用户名: 密码: 验证码:
一维有序纳米结构的设计合成及其光电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米结构材料由于其在纳米器件中的潜在应用,引起了人们广泛的研究兴趣。而一维纳米材料的可控制备是其应用于纳米器件的前提和基础,所以探索研究一种对一维纳米材料的成核、形貌、排列、成分的可控制备方法具有重要的现实意义。围绕着一维纳米材料的设计合成及其应用,本文开展了一系列的研究工作,主要包括以下几个方面:
     (1)通过简单的热蒸发GeO2和C混合粉末的方法,以双相(α+β)黄铜为衬底制备了图形分布的Zn_2GeO_4包裹ZnO纳米线阵列。微观分析揭示,一维纳米结构产物通过自催化生长机制在α相表面选择性定位生长,最终合成产物的分布完全遗传了α相在双相黄铜表面的金相分布。提供了一种根据合金基底的金相分布图形,来控制一维纳米材料的生长位置、合成具有图形分布纳米阵列的方法。
     (2)通过热蒸发Ge粉,以Cu-Zn(41wt%Zn)合金为衬底,制备了链球状GeO2/Zn_2GeO_4核壳异质结构。合金不仅作为衬底收集产物,而且其在一定温度下发生的脱锌过程可以为纳米产物的合成提供锌源。发现了以“X”型和“Y”型连接在一起的纳米链网络结构,同时给出了链球状GeO2/Zn_2GeO_4核壳异质结构的生长机理。
     (3)直接对Cu-Zn(41wt%Zn)合金进行加热处理,通过调节热处理温度,控制ZnO纳米结构产物的形貌,成功制备出ZnO微米片、纳米梳、纳米带、纳米棒。在实验过程中,Cu-Zn合金既用来作为衬底收集产物,同时又利用脱锌现象为产物的合成提供锌源。
     (4)通过热蒸发In_2O_3和C混合粉末,以Cu_(95)Sn_5合金作为基底,利用合金表面三叉晶界处缺陷多、能量高的特点,使其受热优先融化并析出合金液滴,利用VLS方式控制生长一维In_2O_3纳米结构。合金基底既起到收集产物的作用,又参与了纳米结构的形核‐生长过程。本方法基于VLS生长机制,通过金属催化剂的定位形成,来实现对一维纳米结构的定位控制生长。
     (5)利用碳热还原法,在Cu_(95)Sn_5合金基底上直接生长叶状Ga掺杂In_2O_3纳米产物。Cu_(95)Sn_5合金基底受热后,晶界发生融化过程,析出的催化剂颗粒通过VLS机制控制生长一维纳米线,同时纳米带在纳米线的两侧同质外延生长,最终在Cu_(95)Sn_5合金基底的晶界处定位生长出形貌类似玉米叶的纳米结构产物。同时合成产物与导电基底具有良好的物理接触性能,有利于产物的器件应用。
     (6)通过简单的水热法,直接在氟掺杂SnO_2(SnO_2: F, FTO)基底表面生长了由一维纳米棒组成的花状ZnO纳米结构。以不同溶液浓度所合成的花状ZnO纳米结构作为光阳极,制备了“三明治”型染料敏化太阳能电池。发现随着ZnO制备溶液浓度的增加,电池短路电流密度急剧减小,而浓度的变化对开路电压和填充因子的影响较小。制备器件中获得的最大短路电流JSC和光电转化效率分别为1.33mAcm~(-2)和0.3%。
     (7)通过简单的水热法,在涂覆种子层的FTO基底表面成功制备出一维ZnO纳米线阵列。研究发现:提高合成溶液浓度,纳米线的直径增加,而纳米线的密度没有发生明显的变化;定时更换新鲜合成溶液可以增加纳米线的长度,提高产物的长径比;增加种子层的涂覆次数,提高种子层颗粒厚度可以增强纳米线阵列与基底接触的牢固性。以不同溶液浓度所合成的ZnO纳米线阵列作为光阳极,制备了“三明治”型染料敏化太阳能电池。相对于花状ZnO纳米结构制备的DSSCs,一维有序ZnO纳米线阵列制备的电池在短路电流密度有显著的提升,而随着制备ZnO纳米线阵列溶液浓度的增加,短路电流密度逐渐减小。以0.05M的生长溶液,经过三次生长、长度为6μm的纳米线阵列作为光阳极获得的短路电流密度和转化效率最大,约为3.44mA/cm2和1.03%。
     (8)通过简单的水热法,利用三聚磷酸钠作为表面改良介质,设计合成纳米线阵列/六角形纳米颗粒的复合结构ZnO阳极材料。在预制备的ZnO阵列顶端沿c轴方向上非共轴地堆叠着大量的六角形ZnO纳米颗粒,形成了空间多孔网络结构。ZnO纳米颗粒可以提高光阳极的散射能力,使入射光在光阳极薄膜内发生多次反射,增加染料分子在可见光范围内的光利用率,从而提高染料电池的短路电流密度。以ZnO纳米线/纳米颗粒复合结构组装的电池短路电流密度为3.35mA/cm2,开路电压为0.66V,填充因子为56%,计算所得的电池总的转换效率为1.24%。
     (9)通过两步水热法,成功制备出ZnO/ZnS核壳异质结构纳米线阵列。研究发现ZnS包覆ZnO纳米线后,不仅提高了光阳极的表面粗糙度,增加了染料吸附量,而且降低了晶体氧空位密度,减少了电子与氧空位复合。此外,ZnS外壳使ZnO与电解质之间和ZnO与染料分子之间产生有效的物理分离,避免了直接接触,从而阻止了ZnO半导体导带电子与电解质或与染料分子的复合,抑制了暗电流的产生,有益于短路电流密度的提高,显著地提高了电池的光电转化效率。以ZnO/ZnS核壳异质结构纳米线阵列组装的电池中,获得的最大短路电流密度为8.38mA/cm2,计算所得的电池总的转换效率为1.92%。
Recently, one-dimensional (1D) nanostructures have aroused intensive research interest due totheir potential application in nanodevices. Therefore, it has important theoretical and practicalsignificance to achieve design synthesis of1D nanomaterials with controlled nucleating sites,morphologies, arrangement, components, which is foundation and prerequisite for the applications of1D nanomaterials. In this dissertation, a series of significances have been obtained on the designsynthesis of1D nanomaterials and relative application, which can be summarized as following:
     (1) Based on the natural patterns of phase texture distribution of (α+β) biphase brass substrate,the patterned quasi-aligned Zn_2GeO_4-coated ZnO nanowires were synthesized by one-step thermalevaporation of the mixture powders of GeO2and C. It is observed that following the self-catalyzedeffect of the Zn clusters, aligned Zn_2GeO_4-coated ZnO nanowires grow site-selectively on thesurface of island-shaped α phase and form novel patterns which inherit the distribution of α phase onthe substrate. According to the pattern and feature of phase texture distribution of the alloy substrate,we can synthesize the patterned nanowires arrays with controlled location and distribution in a moreeffective way.
     (2) Bulk-quantity of chain-like GeO2/Zn_2GeO_4core/shell heterostructures have been achievedon the Cu-Zn(41wt%Zn) substrate by a thermal evaporation of Ge powder. The Cu-Zn alloysubstrate can also provide Zn vapor for the synthesis of Zinc compounds through dezincificationprocess. Nanochain networks with “X” and “Y” type junctions have been prepared and the growthmechanism for the chain-like GeO2/Zn_2GeO_4core/shell heterostructures is discussed.
     (3) A convenient method for the direct and large-area synthesis of1D ZnO nanostructures on aconductive brass substrate has been developed, consisting of thermal oxidation of a Cu59Zn41alloyfoil. Various1D nanostructures such as microsheets, nanocombs, nanobelts, and nanorods have beenin situ grown on the alloy substrates under different annealing temperatures. In this preparation, theCu59Zn41alloy foil functions as both substrate and Zn source for the growth of1D ZnOnanostructures.
     (4) In_2O_3nanorod arrays have been successfully synthesized on the Cu–Sn (5at%Sn) alloysubstrate by one-step thermal evaporation of the mixture powders of In_2O_3and C. The site-specificgrowth of In_2O_3nanorod arrays is realized by annealing Cu–Sn alloy lightly below the solidus line,where grain-boundary triple junctions can be wetted preferentially. As a result, the catalyzing alloydroplets will be present at the sites of grain-boundary triple junctions, which will control the growthof In_2O_3nanorods at defined locations by the vapor–liquid–solid growth mechanism. This growthtechnique provides a cost-effective and simple approach to fabricate ordered nanorod arrays with the sites controlled, which may benefit nanorod device applications.
     (5) The novel structured Ga-doped In_2O_3nanoleaves are synthesized by a simple one-stepcarbonthermal evaporation method using Cu–Sn alloy as the substrates. Two basic parts constructthis leaf-like nanostructure: a long central trunk and two tapered nanoribbons in symmetricdistribution in relation to the trunk. The Cu-Ga–In alloy particles are located at or close to the tips ofthe central trunks and serve as catalysts for the central trunk growth by the vapor–liquid–solidmechanism. And the homoepitaxial growth of tapered nanoribbon on the surface of the central trunkcan be explained by vapor–solid mechanism. The naturally good adhesion or electrical connectionbetween the nanoleaves and conductive substrate has been realized.
     (6) The flower-like ZnO nanorods clusters have been prepared via simple hydrothermal methodunder low temperature. The as-prepared products with different solution concentrations are used aslight anodes for dye-sensitized solar cells (DSSCs) to form a “sandwich” DSSCs devices. The resultsshow that as solution concentrations increased, the short-circuit current density (JSC) decreases,while, no significant change in open circuit voltage (VOC) and fill factor (FF). For the flower-likeZnO nanorods, the JSCand overall power conversion efficiency (η) can reach a maximum of1.33mAcm~(-2)and0.3%, respectively.
     (7) The well-aligned ZnO nanowires have been successfully synthesized via a low-temperaturehydrothermal route on glass substrates pre-deposited with ZnO seeding layer. The results show thatthe increasing the solution concentration results in the formation of nanowires with lager diameters,while, has a less influence on the packing density of the products. The length and aspect ratio can beincreased by introducing the fresh solution bath. And the nanowires are found to be tightlyphysically and mechanically joined with the substrate pre-deposited with thick ZnO seeding layer.The as-prepared products with different solution concentrations are used as light anodes fordye-sensitized solar cells (DSSCs) to form a “sandwich” DSSCs devices. As solution concentrationsincreased, the short-circuit current density (JSC) decrease. For the ZnO nanowire arrays, the JSCand ηcan reach a maximum of3.44mAcm~(-2)and1.03%. The performances of the solar cells and itsadvantage base on the aligned nanowires as anode compared with flower-like ZnO nanorods arediscussed.
     (8) Using sodium tripolyphosphate (STTP) as the surfactant, the multistacked nanoplatescapped on the pre-synthesized ZnO naowire arrays are obtained. The results show that themultistacked nanoplates not only increase dye loading but also function as scattering particles toincrease light harvesting efficiency of the solar cell. The test of photoelectric conversioncharacteristics of the cell fabricated by ZnO nanowire/nanoplate composite film shows that its JSCis3.35mA/cm2, VOCis0.66V, FF is56%and η is1.24%.
     (9) Heterostructured ZnO/ZnS core/shell nanowire arrays are successfully fabricated to serve asphotoanode for the dye-sensitized solar cells (DSSCs) by a facile two-step approach,combininghydrothermal deposition and liquid-phase chemical conversion process. The results show that thecompact ZnS shell can effectively promote the photogenerated electrons transfer from the exciteddye molecules to the conduction band of the ZnO, simultaneously suppress the recombination for theinjected elelctrons from the dye and the redox electrolyte. As reaction time goes by, the surface ofthe nanowires becomes coarse due to the new formed ZnS nanoparticles, which will enhance the dyeloading, resulting in increment of the JSC. For the ZnO/ZnS core/shell nanostructures, the JSCand ηcan reach a maximum of8.38mA/cm2and1.92%after6h conversion time, corresponding to12-fold and16-fold increment of as-synthesized ZnO, respectively.
引文
[1]张立德,牟季美著,纳米材料和纳米结构,科学出版社(2001).
    [2]林志东主编,纳米材料基础与应用,北京大学出版社(2010).
    [3]卫英慧主编纳米材料概论,化学工业出版社(2009).
    [4]徐志军初瑞清编著,纳米材料与纳米技术,化学工业出版社(2010).
    [5]陈翌庆,石瑛编著,纳米材料学基础,中南大学出版社(2009).
    [6]M. Gratzel, J. Photoch. Photobio. C,4,(2003),145.
    [7] L. E. Brus, J.Phys. Chem.,89,(1986),2555.
    [8] R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys.,79,(1983),1086.
    [9] W. P. Halperin, Rev. Mod. Phys.,58,(1986),532.
    [10] S. Iijima,Nature,354,(1991),56.
    [11] Y. N. Xia, P. D. Yang, Y. G. Sun, Adv. Mater.15,(2003),353.
    [12] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science291,(2001),1947.
    [13] X. D. Wang, C. J. Summers, Z. L. Wang, Nano Lett.3,(2004),423.
    [14] X. Y. Kong, Y. Ding, R. Yang, Z. L.Wang, Science303,(2004),1348.
    [15] W. L. Hughes, Z. L.Wang, J. Am. Chem. Soc.126,(2004),6703.
    [16] A. Mao, H. T. Ng, P. Nguyen, M. McNeil, M. Meyyappan, J. Nanosci. Nanotechnol.5,(2005),831.
    [17] P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, Z. L. Wang, Science,309,(2005),1700.
    [18] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett.,4,(1964),89.
    [19] Z. W. Pan, S. Dai, C. M. Rouleau, D. H. Lowndes, Angew. Chem. Int. Ed.,44,(2005),274.
    [20] A. Umar, B. K. Kim, J. J. Kim, Y. B. Hahn, Nanotechnology,18,(2007),175606.
    [21] Z. G. Yin, N. F. Chen, R. X. Dai, L. Liu, X. W. Zhang, X. H. Wang, J. L. Wu, C. L. Chai, J.Cryst. Growth,305,(2007),296.
    [22] Y. Q. Li, K. Zou, Y. Y. Shan, J. A. Zapien, S. T. Lee, J. Phys. Chem. B,110,(2006),6759.
    [23] T. J. Sun, J. S. Qiu, C. H. Liang, J. Phys. Chem. C,112,(2008),715.
    [24]L. Xu, Y. Su, D. Cai, Y. Q. Chen, Y. Feng, Mater. Lett.,60,(2006),1420.
    [25] H. J. Chun, Y. S. Choi, S. Y. Bae, J. Park, Appl. Phys. A,81,(2005),539.
    [26]Y. Q. Chen, X. F. Cui, K. Zhang, D. Pan, S. Y. Zhang, B. Wang, J. G. Hou, Chem. Phys. Lett.,369,(2003),16.
    [27]苏勇,一维金属氧化物纳米材料的气相合成与光性能研究,合肥工业大学博士论文(2011).
    [28]张新华,ZnS、ZnO、TiO2微纳结构设计合成与光致发光、光电转换性能的研究,合肥工业大学博士论文(2011).
    [29]王玲玲,ZnO纳米材料的水热/溶剂热合成与物性研究,东北师范大学博士论文(2010).
    [30]刘奕,低维无机纳米材料的液相控制,中国科技大学博士论文(2006).
    [31]T. R. Zhang, W. J. Dong, M. K. Brewer, S. Konar, R. N. Njabon, Z. R. Tian, J. Am. Chem. Soc.,128,(2006),10960.
    [32] J. L. Fu, D. Q. Gao, Y. Xu, Z. J. Yan, D. S. Xue, Chem. Mater.20,(2008),2016.
    [33]张跃,著,一维氧化锌纳米材料,科学出版社(2010).
    [34]彭英才,于威编著,纳米太阳电池技术,化学工业出版社(2010).
    [35] B. O'Regan, M. Gr tzel, Nature,353,(1991),737.
    [36] A. Hagfeldt, M. Gr tzel, Chem. Rev,95,(1995),49.
    [37]陈尧,染料敏化太阳能电池阳极的制备与性能研究,华中科技大学硕士论文(2008).
    [38]李胜军,染料敏化太阳能电池新型TiO2薄膜电极的制备及性能,哈尔滨工程大学博士论文(2008)
    [38] F. Pichot, B. A. Gregg, J. Phys. Chem. B104,(2000),6.
    [39]武丽慧,染料敏化太阳能电池光阳极的制备及其性能研究,兰州大学硕士论文(2008).
    [40]杨宏训,吴季怀,黄妙良等,太阳能报,25,(2007),355.
    [41]M. Gratzel, Nature,414,(2001),338.
    [42]梁勇,王晓东,材料导报,23,(2009),115.
    [43]盛显良,刘娜仁,翟锦,安丽平,化学进展,21,(2009),1969.
    [44] Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, Cent. Eur. J. Chem.,4,(2006),476.
    [45] K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki, Cent. Eur. J. Chem.,5,(2006),605.
    [46] D. Kim, A. Ghicov, P. Schmuki, J. Am. Chem. Soc.,130,(1993),16454.
    [47]J. H. Yoon, S. R. Jang, K. J. Kim, J. Photochem. Photobio. A: Chem.,180,(2006),184.
    [48]赵旺,魏爱香,刘俊,葛增娴,刘传标,可再生能源,29,(2011),115.
    [49]K. zhang, W. Zhang, T. Y. Peng, J. N. Chen, F. Yang, J. Phys. Chem. C115,(2011),17213.
    [50]Z. J. Zhou, J. Q. Fan, X. Wang, W. H. Zhou, Z. L. Du, S. X. Wu,3, ACS Appl Mater Interfaces.,(2011),4349.
    [51]M. Law, L. E. Greene, P. D. Yang, Nat. Mater.,4(2005),455.
    [52]C. K. Xu, P. H. Shin, L. L. Cao, J. M. Wu, D. Gao, Chem. Mater.22,(2010),143.
    [53]S. H. Kang, J. Y. Kim, Y. Kim, H. S. Kim, Y. E. Sung, J. Phys. Chem. C111,(2007),9614.
    [54]K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, C. A. Grimes,Nanotechnology,18,(2007),65707.
    [55] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Letters.6,(2006),215.
    [56]J. B. Han, F. R. Fan, C. Xu, S. S. Lin, M. Wei, D. Xue, Z. L. Wang, Nanotechnology,21,(2010),405203.
    [57]A. B. F. Martinson, M. S. Goes, F. Fabregate-Santiago, J. Bisquert, M. J. Pelin, J. T. Hupp, J.Phys. Chem. A113,(2009),4015.
    [58]T. B. Guo, Y. Q. Chen, L. Z. Liu, Y. F. Cheng, X. H. Zhang, Q. Li, M. Q. Wei, B. J. Ma, J. PowerSources,201,(2012),408.
    [59]M. L. Wang, C. G. Huang, Y. G. Cao, Q. J. Yu, Z. H. Deng, Y. Liu, Z. Huang, J. Q. Huang, Q. F.Huang, W. Guo, J. K. Liang, J. Phys. D: Appl. Phys,42,(2009),155104.
    [60]Y. Medina-Gonzalez, W. Z. Xu, B. Chen, N. Farhanghi, P. A. Charpentier, Nanotechnology,22,(2011),065603.
    [61]M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. D. Yang, J. Phys. Chem. B,110,(2006),22652.
    [62]J. F. Qi, X. N. Dang, P. T. Hammond, A. M. Belcher, ACS Nano,5,(2011),7108.
    [62]C. Rochford, Z. Z. Li, J. Baca, J. W. Liu, J. Li, J. Wu, Appl. Phys. Lett.,97,(2010),43102.
    [63]H. W. Wang, C. F. Ting, M. K. Huang, C. H. Chiou, Y. L. Liu, Z. W. Liu, K. R. Ratinac, S. P.Ringer, Nanotechnology,20,(2009),055601.
    [64] J. L. Fu, D. Q. Gao, Y. Xu, Z. J. Yan, D. S. Xue, Chem. Mater.20,(2008),2016.
    [65]赵旺,基于复合光阳极的染料敏化太阳能电池的研究,广东工业大学硕士论文(2011).
    [1] Z.J. Li, Z. F. Hu, F. J. Liu, et al., Mater. Lett.,65,(2011),809.
    [2] J.P. Biethan, L. Considine, D. Pavlidis, J. Electronic Mater.,40,(2011),453.
    [3] S. K. Mohanta, D. C. Kim, B. H. Kong, et al. Science Adv. Mater.,23,(2010),64.
    [4] S Fundling, U. Sokmen, A Behrends, et al., Phys. Status. Solid B-basic solid state phys.,247,(2010),2351.
    [5] P. Hyoungwon; B. Kyeong-Jae; Y. Ki-Yeon, et al., Nanotechnology,9,(2010),355304.
    [6]] X. D. Wang, C. J. Summers, Z. L. Wang, Nano Lett.4,(2004),423.
    [7] Y. Huang, Z. L. Wang, Q. Wang, C. Z. Gu, C. C. Tang, J. Phys. Chem. C,113,(2009),1980-1983.
    [8] C. Jia, X. H. Zhang, Y. Q. Chen, Y. Su, Q. T. Zhou, M. J. Xin, Y. S. Lv, W. H. Kong, Appl. Surf.Sci.,254,(2008),2331-2335.
    [9] R. Karpagavalli, R. Balasubramaniam, Corros. Sci.49(2007)963.
    [10]陈翌庆,石瑛,纳米材料学基础,中南大学出版社(2009).
    [11]周庆涛,半导体纳米线及其阵列可控生长和物性研究,合肥工业大学博士论文(2008).
    [12]张新华,ZnS、ZnO、TiO2微纳结构设计合成与光致发光、光电转换性能研究,合肥工业大学博士论文(2011).
    [13] Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, J. A. Zapien, and S. T. Lee, Adv. Mater.,18,(2006),1527.
    [14]郭太波,陈翌庆,张新华,刘利柱,材料研究学报,25,(2011),7-12.
    [15] Z. Q. Wang, X. D. Liu, J. F. Gong, H. B. Huang, S. L. Gu and S. G. Yang, Crystal Growth andDesign,8,(2008),3911-3913.
    [16] Y. Liang, H. Y. Xu and S. K. Hark, J. Phys. Chem. C,114,(2010),8343-8347.
    [17] X. H. Han, G. Z. Wang, J. S. Jie, W. C. H. Choy, Y. Luo, T. I. Yuk, J. G. Hou, J. Phys. Chem. B,109,(2005),2733.
    [18] G. Z. Shen, Y. Bando, B. D. Liu, D. Golberg, C. J. Lee, Adv. Funct. Mater.,16,(2006),410.
    [19] M. Cardona, M. Weinstein, G. A. Wolff, Phys. Rev.140,(1965), A633.
    [20] Monemar B. Phys. Rev. B10(1974)676.
    [21] Xu, S. J.; Li, G.; Chua, S. J.; Wang, X. C.; Wang, W. Appl. Phys. Lett.72,(1998),2451.
    [22] Brown, S. A.; Reeves, R. J.; Haase, C. S.; Cheung, R.; Kirchner, C.; Kamp, M. Appl. Phys. Lett.75,(1999),3285.
    [23] Reshchikov, M. A.; Morko, H. J. Appl. Phys97,(2005),061301.
    [24] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science,300,(2003),1249.
    [25] Qiu, H. L.; Cao, C. B.; Xiang, X.; Zhang, Y. H.; Li, J.; Zhu, H. S. J. Cryst. Growth,290,(2006),1.
    [26] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc.,113,(1991),2826.
    [27] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, Adv. Mater.13,(2001),113.
    [28] K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg and L.Samuelson, Nat. Mater.3,(2004),380.
    [29] S. H. Jeong, B. S. Kim, B. T. Lee, Appl. Phys. Lett.82,(2003),2625.
    [30] X. F. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, Appl. Surf. Sci.239,(2005),176.
    [31] M. Zacharias, P. M. Fauchet, Appl. Phys. Lett.71,(1997),381.
    [32] C. L. Yuan, P. S. Lee. Europhys. Lett.,83,(2008),47010.
    [33] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voit and B. E. Gnade, J. Appl.Phys.79,(1996),7983.
    [34] X. H. Zhang, Y. Q. Chen, C. Jia, Y. Su, Q. Li, L. Z. Liu, T. B. Guo and M. Q. Wei, J. Phys.Chem. C113,(2009),13689.
    [35] G. D. Wei, W. P. Qin, K. Z. Zheng, D. S. Zhang, J. B. Sun, J. J. Lin, R. Kim, G. F, Wang, P. F.Zhu and L. L. Wang, Crystal Growth and Design,9,(2009),1431-1435.
    [36] Z. M. Zeng, Y. Li, J. J. Chen and W. L. Zhou, J. Phys. Chem. C,112,(2008),18588.
    [37] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature,420,(2002),57.
    [38] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature,415,(2002),617.
    [39] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Adv. Mater.,15,(2003),353.
    [40] K. Laasonen, W. Andreoni, M. Parrinello, Science,58,(1992),1916.
    [41] S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature,372,(1994),159.
    [42] X. P. Shen, Z. Y. Jiang, C. L. Gao, Z. Xu, Z. X. Xie, L. S. Zheng, J. Mater. Chem.,17,(2007),1326.
    [43] M. A. Rafiq, Z. A. K. Durrani, H. Mizuta, A. Colli, P. Servati, A. C. Ferrari, W. I. Milne, S.Oda, J. Appl. Phys.103,(2008),53705.
    [44] H. Ni, X. D. Li, Appl. Phys. Lett.89,(2006),053108.
    [45] J. F. Tian, X. J. Wang, L. H. Bao, C. Hui, F. Liu, T. Z. Yang, C. M. Shen, H. J. Gao, Cryst.Growth. Des.9,(2008),3160.
    [46] Y. Q. Chen, X. F. Cui, K. Zhang, D. Y. Pan, S. Y. Zhang, B. Wang and J. G. Hou, Chem. Phys.Lett.369.(2003).16.
    [47] J. H. Zhou,M. Han,M. D. Liu,F. Q. Song,J. G. Wan,Y. F. Chen and G. H. Wang,J. CyrstalGrowth,269,(2004),207.
    [48] H. Y. Peng,N. Wang,W. S. Shi,Y. F. Zhang,C. S. Lee,S. T. Lee,J. Appl. Phys,89,(2001),727.
    [49]何照元,准一维纳米材料的气相合成、结构表征及发光性能研究,合肥工业大学硕士论文(2005)
    [50] J.Zhang,F.H.Jiang,L.D.Zhang,J.Phys.Chem.B,108,(2004),7002.
    [51] L.Xu,Y.Su,D.Cai,Y.Q.Chen,Y.Feng,Mater.Lett.,60,(2006),1420.
    [52] X. B. Wang, K. F. Huo, F. Zhang, Z. Hu, P. K. Chu, H. S. Tao, Q. Wu, Y. M. Hu, J. M. Zhu, J.Phys. Chem. C,113,(2009),170.
    [1]韩新海,准一维ZnO纳米材料可控制备与物性,中国科学技术大学博士学位论文,合肥,(2006),30.
    [2] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, W. Weber, R. Russo, P. D. Yang,Science,292,(2001),1897.
    [3] M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, J. Phys. Chem. B107,(2003),659.
    [4] P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han, and M. Meyyappan, Nano Lett.4,(2004),651.
    [5] H. M. Kim, Y. H. Cho, H. Lee, S. II Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung,Nano Lett.4,(2004),1059.
    [6] X. D. Wang, C. J. Summers, and Z. L. Wang, Nano Lett.4,(2004),423.
    [7] Y. Su, X. M. Liang, S. Li, Y. Q. Chen, Q. T. Zhou, S. Yin, X. Meng, M. G. Kong, Mater. Lett.,62,(2008),1010.
    [8] K. Tomioka, J. Motohisa, S. Hara, T. Fukui, Nano Lett.,8,(2008),3475.
    [9] S. Yin, Y. Q. Chen, Y. Su, C. Jia, Q. T. Zhou, S. Li, M. J. Xin, W. H. Kong, X. H. Zhang, Y. S. Lv,J. Nanosci. Nanotech.,8,(2008),993.
    [10] Y. Q. Chen, Q. T. Zhou, H. F. Jiang, Y. Song, H. H. Xiao, L. A. Zhu, L. Xu, Nanotechnology,17,(2006),1022.
    [11] Z. J. Gu, F. Liu, J. Y. Howe, M. P. Paranthaman, Z. W. Pan, Crystal Growth and Design,9,(2009),35.
    [12] P. Nguyen, T. N. Hou, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, M. Mcneil, M.Meyyappan, Nano Lett.,3,(2003),925.
    [13] X. D. Wang, C. J. Summers, Z. L. Wang, Nano Lett.4,(2004),423.
    [14] C. J. Chen, W. L. Xu, M. Y. Chen, Adv. Mater.,19,(2007),3012.
    [15] Q. Wan, M. Wei, D. Zhi, J. L. Macmanus-Driscoll, G. Blamire, Adv. Mater.,18,(2006),234.
    [16] Nelson, J. Phys. ReV. B1999,59,15374-15380.
    [17] Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science2002,295,2425.
    [18] Miao, Z.; Xu, D. S.; Ouyang, J. H.; Guo, G. L.; Zhao, X. S.; Tang, Y. Q. Nano Lett.2002,2,717-720.
    [19] Y. Huang, Z. L. Wang, Q. Wang, C. Z. Gu, C. C. Tang, Y. Bando, D. Golberg, J. Phys. Chem. C,113,(2009),1980.
    [20] G. W. Ho, A. S. W. Wong, A. T. S. Wee, M. E. Welland, Nano Lett.,4,(2004),2023.
    [21] S. Biawas, T. Ghoshal, S. Kar, S. Chakrabarti, S. Chaudhuri, Crystal Growth and Design,8,(2008),2171.
    [22] I. Hamberg, C.G. Granqvist, J. Appl. Phys.,60,(1986),123.
    [23] C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater.,13,(2001),1330.
    [24] Y. Shigesato, S. Takaki, T. Haranoh, J. Appl. Phys.,71,(1992),3356.
    [25] M. Liess, Thin Solid Films,410,(2002),183.
    [26] X. Wang, C. J. Summers, Z. L. Wang, Nano Lett.,4,(2004),423.
    [27] T. Martensson, M. Borgstrom, W. Seifert, B. J. Ohlsson, L. Samuelson, Nanotechnology,14,(2003),1255.
    [28] J. Ohlsson, M. T. Bjork, M. H. Magnusson, K. Deppert, L. Samuelson, L. R. Wallenberg, Appl.Phys. Lett.,79,(2001),3335.
    [29] Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, H. E. Ruda, Appl. Phys. Lett.,81,(2002),5177.
    [30] J. H. He, J. H. Hsu, C. H. Wang, H. N. Lin, L. J. Chen, Z. L. Wang, J. Phys. Chem. B,110,(2006),50.
    [31] B. B. Straumal, B. Baretzky, Interface Sci.12,(2004),147.
    [32] S. Shekhar, A. H. King, Acta Mater.,56,(2008),5728.
    [33] C. S. Smith, Trans. AIMME,175,(1948),15.
    [34] B. B. Straumal, O. Kogtenkova, P. Zieba, Acta Mater.,56,(2008),925.
    [35] T. B. Massalski, Ed. Binary Alloy Phase Diagram,1st ed.; ASM International: Materials Park,OH,(1986).
    [36] I. A. Rauf, J. Yuan, Mater. Lett.,25,(1995),217.
    [37] Y. Ohhata, F. Shinoki, S. Yoshida, Thin Solid Films,59,(1979),255.
    [38] M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim, S. K. Min, Thin Solid Films279,(1996),1.
    [39] Z. Y. Huang, C. F. Chai, X. C. Tan, J. Wu, A. Q. Yuan, Z. G. Zhou, Mater. Lett.,61,(2007),5137.
    [40] X. C. Wu, J. M. Hong, Z. J. Han, Y. R. Tao, Chem. Phys. Lett.,373,(2003),28.
    [41] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, X. F. Wang, Appl. Phys. Lett.,79,(2001),839.
    [42] P. Guha, S. Kar, S. Choudhari, Appl. Phys. Lett.,85,(2004),3851.
    [43] S. Shekhar, A. H. King, Acta Mater.56,(2008),5728.
    [44] J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An, G. C. Yi, Chem. Phys. Lett.,384,(2004),246.
    [45] J. G. Lu, l. p. Zhu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, D. W. Ma, Applied SurfaceScience,245,(2005),109.
    [46] G. D. Yuan, W. J. Zhang, W. F. Zhang, X. Fan, I. Bello, C. S. Lee, S. Lee, Appl. Phy. Lett.93,(2008),213102.
    [47] J. S. Jie, G. Z. Wang, X. H. Wang, Q. X. Yu, Y. Liao, G. P. Li, J. G. Hou, Chem. Phys. Lett.,387,(2004),466.
    [48] S. Y. Bae, C. W. Na, J. H. Kang, J. Park, J. Phys. Chem. B,109,(2005),2526.
    [49] K. J. Kim, Y. R. Park, Appl. Phy. Lett.,78,(2001),475.
    [50] T. Y. Lui, J. A. Zapien, H. Tang, D. D.D Ma, Y. K. Liu, C. S. Lee, S. T. Lee, S. L. Shi, S. J. Xu,Nanotechnology,17,(2006),5935.
    [51] W. F. Zhang, Z. B. He, G. D. Yuan, J. S. Jie, L. B. Luo, X. J. Zhang, Z. H. Chen, C. S. Lee, W. J.Wang, S. T. Lee, Appl. Phy. Lett.,94,(2009),123103.
    [52] S. Y. Ju, J. L. Li, N. Pimparkar, M. Alam, D. Janes, IEEE Transaction on Nanotechnology,6,(2007),390.
    [53] Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Xu, X. H. Chen, L. Li, C. P. Chen, R. M. Wang, J.Xu, D. P. Yu, Appl. Phys. Lett.,83,(2003),4020.
    [54]仇满德,田帅,韦志仁,董国义,人工晶体学报,38,(2009),48.
    [55]李志强,徐丽云,赵起,郑一博,韦志仁,侯志青,硅酸盐通报,26,(2007),1211.
    [56]韦志仁,王伟伟,蔡淑珍,付三玲,李军,刘超,董国义,人工晶体学报,36,(2007),81.
    [57] Y. Ortega, P. Fernandez, J. Piqueras, Nanotechnology,18,(2007),115606.
    [58] J. Wu, J. L. Coffer, Y. J. Wang, R. Schulze, J. Phy. Chem. Lett.,113,(2009),12.
    [59] Q. Wan, M. Wei, D. Zhi, J. MacManus-Driscoll, M. Blamire, Adv. Mater.,18,(2006),234.
    [60] F. Z. Wang, B. Liu, Z. J. Zhang, S. C. Yuan, Physica E,41,(2009),879.
    [61] C. H. Ahn, W. S. Han, B. H. Kong, H. K. Cho, Nanotechnology,20,(2009),015601.
    [62] S. Li, X. Z. Zhang, L. H. Zhang, M. Gao, Nanotechnology,21,(2010),435602.
    [63] D. P. Li, Z. Wang, X. H. Hai, J. S. Jie, S. T. Lee, J. Phy. Chem. C,113,(2009),5417.
    [64]郭太波,陈翌庆,张新华,刘利柱,材料研究学报,25,(2011),7.
    [65] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science,291,(2001),1947.
    [66] K. Ohkawa, T. Mitsuyu, O. Yamazaki, J. Appl. Phys.62,(1987),3216.
    [67] F. Gao, Q. Y. Lu, X. K. Meng, S. Komarneni, J. Phy. Chem. C,112,(2008),13359.
    [68] N. Zhang, K. Yu, Z. Q. Zhu, D. S. Jiang, Sensors and Actuators A,143,(2008),245.
    [69] X. G. Liu, D. J. Fu, H. S. Jia, B. S. Xu, J. Mater. Sci.43,(2008),5014.
    [70] F. Z. Wang, B. Liu, C. Zhao, S. C. Yuan, Mater. Lett.63,(2009),1357.
    [71] W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu, Science,277,(1997),1287.
    [72] H. J. Zhou, W. P. Cai, L. D. Zhang, Appl. Phys. Lett.75,(1999),495.
    [73] P. Wu, Q. Li, C. X. Zhao, D. L. Zhang, L. F. Chi, T. Xiao, Appl. Surf. Sci.,255,(2008),3201.
    [74] H. Q. Yang, R. G. Zhang, H. X. Dong, J. Yu, W. Y. Yang, D. C. Chen, Cryst. Growth Des.,8,(2008),3154.
    [75] H. J. Zhou, W. P. Cai, L. D. Zhang, Appl. Phys. Lett.75,(1999),495.
    [76] T. Gao, T. H. Wang, J. Cryst. Growth,290,(2006),660.
    [1] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. King, E. Weber, R. Russo, P. D. Yang,Science,292,(2001),1897.
    [2] Y. H. Chen, A. D. Yasquier, G. Saraf, J. Zhong, Y. C. Lu, Semicond. Sci. Technol.,23,(2008),45004.
    [3] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. D. Yang,Angew. Chem., Int. Ed.,2003,3031–3034.
    [4]张新华,ZnS、ZnO、TiO2微纳结构设计合成与光致发光、光电转换性能研究,合肥工业大学博士论文(2011).
    [5] Z. R. Tian, J. A. Voigv, J. Liu, B. Mckenzie, H. F. Xu, J. Am. Chem. Soc.,125,(2003),12384.
    [6] L. F. Xu, Q. W. Chen, D. S. Xu, J. Phys. Chem. C,111,(2007),11560.
    [7]黄春晖,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001.
    [8] Y. Z. Zheng, X. Tao, Q. Hou, D. T. Wang, W. L. Zhou, J. F. Chen, Chem. Mater.,23,(2011),23.
    [9] K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern,A. Mascarenhas, Appl. Phys. Lett.,96,(2010),123105.
    [10]Y. M. Gonzalez, W. Z. Xu, B. Chen, N. Farhanghi, P. Charpentier, Nanotechnology,22,(2011),065603.
    [11] A. Du, Pasquier, H. H. Chen, Y. C. Lu, Appl.Phys.Lett.,89,(2006),233513.
    [12] Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao, Ady. Funct. Mater.,18,(2008),1654.
    [13] T. P. Chou, Q. F. Zhang, G. E. Fryxell, G. Z. Cao, Adv. Mater.,19,(2007),2588.
    [14] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Cao, Angew.Chem. Int. Ed.,47,(2008),2402.
    [15] R. J. Zhou, T. Burkhart, J. Mater. Science,04,(2011),2281.
    [16] W. Guo, Y. H. Shen, L. Q. Wu, Y. R. Gao, T. L. Ma, J. Phys. Chem.C,115,(2010),21494-21499.
    [17] L. Y. Liang, S. Y. Dai, L. H. Hu, F. T. Kong, W. W. Xu, K. J. Wang, J. Phys. Chem.B,110,(2009),12404-12409.
    [18] J. Halme, J. Saarinen, P. Lund, Solar Energy Materials&Solar Cells,90,(2006),887-899.
    [19] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B110,(2006),16159.
    [20] J. B. Baxter, E. S. Aydil, Appl. Phys. Lett.86,(2005),053114.
    [21] M. Law, L. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater.4,(2005),455.
    [22] J. B. Baxter, A. M. Walker, K. Ommering, E. S. Aydil, Nanotechnology,17,(2006),304.
    [23] Z. J. Zhou, J. Q. Fan, X. Wang, W. H. Zhou, Z. L. Du, S. X. Wu, ACS Appl. Mater. Interfaces,3,(2011),4349-4253.
    [24] R. Beranek, H. Tsuchiya, T. Sugishima, J. M. Macak, L. Taveira, S. Fujimoto, H. Kisch, P.Schmukic, Appl. Phys. Lett.,87,(2005),243114.
    [25] C. K. Xu, P.H. Shin, L. L. Cao, J. M. Wu, D. Gao, Chem. Mater.22,(2010),143-148
    [26] S. M. Reda, S. E. Sherbieny, J. Mater. Research,25,(2010),522-528
    [27] Y. G. Nir, S. H. Michal, Z. M. Marina, K. Shifi, S. Asher, T. Nir, Nature Mater.10,(2011),974-979.
    [28] K. Naomi, S. Yuta, O. Hideo, O. Masataka, I. Shinzaburo, Solar Energy Materials&Solar Cells,91,(2007),1243-1247.
    [29] R. Jose, V. Thavasi, Ramakrishna. J. Am. Ceram. Soc.,92,(2009),289.
    [30] T. Dittrieh, E. A. Lebedev, J. Weldmann, J. Phys.Status solid.165,(1998), R5.
    [31]彭才英, Miyazaki S,徐骏,真空科学与技术学报,29,(2009),411.
    [32]林红,林春富,庄东填,李建保染料敏化太阳能电池的ZnO电极及其制备方法,中国专利,公开号CN101162739A.
    [33]郭敏,张梅,杨传钰,王习东,一种脉冲电沉积制备均匀透明ZnO纳米棒阵列薄膜的方法,中国专利,公开号CN101348931A.
    [34] G. Machado, D. N. Leinen, Thin Solid Film,490,(2005),124.
    [35]曹志峰,段号伟,徐宝龙,张娟,李建平,材料导报,9,(2007),130.
    [36]盛显良,刘娜仁,翟锦,安丽萍,化学进展,21,(2009),1969.
    [37]唐星,氧化锌纳米棒的水热法制备及染料敏化电池的应用研究,上海大学硕士论文(2008.)
    [38] L. Vayssieres, Advanced Materials,15,(2003),464.
    [39] C. K. Xu, P. Shin, L. L. Cao, D. Gao, J. Phys. Chem.C,114,(2010),125.
    [40] C. H. Ku, J. J. Wu, Nanotechnology,18,(2007),505706.
    [41] S. Yodyingyong, Q. Zhang, K. Park, Appl. Phys. Lett.,96,(2010),073115.
    [42] X. Y. Gan, X. M. Li, X. D. Gao, F. W. Zhuge, W. D. Yu, Thin Solid Film,518,(2010),4809.
    [1] Y. C. Qiu, K. Y. Yan, H. Deng, S. H. Yang, Nano Lett.12,(2012),407-143.
    [2] J. J. Dong, X. W. Zhang, Z. G. Yin, S. G. Zhang, J. X. Wang, H. R. Tan, Y. Gao, F. T. Si, H. L.Gao, ACS. Appl. Mater. Interfaces,3,(2011),4388-4395.
    [3] L. F. Xu, Q. W. Chen, D. S. Xu, J. Phys. Chem. C,111,(2007),11560-11565.
    [4] A. Z. Hu, H. N. Li, Z. Y. Jia, Z. C. Xia, J. Solid State Chem.,184,(2011),2936-2940.
    [5] Z. J. Zhou, J. Q. Fan, X. Wang, W. H. Zhou, Z. L. Du, S. X. Wu, ACS. Appl. Mater. Interfaces,3,(2011),4349-4353.
    [6] Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou, G. Z. Cao, Advanced Materials,21,(2009),1-22.
    [7] B. Pawar, G. Cai, D. Hama, R. Mane, T, Ganesh, A. Ghule, R, Sharma, K. D. Jadhav, S. H. Han,Sol. Energy Mater. Sol. Cells,93,(2009),524-527.
    [8] Y. Z. Zheng, X. Tao, Q. Hou, D. T. Wang, W. L. Zhou, J. F. Chen, Chem. Mater.23,(2011),3-5
    [9] J. Van de Lagemaat, A. J. Frank, J. Phys. Chem. B,105,(2001),11194-11205.
    [10] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Mater. Sci. Eng., R,63,(2009),8199.
    [11] S. R. Jiang, R. Vittal, K. J. Kim, Langmuir,20,(2004),9807-9810.
    [12] B. Tan, Y. Y. Wu, J. Phys. Chem. B,110,(2006),15932-15938.
    [13] M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, J. P. Ahn, Appl. Phys. Lett.87,(2005),113113.
    [14] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater.4,(2005),455.
    [15] J. B. Baxter, E. S. Aydil, Appl. Phys. Lett.,86,(20050,53114.
    [16] M. Ahmad, X. X. Yan, J. Zhu, J. Phys. Chem. C115,(2011),18311837.
    [17] D. P. Kim, C. I. Kim, K. H. Kwon, Thin Solid Films459,(2004),131-136.
    [18] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc.,113,(1991),2826.
    [19] S. Cho, J. Ma, Y. Kim, et al.,Appl. Phys. Lett.,75,(1999),2761.
    [20] S. A. Studenikin, N. Goleg, M. Cocivera, J. Appl. Phys.84,1998,2287.
    [21]艾飞,谭劲,李飞,包鲁明,钟爱华,陈圣昌,液晶与显示,25,(2010),11-16.
    [22] S. M. Reda, S. E. Sherbieny, J. Mater. Res.,25,(2010),522.
    [23] N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, Electrochem. Commun,2,(2000),658-662.
    [24] J. Bisquert, A. Zaban, M. Greenshtein, I. Mara-Sero, J. Am. Chem. Soc.,126,(2004),13550.
    [25] C. K. Xu, P. H. Shin, L. L. Cao, J. M. Wu, D. Gao, Chem. Mater.,22,(2010),143
    [26] J. Schrier, D. Demchenko, L. W. Wang, Nano Lett.,7,(2007),2377.
    [27] S. T. Huang, L. Yang, Appl. Phys. Lett.98,(2011),93114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700