
    Deutsh C, Journel A.1992. GSLIB:Geostatistical Software Library and User's Guide[M]. Oxford University Press, New York.
    Durlofsky LJ.1991. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[J]. Water Resources Research,27:699-708.
    Edwards M G, Rogers C F.1994. A flux continuous scheme for the full tensor pressure equations[J]. Proceedings of 4th European conference on the Mathematics of Oil Recovery, Roros.
    Edwards MG, Rogers CF.1998. Finite volume discretization with imposed flux continuity for the general tensor pressure equation[J]. Comput. Geo., no.2:259-290.
    Falta RW, Pruess K, Javandel I, Witherspoon PA.1992. Numerical Modeling of Steam Injection for the Removal of Nonaqueous Phase Liquids From the Subsurface 1. Numerical Formulation[J]. Water Resour. Res.,28(2),433-449.
    Forsyth PA.1990. A control-volume finite-element method for local mesh refinement in thermal reservoir simulation[J]. SPE Reservoir Engineering,9:561-566.
    Friedel H, Grauer R, Marliani C.1997. Adaptive mesh refinement for singular current sheets in incompressible magnetohydrodynamic flows[J]. J. Comput. Phys.,134:190-198.
    Fulton SR.1997. A Comparison of Multilevel Adaptive Methods for Hurricane Track Prediction[J]. Electronic Trans, on Numer. Anal.,6:120-132.
    Fung L S K, Buchanan L, Sharma R.1994. Hybrid-CVFE method for flexible-grid reservoir simulation[J]. SPE Reservoir Engineering,13:188-194.
    Fung L S K, Hiebert A D.1992. Reservoir simulation with acontrol-volume finite-element method. SPE Reservoir Engineering,11:349-357.
    Gautier Y, Noetinger B.1997. Preferential Flow-Paths Detection for Heterogeneous Reservoirs Using a New Renormalization Technique[J], Trans. Porous Media,26:1-23.
    Gerritsen M, Kovscek A, Castanier L, Nilsson J, Younis R, He B.2004. Experimental Investigation and High Resolution Simulator of in-situ Combustion Processes:1. Simulator Design and Improved Combustion with Metallic Additives [J], SPE 86962.
    George PL, Serone E.1994. The advancing-front mesh generation method revisited[J]. Int J Num Methods Eng,37:3605-3619.
    Haldenwang P, Pignol D.2002. Dynamically adapted mesh refinement for combustion front tracking [J]. Computers and Fluids,31:589-606.
    Heinrichs B.1987. Finite difference methods on irregular networks[M]. Brikhauser Verlag.
    Hodge JK, Leone SA, McCarty RL.1987. Noniterative parabolic grid generation for parabolized equations[J]. AIAA J,25(4):542-549.
    Hornung RD, Trangenstein JA.1997. Adaptive mesh refinement and multilevel iteration for flow in porous media [J]. J. Comput. Phys.,136:522-545.
    Hou TY, Wu XH.1997. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media [J], J. Comput Phys.,134:169-189.
    Howell LH, Pember RB, Colella P.1999. A Conservative Adaptive-Mesh Algorithm for Unsteady, Combined-Mode Heat Transfer Using the Discrete Ordinates Method[J], Numer. Heat Transfer B,35:407-433.
    Isea A.1987. Geological Synthesis of the Orinoco oil belt[J]. Eastern Venezuela Journal of Petroleum Geology,10:135-148.
    Jasak H, Gosman AD.2000. Automatic Resolution Control for the Finite-Volume Method, Part 3: Turbulent Flow Applications [J], Numer. Heat Transfer B,38:273-290.
    King PR.1989. The Use of Renormalization for Calculating Effective Permeability [J], Trans. Porous Media,4:37-58.
    Le Loc'h G.1987.Etude de la composition des permeabilites par des methodes variationnelles[D]. PhD Thesis, Paris School of Mines.
    Luo HS, Wang XH, Quintard M.2008. Adaptive Mesh Refinement for One Dimensional Three-Phase Flows in Heterogeneous Fractured Porous Media[J]. Numerical Heat Transfer B, Fundamentals,54(6):476-498.
    Luo HS, Wang XH.2009. Oil Displacement for One-Dimensional Three-Phase Flow with Phase Change in Fractured Media[J]. Transport in Porous Media, DOI 10.1007/s11242-008-9325-6.
    Luo HS, Wang XH, Shi AF.2009. The AMR Technique For SAGD Process in Highly Heterogenous Fractured Reservoirs[C]. Proceedings of 6th ICCHMT, May 18-21, Guangzhou, CHINA.
    Lo SH.1985. A new mesh generation scheme for arbitary planar domains[J]. Int J Num Methods Eng,21:1403-1426.
    Lohner R, Parikh P.1988. Generation of three-dimensional unstructured grids by the advancing front method[J]. Int J Numer Methods Fluids,8:1135-1149.
    Mandl G, Volek CW.1967. Heat and mass transport in steam-drive processes[C].42. annual SPE of AIME fall meeting, Houston, TX, USA,1 Oct.
    Myhill NA, Stegemeier GL.1975. Steam drive correlation and prediction[C]. SPE-5572,50. annual fall meeting and exhibition, Dallas, TX, USA,28 Sep.
    Nilsson J, Gerritsen M, Younis R.2005. Towards An Adaptive, High-Resolution Simulator for Steam Injection Processes[J], SPE 93881.
    Noetinger B, Estebenet T, Landereau P.2000. Up-scaling of double porosity fractured media using continuous-time random walks methods[J]. Transport Porous Media.39:315-337.
    Oballa V, Coombe DA, Buchanan WL.1993. Factors affecting the thermal response of naturally fractured reservoirs[J]. The Journal of Canadian Petroleum Technology 32(8):1-42.
    Palagi C L.1992. Generation and application of Voronoi grids to model flow in Heterogeneous reservoirs[Ph.D.]. Stanford University.
    Palagi C L, Aziz K.1991. Use of Voronoi grids in reservoir simulation[J]. SPE Pap.22889.
    Parikh P, Pirzadeh S, Lohner R.1990. A package for 3D unstructured grid generation, finite-element flow solution and flow field visualization. NASA Contract Report 182090.
    Parker M, Williams B.1986. Industry steps up development of heavy oil. Bitumen Reserves Oil & Gas Journal,6:41-47.
    Peaceman DW.1982. Interpretation of Well-Block Pressures in Numerical Reservoir Simulation With Nonsquare Grid Blocks and Anisotropic Permeability[J], SPE 10528.
    Pember RB, Bell JB, Colella P.1995. An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions[J], J. Comput. Phys.,120:278-304.
    Peraire J, Vahdati M, Morgan K, etal.1987. Adaptive remeshing for compressible flow[J]. J Comput Phys,72:449-466.
    Pirzadeh S.1993. Structured background grids for generation of unstructured grids by advancing-front method[J]. AIAA J,31(2):257-265.
    Prouvost L, Quintard M.1990. Stability criteria for the design of graded polymer buffers[J]. Journal of Petroleum Science and Engineering,3(4):333-343.
    Quintard M, Whitaker S.1987. Ecoulements monophasiques en milieu poreux:effet des heterogeneites locales[J], J. Meca. Theo. Appl.,6:691-726.
    Quintard M, Whitaker S.1993. One-and two-equation models for transient diffusion processes in two-phase systems[J]. Advances Heat Transfer 23:369-464.
    Quintard M, Whitaker S.1994. Convection, dispersion, and interfacial transport of contaminants: Homogeneous media[J], Advances in Water Resources 17:221-239.
    Quintard M, Whitaker S.1996. Transport in Chemically and Mechanically Heterogeneous Porous Media I:Theoretical Development of Region Averaged Equations for Slightly Compressible Single-Phase Flow[J], Advances in Water Resources,19(1),:29-47.
    Reis JC.1990. Studies of Fractures Induced During Cyclic Steam Injection[C]. paper SPE 20033 presented at the 1990 California Regional Meeting, Ventura, CA, April 4-6.
    Reis JC.1990. Oil recovery mechanisms in fractured reservoirs during steam injection[C]. Paper presented at the SPE/DOE symposium on enhanced oil recovery, Tulsa, OK,22-25 April.
    Renard P, de Marsily G.1997. Calculating the Equivalent Permeability:A Review[J]. Advances in Water Resources,20:253-278.
    Sanchez-Palencia E.1980. Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics,127, Berlin:Springer-Verlap.
    Sandler SI.1977. Chemical and Engineering Thermodynamics[M]. John Wiley and Sons.
    Sarkar AK, Sarathi PS.1993. Thermal processes for heavy oil recovery[R]. DOI. 10.2172/10108843.
    Shi AF, Jia JT, Wang XH, Luo HS.2009. Adaptive mesh refinement for 2D and 3D numerical simulations of steam-assisted gravity drainage process[C]. Proceeding of International Conference on Computational Heat and Mass Transfer, Guangzhou, China, May 18-21.
    Sparis PD.1985. A method foe generating boundary-orthogonal curvilinear coordinate systems using the biharmonic equation[J]. J Comput Phys,61:445-462.
    Steger JL, Chaussee DS.1980. Generation of body-fitted coordinates using hyperbolic partial differential equations[J]. SIAM J Sci Stat Comp,1(4):431-437.
    Steger JL, Sorensen RL.1979. Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations[J]. J Comput Phys,33:405-410.
    Thomas PD, Middlecoff JF.1980. Direct control of the grid point distribution in meshes generated by elliptic equations[J]. AIAA J,18:652-656.
    Thompson JF, Thames FC, Mastin CW.1974. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two dimensional bodies[J]. J Comput Phys,15:299-319.
    Trangenstein JA.2002. Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media[J]. Adv. in Water Resources,25:1175-1213.
    Trangenstein JA, Bi Z.2002. Multi-scale iterative techniques and adaptive mesh refinement for Miscible Displacement Simulation [J]. SPE,75232.
    Udell KS.1983. Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects[J], Journal of Heat Transfer 105:485-492.
    Venuturumilli R, Chen LD.2004. Numerical Simulation Using Adaptive Mesh Refinement for Laminar Jet Diffusion Flames[J]. Numer. Heat Transfer B,46:101-120.
    Verma S.1997. A Control Volume for flexible grids in reservoir simulation[J]. SPE Pap.37999.
    Verma S.1995. A flexible gridding scheme in reservoir simulation[J]. SPE Int Student Paper,657-672.
    Wagner C, Kinzelbach W, Wittum G.1997. Schur-complement multigrid:A robust method for groundwater flow and transport problems[J]. Numer. Math.,75:523-545.
    Wang XH, Quintard M, Darche G.2006. Adaptive mesh refinement for one-dimensional three-phase flow with phase change in porous media[J]. Numerical Heat Transfer B,50:231-268.
    Wu B, Luo HS, Wang XH, Shi AF.2009. Renormalization methods for Calculating Three-dimensional Effective Permeability[C]. Proceedings of 4th ICAPM, Aug 10-12, Istanbul, TURKEY.
    Yanosik JL, McCraken TA.1976. A nine-point, finite-difference reservoir simulator for realistic prediction of adverse mobility ratio displacements [J]. SPE 5734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700