用户名: 密码: 验证码:
SPS制备锆基和铜基块体非晶复合材料及强韧化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶材料因其具有高强度、高硬度、高耐磨性以及优异的耐蚀和磁性能等,得到了人们广泛的关注,相关研究也不断深入。但是由于非晶材料对成分和冷却速率敏感性很高,使其制备的尺寸受限。此外单相非晶块体材料室温下塑性变形能力差。这严重限制了其作为工程材料的应用。在非晶基体内引入晶体相,可提高塑性。但第二相颗粒的引入会对非晶的形成能力造成影响。因此如何制备大块的高强度高塑性非晶材料已成为把非晶合金应用于工程亟待解决的问题,也是非晶研究工作中的关注焦点。
     放电等离子烧结(Spark Plasma Sintering, SPS)技术可实现短时快速烧结,可有效避免非晶晶化和增强相影响基体非晶形成能力等诸多问题,非常适合制备大块非晶复合材料。此外,尽管目前很多研究工作集中在利用复合法提高非晶塑性变形能力,但是对其增韧机理,特别是增强相和非晶基体的性能对复合材料力学行为的影响机制的认识尚不够全面。
     本文利用SPS技术成功制备了大块的TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5、ZrO_2/Zr_(55)Cu_(30)Al_(10)Ni_5和TiNb/Cu_(46)Zr_(42)Al_7Y_5非晶复合材料。系统地研究了增强相(延性TiNb金属颗粒和硬脆ZrO_2陶瓷颗粒)对非晶基体结构和热稳定性的影响;分析研究了增强相与非晶基体界面结合情况;重点考察了三种非晶基复合材料的力学行为;深入讨论了两种增强相和两种非晶基体性能的差异对非晶基复合材料力学性能的影响;利用有限元模拟的方法并结合复合材料力学性能的结果,研究了复合材料在变形过程中增强相与非晶基体间的应力、应变场的变化。全面地揭示了增强相体积分数、颗粒尺寸和力学性能以及非晶基体的断裂韧性对非晶复合材料力学行为的影响机理。主要研究结果如下:
     系统地研究了SPS烧结过程中温度对非晶合金致密化程度和强度的影响规律。研究表明烧结温度与烧结非晶试样的致密化程度和强度均呈非线性关系。烧结温度存在一最佳值,当烧结温度在此值以下时,烧结试样的致密化程度和强度随烧结温度的增加而增加;当烧结温度高于此值时,材料的强度会因非晶试样内缺陷浓度的增加和脆性晶体相的析出而急剧降低。Cu_(46)Zr_(42)Al_7Y_5非晶最佳烧结温度为653K,此时能够得到直径为15mm的非晶试样(铜模铸造法得到的最大尺寸为10mm),且烧结试样的相对密度可达到99.98%,强度达到1803MPa;Zr_(55)Cu_(30)Al_(10)Ni_5非晶的最佳烧结温度为623K。此时相对密度达到99.85%,强度为1677MPa。均达到了与铜模铸造非晶试样相当的压缩强度。
     使用上述经过优化的工艺条件成功制备了TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5、ZrO_2/Zr_(55)Cu_(30)Al_(10)Ni_5和TiNb/Cu_(46)Zr_(42)Al_7Y_5非晶复合材料。并对复合材料的致密化程度、结构、热力学性能以及增强相和非晶基体结合的界面等进行了系统的评价。研究结果表明,采用SPS烧结的方法可以制得致密的非晶复合材料。添加颗粒对非晶基体的结构和热稳定性没有影响,使其保持了完全的非晶相结构特征。透射电镜和纳米压痕分析表明增强相与非晶基体的界面清晰且结合紧密。
     全面地考察了增强相的体积分数和颗粒尺寸与复合材料力学性能的关系。Zr_(55)Cu_(30)Al_(10)Ni基体中添加第二相颗粒后,断裂强度得到提高。对于TiNb增韧的非晶复合材料,其塑性应变量随TiNb体积分数的增加而增加。当TiNb含量为30vol.%时,TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5复合材料的塑性应变量达到了11%。而ZrO_2颗粒增韧的非晶复合材料的塑性应变量却随ZrO_2颗粒含量的增加呈现先增加后降低的现象,其最佳增韧效果的体积分数为10-15vol.%。此外,研究结果表明非晶复合材料的塑性应变量还与增强相的颗粒尺寸相关,小尺寸的增强相具有更好的增韧非晶的效果。
     研究了增强相增韧非晶的机理。利用有限元模拟的方法深入研究了非晶复合材料压缩过程中增强相、非晶基体以及两者界面处应力和应变场的变化。并结合TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5复合材料的力学行为,全面地揭示了增强相增韧非晶基复合材料的机理。研究结果表明由于在压缩过程中增强相颗粒与非晶基体间存在应变的不匹配,导致两者界面处产生应力集中,界面处高的应力值可诱发非晶基体内剪切带的萌生。增强相颗粒含量的增加意味着非晶基体中更多的剪切带被开动,因而使非晶复合材料具有了更高的塑性应变值。而增强相体积分数相同的情况下,小的颗粒意味着引入第二相在非晶基体内分布更加均匀,增强相与非晶基体的界面更多。因此小尺寸的增强相具有了更好的增韧效果。
     比较分析了延性金属颗粒(TiNb)和硬脆陶瓷颗粒(ZrO_2)力学性能对复合材料力学行为的影响。两种颗粒与非晶基体间均存在应变的不匹配,导致界面处应力集中而诱发剪切带产生。只是ZrO_2颗粒只具有弹性变形,它与非晶基体间以弹性应变的不匹配为主。而TiNb颗粒因其具有较强的塑性变形能力,它与非晶基体间除了弹性应变不匹配外,还存在塑性应变的不匹配,可在TiNb与非晶基体间的界面处引入更大的应力集中,从而使非晶基体内剪切带持续增殖,更多的剪切带在TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5复合材料中产生,因此TiNb颗粒有较ZrO_2颗粒更好的增韧效果。
     非晶基体断裂韧性是影响非晶基复合材料力学行为的重要因素。断裂韧性值较低的Cu_(46)Zr_(42)Al_7Y_5非晶对裂纹较敏感,一旦在非晶基体内产生裂纹便会迅速扩展导致材料的失效,增强相对其塑性和强度的提高作用有限。而对于断裂韧性值较高的Zr_(55)Cu_(30)Al_(10)Ni_5非晶,由于其对裂纹具有较高的抵御能力,且在应力作用下裂纹尖端应力集中可诱发剪切带的萌生,使裂纹能量降低,同时大量剪切带的萌生可导致微裂纹形成,可使主裂纹运动方向发生偏转,从而延缓了裂纹的扩展,添加TiNb颗粒后其塑性与强度均可得到明显改善。
     总之,本文制备得到了高强度、高塑性的非晶复合材料,并深入研究了增强相和非晶基体性能对非晶基复合材料力学行为的影响机理。为制备高强度高塑性非晶基复合材料提供设计思路和理论指导。
Bulk metallic glasses (BMGs) exhibit particular advantages, such as high strength,high hardness, high wear-resistance, superior corrosion resistance and magneticproperties. However, they are unsuitable for structural applications, because most ofBMGs display very limited dimension and plasticity at room. Therefore, how toimprove the plasticity of BMGs with high strength is a key issue for the study ofBMGs.
     The plasticity of BMGs can be improved by introducing second phases into themetallic glassy matrix. For the methods of fabricating bulk metallic glassy composites(BMGCs), casting techniques were adopted by most of the researchers, which limits thedimension and affects the glassy formation ability (GFA) of BMGCs. Therefore, thedevelopment of appropriate techniques to fabricate large-size BMGCs is necessary.Spark Plasma Sintering (SPS) is regarded as an appropriate method of fabricatingBMGCs, because BMGCs can be obtained by SPS at low temperature and shortsintering time. On the other hand, although a number of works focus on the research ofBMGCs, the deformation mechanism of BMGs reinforced by the second phases isinsufficient. Especially, the study on the effect of the properties of reinforcement andglassy matrix on the mechanical properties of BMGCs is limited.
     In this study, TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5, ZrO_2/Zr_(55)Cu_(30)Al_(10)Ni_5andTiNb/Cu_(46)Zr_(42)Al_7Y_5bulk metallic composites were fabricated by SPS. The structuresand thermal properties of the BMGCs were studied. Meanwhile, the interface betweenthe reinforcement and the glassy matrix was observed. Finite element analysis wasadopted to study the stress field and strain field of the reinforcement, the glassy matrixand the interfaces between them during compression deformation. The effects of volume fraction, particle size and properties of reinforcements as well as the fracturetoughness of the glassy matrix on the mechanical properties of BMGCs were studiedsystematically. The strengthening and toughening mechanism of BMGCs withreinforcements were revealed. The results are summarized as follows.
     The influence of sintering temperature on the densities and strength of BMGswere studied. The results indicated that the density and strength of BMGs arenon-linear related to the sintering temperature. There is the optimum sinteringtemperature. When the sintering temperature is below this temperature, the strength anddensity increase with sintering temperature. However, when the sintering temperature isover this temperature, the strength and density of BMGs decrease with sinteringtemperature, because much more defects and crystalline phases are generated.Cu_(46)Zr_(42)Al_7Y_5metallic glass with99.85%relative density was obtained by SPS with adiameter of15mm, which was larger than the largest size of10mm for the as-castspecimen. The fracture strength of the sintered specimen reached1803MPa. Andlarge-size Zr_(55)Cu_(30)Al_(10)Ni_5bulk metallic glass with fracture strength1677MPa wasobtained at623K.
     Based on the process of fabricating Cu_(46)Zr_(42)Al_7Y_5and Zr_(55)Cu_(30)Al_(10)Ni_5specimens,TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5, ZrO_2/Zr_(55)Cu_(30)Al_(10)Ni_5and TiNb/Cu_(46)Zr_(42)Al_7Y_5bulk metallicglassy composites were fabricated. And the densities, structures, thermal properties andthe interfaces of the composites were studied. The results indicated that the BMGCswith nearly full density can be obtained by SPS. Meanwhile, the amorphous structureand thermal stability of the glassy matrix were not influenced by the reinforcements. Agood bonding interface between the reinforcement and the glassy matrix was observedby TEM and nano-indentation.
     The relationships of the mechanical properties of BMGCs to volume fraction andparticle sizes were studied. For the BMGCs reinforced by TiNb, the plasticity strainincrease with TiNb volume fraction.11%plasticity strain was achieved for30vol.%TiNb/Zr_(55)Cu_(30)Al_(10)Ni_5during compression. However, for the BMGCs reinforced byZrO_2, the largest plasticity strain was achieved with10-15vol.%ZrO_2particles. Both ofBMGCs with TiNb and ZrO_2, larger plasticity was achieved with smaller particle size.
     Finite element analysis was adopted to study the stress fields and stress fields ofthe reinforcement, glassy matrix and the interface between them. The results showed that the stress concentration is introduced due to the strain misfit betweenreinforcement and the glassy matrix during compression, which results in the initiationof shear bands in the glassy matrix. Based on the point mentioned above, that largevolume fraction reinforcement and smaller particle size mean more stress concentrationbeing introduced. Therefore, larger plasticity strain was obtained in BMGCs with largervolume fraction or smaller particle size.
     The mechanical properties of BMGCs with ductile metal (TiNb) and hard ceramicphase (ZrO_2) were compared. In order to explain the influence of properties ofreinforcements on the mechanical properties of BMGCs, the computational simulationwas adopted. The results indicated that since there are lower yield strength and largerplasticity of TiNb than that of ZrO_2that a larger degree of misfit strain and larger stressconcentration are obtained in the composites with TiNb particles. Thus, the plasticmisfit strain played a key role for the BMGCs toughening by reinforcement.
     The fracture toughness of Cu_(46)Zr_(42)Al_7Y_5and Zr_(55)Cu_(30)Al_(10)Ni_5were tested. And theinfluence of the fracture toughness of the glassy matrix on the mechanical properties ofBMGCs was studied. For the Cu_(46)Zr_(42)Al_7Y_5glassy matrix, it is sensitive to the crack,due to the lower fracture toughness. Once a crack is formed in the glassy matrix, it willdevelop quickly and result in failure of the specimen. However, for the Zr_(55)Cu_(30)Al_(10)Ni_5glassy matrix with higher fracture toughness, when crack is initiated in the glassymatrix, shear bands can be formed at the front of crack due to stress concentration. Itwill decrease the energy of the crack, so the development of crack is hindered.Therefore, the difference of the fracture toughness of the glassy matrixes leads to thedifferent effect of TiNb on toughening BMGs.
     In summation, bulk metallic glassy composites with high strength and largeplasticity were fabricated. And strengthening and toughening mechanism ofreinforcement in BMGCs were revealed. The influences of the properties ofreinforcements and the glassy matrix on the mechanical properties were studied. Thestrengthening and toughening mechanisms studied in this work provide a guideline forthe design of high strength and large plasticity bulk metallic glassy composites.
引文
[1]郑兆勃.非晶固态材料引论.上海:科学出版社.1987:2-5.
    [2] Inoue A., Zhang T., Masumoto T. Al-La-Ni Amorphous Alloys with a Wide Supercooled LiquidRegion. Mater Trans JIM[J].1989,30:378-38l.
    [3] Luborsky F. Amorphous metallic alloys. Oxford: Butterworth and Co Ltd.1983:534-537.
    [4] Wang W.H., Dong C., Shek C.H. Bulk metallic glasses. Materials Science and Engineering R:Reports[J].2004,44:5-10.
    [5] Brenner A, Senderoff S. Calculation of stress in electrodeposits from the curvature of a platedstrip. J Res Natl Bur Stand[J].1949,42:105-123.
    [6] Klement W., Willens R., Duwez P. Non-crystalline structure in solidified gold–silicon alloys.Nature[J].1960,187:869-870.
    [7] Chen H. Thermodynamic considerations on the formation and stability of metallic glasses. ActaMetallurgica[J].1974,22:1505-1511.
    [8] Kui H, Greer A.L., Turnbull D. Formation of bulk metallic glass by fluxing. Applied PhysicsLetters[J].1984,45:615-619.
    [9] Kui H., Turnbull D. Melting of NiPdP glass. Applied Physics Letters[J].1985,47:796-799.
    [10] Inoue A,. Masumoto T. Mg-based amorphous alloys. Materials Science and Engineering: A[J].1993,173:1-8.
    [11] Inoue A., Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30alloy of30mm in diameter by asuction casting method. Materials transactions-JIM[J].1996,37:185-187.
    [12] Inoue A., Zhang T., Masumoto T. Zr--Al--Ni Amorphous Alloys With High Glass TransitionTemperature and Significant Supercooled Liquid Region. Mater Trans, JIM[J].1990,31:177-183.
    [13] Inoue A., Gook J.S. Multicomponent Fe-based glassy alloys with wide supercooled liquidregion before crystallization. Materials transactions-JIM[J].1995,36:1282-1285.
    [14] Inoue A., Zhang T., Takeuchi A. Bulk amorphous alloys with high mechanical strength andgood soft magnetic properties in Fe–TM–B (TM=IV–VIII group transition metal) system. AppliedPhysics Letters[J].1997,71:464-467.
    [15] Inoue A., Nishiyama N., Amiya K., Zhang T., Masumoto T. Ti-based amorphous alloys with awide supercooled liquid region. Materials Letters[J].1994,19:131-135.
    [16] Wang X., Yoshii I., Inoue A., Kim Y.H., Kim I.B. Bulk amorphous Ni75-xNb5MxP20-yBy(M=Cr,Mo) alloys with large supercooling and high strength. Materials transactions JIM[J].1999,40:1130-1136.
    [17] Peker A., Johnson W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5.Applied Physics Letters[J].1993,63:2342-1344.
    [18] Zhou B., Zhang X., Zhang W., Kimura H., Zhang T., Makino A., et al. Synthesis andMechanical Properties of New Cu-Based Cu-Zr-Al Glassy Alloys with Critical Diameters up toCentimeter Order. Materials transactions[J].2010,51:826-829.
    [19] Zhou B., Zhang W., Zhang X., Kimura H., Makino A., Inoue A. Formation and ThermalStability of Cu-Based Metallic Glasses with High Glass-Forming Ability. Metallurgical andMaterials Transactions A[J].(In press).
    [20] Koch C., Cavin O., McKamey C., Scarbrough J. Preparation of ‘‘amorphous’’Ni60Nb40bymechanical alloying. Applied Physics Letters[J].1983,43:1017-1019.
    [21] Inoue A., Nishiyama N., Kimura H. Preparation and thermal stability of bulk amorphousPd40Cu30Ni10P20alloy cylinder of72mm in diameter. Materials transactions-JIM[J].1997,38:179-183.
    [22] Johnson W.L. Fundamental aspects of bulk metallic glass formation in multicomponent alloys.Materials Science Forum [J].1996,225:35-50.
    [23] Zheng Q, Xu J, Ma E. High glass-forming ability correlated with fragility of Mg-Cu (Ag)-Gdalloys. Journal of Applied Physics[J].2007,102:113519-113524.
    [24] Jiang Q., Zhang G., Yang L., Wang X., Saksl K., Franz H., et al. La-based bulk metallic glasseswith critical diameter up to30mm. Acta Materialia[J].2007,55:4409-4418.
    [25]黄维清,王玲玲.机械合金化法制备Al-Cu-Fe纳米非晶合金.中国有色金属学报.2001,11:647-650.
    [26] Herlach D., Feuerbacher B. Non-equilibrium solidification of undercooled metallic melts.Advances in Space Research[J].1991,11:255-262.
    [27] Kawamura Y., Shibata T., Inoue A., Masumoto T. Workability of the supercooled liquid in theZr65Al10Ni10Cu15bulk metallic glass. Acta Materialia[J].1998,46:253-263.
    [28] Xie G., Louzguine-Luzgin D.V., Kimura H., Inoue A., Wakai F. Large-size ultrahigh strengthNi-based bulk metallic glassy matrix composites with enhanced ductility fabricated by spark plasmasintering. Applied Physics Letters[J].2008,92:121907-121910.
    [29] Kawamura Y., Nakamura T., Kato H., Mano H., Inoue A. Newtonian and non-Newtonianviscosity of supercooled liquid in metallic glasses. Materials Science and Engineering A[J].2001,304-306:674-678.
    [30] Doglione R., Spriano S., Battezzati L. Static mechanical characterization of a bulk amorphousand nanocrystalline Zr40Ti14Ni11Cu10Be25alloy. Nanostructured Materials[J].1997,8:447-456.
    [31] Conner R.D., Rosakis A.J., Johnson W.L., Owen D.M. Fracture toughness determination for aberyllium-bearing bulk metallic glass. Scripta Materialia[J].1997,37:1373-1378.
    [32] Ma H., Shi L.L., Xu J., Li Y., Ma E. Discovering inch-diameter metallic glasses inthree-dimensional composition space. Applied Physics Letters[J].2005,87:1-3.
    [33] Inoue A., Shen B.L., Chang C.T. Fe-and Co-based bulk glassy alloys with ultrahigh strength ofover4000MPa. Intermetallics[J].2006,14:936-944.
    [34] Inoue A., Shen B.L., Chang C.T. Super-high strength of over4000MPa for Fe-based bulkglassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4system. Acta Materialia[J].2004,52:4093-4099.
    [35] Dong Y., Wang A., Man Q., Shen B.(Co1-xFex)68B21.9Si5.1Nb5bulk glassy alloys with highglass-forming ability, excellent soft-magnetic properties and superhigh fracture strength.Intermetallics[J].2012,23:63-67.
    [36] Zhang T., Yang Q., Ji Y., Li R., Pang S., Wang J., et al. Centimeter-scale-diameter Co-basedbulk metallic glasses with fracture strength exceeding5000MPa. Chinese Science Bulletin[J].2011,56:3972-3977.
    [37] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. ActaMaterialia[J].2000,48:279-306.
    [38]陈贻瑞,王健.基础材料与新材料.天津:天津大学出版社.1994:15-18.
    [39]潘杰,张猛,谌祺,柳林. FeCoCrMoCBY块体非晶合金在强酸介质中的耐蚀性能.稀有金属材料与工程.2009,37:805-808.
    [40] Xie G.Q., Louzguine-Luzgin D.V., Fukuhara M., Inoue A. Bulk metallic glassy compositeswith excellent electrical conductivity and enhanced plasticity fabricated by spark plasma sintering.Materials Science Forum [J].2011,675-677:197-200.
    [41] Shen B., Kimura H., Inoue A. Fabrication of Fe-based glassy cores with high saturationmagnetization and good soft magnetic properties by spark plasma sintering. Materials ScienceForum [J].2005,475-479:3397-3400.
    [42] Shen B., Inoue A. Fabrication of large-size Fe-based glassy cores with good soft magneticproperties by spark plasma sintering. Journal of Materials Research[J].2003,18:2115-2121.
    [43] Makino A., Men H., Takeshi K., Yubut K., Inoue A. FeSiBPCu nanocrystalline soft magneticalloys with high bs of1.9tesla produced by crystallizing hetero-amorphous phase. MaterialsTransactions JIM[J].2009,50:204-209.
    [44] Makino A., Men H., Kubota T., Yubuta K., Inoue A. New Fe-metalloids based nanocrystallinealloys with high Bs of1.9T and excellent magnetic softness. Journal of Applied Physics[J].2009,105:07A308-311.
    [45] Inoue A., Wang X.M., Zhang W. Developments and applications of bulk metallic glasses.Reviews on Advanced Materials Science[J].2008,18:1-9.
    [46]张志豪,刘新华,周成,谢建新. Zr基大块非晶合金的超塑性成形性.中国有色金属学报.2004,14:1073-1077.
    [47] Inoue A., Takeuchi A. Recent development and application products of bulk glassy alloys. ActaMaterialia[J].2011,59:2243-2267.
    [48]张甫飞,李挹红.非晶微晶软磁合金系列电感材料及器件的开发应用.金属功能材料.2001,8:1-6.
    [49]纪松,钱坤明,张延松,谭锁奎.非晶/纳米晶软磁材料及其应用.兵器材料科学与工程.2005,28:51-55.
    [50]程天一,章守华.快速凝固技术与新型合金.北京:宇航出版社.1990:57-66.
    [51] Ashby M.F. A first report on deformation-mechanism maps. Acta Metallurgica[J].1972,20:887-897.
    [52] Busch R., Bakke E., Johnson W. Viscosity of the supercooled liquid and relaxation at the glasstransition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5bulk metallic glass forming alloy. Acta Materialia[J].1998,46:4725-4732.
    [53] Bakke E., Busch R., Johnson W. The viscosity of the ZrTiCuNiBe bulk metallic glass formingalloy in the supercooled liquid. Applied Physics Letters[J].1995,67:3260-3263.
    [54] Masuhr A., Busch R., Johnson W.L. Thermodynamics and kinetics of the Zr41.2Ti13.8Cu10.0Ni12.5Be22.5bulk metallic glass forming liquid: glass formation from a strong liquid. Journal ofnon-crystalline solids[J].1999,250:566-571.
    [55] Kato H., Kawamura Y., Inoue A., Chen H. Newtonian to non-Newtonian master flow curves ofa bulk glass alloy PdNiCuP. Applied Physics Letters[J].1998,73:3665-3668.
    [56] Lu J., Ravichandran G., Johnson W.L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5bulk metallic glass over a wide range of strain-rates and temperatures. Acta Materialia[J].2003,51:3429-3443.
    [57] Nieh T., Wadsworth J., Liu C., Ohkubo T., Hirotsu Y. Plasticity and structural instability in abulk metallic glass deformed in the supercooled liquid region. Acta Materialia[J].2001,49:2887-2896.
    [58] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses.Acta Metallurgica[J].1977,25:407-415.
    [59] Cohen M.H., Turnbull D. Molecular transport in liquids and glasses. The Journal of ChemicalPhysics[J].1959,31:1164-1169.
    [60] Turnbull D., Cohen M.H. On the free-volume model of the liquid-glass transition. The Journalof Chemical Physics[J].1970,52:3038-3041.
    [61] Debenedetti P.G., Stillinger F.H. Supercooled liquids and the glass transition. Nature[J].2001,410:259-267.
    [62] Flores K.M., Suh D., Dauskardt R.H., Asoka-Kumar P., Sterne P.A., Howell R.H.Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy.Journal of Materials Research[J].2002,17:1153-1161.
    [63] Argon A.S. Plastic deformation in metallic glasses. Acta Metallurgica[J].1979,27:47-58.
    [64] Huang R., Suo Z., Prevost J.H., Nix W.D. Inhomogeneous deformation in metallic glasses.Journal of the Mechanics and Physics of Solids[J].2002,50:1011-1027.
    [65] Polk D.E., Turnbull D. Flow of melt and glass forms of metallic alloys. Acta Metallurgica[J].1972,20:493-498.
    [66] Leamy H., Wang T., Chen H. Plastic flow and fracture of metallic glass. Metallurgical andMaterials Transactions B[J].1972,3:699-708.
    [67] Bruck H.A., Rosakis A.J., Johnson W.L. The dynamic compressive behavior of berylliumbearing bulk metallic glasses. Journal of Materials Research[J].1996,11:503-511.
    [68] Liu C.T, Heatherly L., Easton D.S., Carmichael C.A., Schneibel J.H., Chen C.H., et al. Testenvironments and mechanical properties of Zr-base bulk amorphous alloys. Metallurgical andMaterials Transactions A: Physical Metallurgy and Materials Science[J].1998,29:1811-1820.
    [69] Lewandowski J.J., Greer A.L. Temperature rise at shear bands in metallic glasses. NatureMaterials[J].2006,5:15-18.
    [70] Zhang Z.F., Eckert J., Schultz L. Difference in compressive and tensile fracture mechanisms ofZr59Cu20Al10Ni8Ti3bulk metallic glass. Acta Materialia[J].2003,51:1167-1179.
    [71] Xu Y.K., Ma H., Xu J., Ma E. Mg-based bulk metallic glass composites with plasticity andgigapascal strength. Acta Materialia[J].2005,53:1857-1866.
    [72] Shen B., Chang C., Zhang Z., Inoue A. Enhancement of glass-forming ability of FeCoNiBSiNbbulk glassy alloys with superhigh strength and good soft-magnetic properties. Journal of AppliedPhysics[J].2007,102:023515-023519.
    [73] Zhang Z.F., Zhang H., Shen B.L., Inoue A., Eckert J. Shear fracture and fragmentationmechanisms of bulk metallic glasses. Philosophical Magazine Letters[J].2006,86:643-650.
    [74] Horton J.A., Wright J.L., Schneibel J.H. Fracture in bulk amorphous alloys. Materials ResearchSociety[J].1999,554:185-190.
    [75] Schroers J., Johnson W.L. Ductile bulk metallic glass. Physical Review Letters[J].2004,93:255506-255512.
    [76] Liu Y.H., Wang G., Wang R.J., Zhao D.Q., Pan M.X., Wang W.H. Super plastic bulk metallicglasses at room temperature. Science[J].2007,315:1385-1388.
    [77] Lewandowski J.J., Wang W.H., Greer A.L. Intrinsic plasticity or brittleness of metallic glasses.Philosophical Magazine Letters[J].2005,85:77-87.
    [78] Yao K.F., Ruan F., Yang Y.Q., Chen N. Superductile bulk metallic glass. Applied Physics[J].2006,88:122106-122109.
    [79] Du X.H., Huang J.C., Hsieh K.C., Lai Y.H., Chen H.M., Jang J.S., et al. Two-glassy-phase bulkmetallic glass with remarkable plasticity. Applied Physics Letters[J].2007,91:131901-131903.
    [80] Li Y.Y., Yang C., Chen W.P., Li X.Q. Effect of WC content on glass formation, thermal stability,and phase evolution of a TiNbCuNiAl alloy synthesized by mechanical alloying. Journal ofMaterials Research[J].2008,23:745-754.
    [81] Li J.B., Jang J.S., Li C., Jian S.R., Tsai P.H., Hwang J.D., et al. Significant plasticityenhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Taparticles. Materials Science and Engineering A[J].2012,551:249-254.
    [82] Li J.B., Jang J.S., Jian S.R., Chen K.W., Lin J.F., Huang J.C. Plasticity improvement ofZrCu-based bulk metallic glass by ex situ dispersed Ta particles. Materials Science and EngineeringA[J].2011,528:8244-8248.
    [83] Zhu Z., Zhang H., Hu Z., Zhang W., Inoue A. Ta-particulate reinforced Zr-based bulk metallicglass matrix composite with tensile plasticity. Scripta Materialia[J].2010,62:278-281.
    [84] Lin H.M., Jeng R.R., Lee.PY. Microstructure and mechanical properties of vacuumhot-pressing SiC/Ti-Cu-Ni-Sn bulk metallic glass composites. Materials Science and EngineeringA[J].2008,493:246-250.
    [85] Bian Z., Pan M.X., Zhang Y., Wang W.H. Carbon-nanotube-reinforced ZrCuNiAlTi bulkmetallic glass composites. Applied Physics Letters[J].2002,81:4739-4742.
    [86] Xie G., Louzguine-Luzgin D.V, Kimura H., Inoue A. Microstructure and mechanical propertiesof crystalline particulates dispersed Ni-based metallic glassy composites fabricated by spark plasmasintering. Intermetallics[J].2010,18:851-858.
    [87] Conner R.D., Dandliker R.B., Johnson W.L. Mechanical properties of tungsten and steel fiberreinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5metallic glass matrix composites. Acta Materialia[J].1998,46:6089-6102.
    [88] Hays C.C., Kim C.P., Johnson W.L. Microstructure controlled shear band pattern formation andenhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendritedispersions. Physical Review Letters[J].2000,84:2901-2903.
    [89] Fan C., Li C., Inoue A. Nanocrystal composites in Zr-Nb-Cu-Al metallic glasses. Journal ofNon-Crystalline Solids[J].2000,270:28-33.
    [90] Hajlaoui K., Yavari A.R., Das J., Vaughan G. Ductilization of BMGs by optimization ofnanoparticle dispersion. Journal of Alloys and Compounds[J].2007,434-435:6-9.
    [91] Wang L., Ma L., Chen M., Kimura H, Inoue A. Annealing embrittlement of Al89Fe10Zr1amorphous alloy. Materials Science and Engineering A[J].2002,325:182-185.
    [92] Murali P., Ramamurty U. Embrittlement of a bulk metallic glass due to sub-Tg annealing. ActaMaterialia[J].2005,53:1467-1478.
    [93] Kumar G., Rector D., Conner R.D., Schroers J. Embrittlement of Zr-based bulk metallicglasses. Acta Materialia[J].2009,57:3572-3583.
    [94] Inoue A., Zhang W. Nanocrystalline Fe-Pt-B base hard magnets with high coercive forceobtained from amorphous precursor. Journal of Applied Physics[J].2005,97:10H308-312.
    [95] Fan C., Ott R.T., Hufnagel T.C. Metallic glass matrix composite with precipitated ductilereinforcement. Applied Physics Letters[J].2002,81:1020-1022.
    [96] Bian Z., Kato H., Qin C., Zhang W., Inoue A. Cu-Hf-Ti-Ag-Ta bulk metallic glass compositesand their properties. Acta Materialia[J].2005,53:2037-2048.
    [97] Pan D.G., Zhang H.F., Wang A.M., Hu Z.Q. Enhanced plasticity in Mg-based bulk metallicglass composite reinforced with ductile Nb particles. Applied Physics Letters[J].2006,89:261904-261906.
    [98] Inoue A. Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compoundparticles. Intermetallics[J].2000,8:455-468.
    [99] Das J., Kim K.B., Baier F., L ser W., Eckert J. High-strength Ti-base ultrafine eutectic withenhanced ductility. Applied Physics Letters[J].2005,87:1-3.
    [100] Hofmann D.C., Suh J.Y., Wiest A., Duan G., Lind M.L., Demetriou M.D., et al. Designingmetallic glass matrix composites with high toughness and tensile ductility. Nature[J].2008,451:1085-1089.
    [101] Hofmann D.C., Suh J.Y., Wiest A., Johnson W.L. New processing possibilities for highlytoughened metallic glass matrix composites with tensile ductility. Scripta Materialia[J].2008,59:684-687.
    [102] Qiao J.W., Wang S., Zhang Y., Liaw P.K., Chen G.L. Large plasticity and tensile necking ofZr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification.Applied Physics Letters[J].2009,94:151905-151907.
    [103] Zhang Y., Xu W., Tan H., Li Y. Microstructure control and ductility improvement ofLa-Al-(Cu, Ni) composites by Bridgman solidification. Acta Materialia[J].2005,53:2607-2616.
    [104] Kato H., Inoue A. Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloyscontaining ZrC particles. Materials Transactions, JIM[J].1997,38:793-800.
    [105] Fu H.M., Wang H., Zhang H.F., Hu Z.Q. In situ TiB-reinforced Cu-based bulk metallic glasscomposites. Scripta Materialia[J].2006,54:1961-1966.
    [106] Fu H., Wang H., Zhang H., Hu Z. In situ TiB-reinforced Cu-based bulk metallic glasscomposites. Scripta Materialia[J].2006,54:1961-1966.
    [107] Mattern N., Goerigk G., Vainio U., Miller M.K., Gemming T., Eckert J. Spinodaldecomposition of Ni-Nb-Y metallic glasses. Acta Materialia[J].2009,57:903-908.
    [108] Park B.J., Chang H.J., Kim D.H., Kim W.T., Chattopadhyay K., Abinandanan T.A., et al.Phase separating bulk metallic glass: A hierarchical composite. Physical Review Letters[J].2006,96:245503-245509.
    [109] Jang J.S., Jian S.R., Li T.H., Huang J.C., Tsao C.Y.A., Liu C.T. Structural and mechanicalcharacterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites.Journal of Alloys and Compounds[J].2009,485:290-294.
    [110] Jang J.S., Ciou J.Y., Li T.H., Huang J.C., Nieh TG. Dispersion toughening of Mg-based bulkmetallic glass reinforced with porous Mo particles. Intermetallics[J].2010,18:451-458.
    [111] Choi-Yim H., Conner R.D., Szuecs F., Johnson W.L. Processing, microstructure andproperties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6bulk metallic glasscomposites. Acta Materialia[J].2002,50:2737-2745.
    [112] Chu Z., Huang B., Yuan G., Zhang J., Yin J., Ding W. Microstructure and fracture behavior ofZr55Cu30Al10Ni5bulk metallic glass and its composites containing ZrO2. Rare Metal Materialsand Engineering[J].2011,40:765-768.
    [113]邱克强,王爱民,张海峰,乔东春,丁炳哲,胡壮麒.钨丝增强ZrAlNiCuSi块体非晶复合材料及其塑性行为.金属学报.2002,38:1091-1096.
    [114] Wang M.L., Chen G.L., Hui X., Zhang Y., Bai Z.Y. Optimized interface and mechanicalproperties of W fiber/Zr-based bulk metallic glass composites by minor Nb addition.Intermetallics[J].2007,15:1309-1315.
    [115] Xie G., Louzguine-Luzgin D.V, Song L., Kimura H., Inoue A. Dual phase metallic glassycomposites with large-size and ultra-high strength fabricated by spark plasma sintering.Intermetallics[J].2009,17:512-516.
    [116] Lee P.Y., Hung S.S., Hsieh J.T., Lin Y.L., Lin C.K. Consolidation of amorphous Ni-Zr-Ti-Sipowders by vacuum hot-pressing method. Intermetallics[J].2002,10:1277-1282.
    [117] Surreddi K.B., Scudino S., Sakaliyska M., Prashanth K.G., Sordelet D.J., Eckert J.Crystallization behavior and consolidation of gas-atomized Al84Gd6Ni7Co3glassy powder. Journalof Alloys and Compounds[J].2010,491:137-142.
    [118] Lin H.M., Chen C.Y., Tsay C.Y., Hsu C.F., Lee P.Y. Microstructure and mechanical propertiesof mechanically alloyed Al2O3/Ti-Cu-Ni-Sn bulk metallic glass composites prepared by vacuumhot-pressing. Journal of Alloys and Compounds[J].2010,504:110-113.
    [119] Xie G., Louzguine-Luzgin D.V., Kimura H., Inoue A. Nearly full density Ni52.5Nb10Zr15Ti15Pt7.5bulk metallic glass obtained by spark plasma sintering of gas atomized powders. AppliedPhysics Letters[J].2007,90:241902-241904.
    [120]陈国清,张凯锋,王国峰,韩文波.放电等离子烧结Al2O3-ZrO2纳米复相陶瓷及其力学性能.航空材料学报.2004,24:1-6.
    [121]宗霞.晶粒抑制剂对SPS烧结的WC基硬质合金的组织与性能的影响[硕士论文].北京:中国石油大学.2011.
    [122]刘卫强,岳明,刘燕琴,张久兴.放电等离子烧结技术制备Tb-Fe-Co/Ti复合梯度磁光靶材.粉末冶金技术.2005,23:52-54.
    [123]郑思维. SPS烧结制备TaC陶瓷及其组织与性能研究[硕士论文].哈尔滨:哈尔滨工业大学.2011.
    [124] Sherif El-Eskandarany M., Saida J., Inoue A. Mechanically induced devitrifications ofball-milled Zr70Pd20Ni10glassy alloy powders. Journal of Materials Research[J].2003,18:250-253.
    [125]张久兴,刘科高.放电等离子烧结技术的发展和应用.粉末冶金技术.2002,20:129-134.
    [126]罗锡裕.放电等离子烧结材料的最新进展.粉末冶金工业.2001,11:7-16.
    [127]冯海波,周玉,贾德昌.放电等离子烧结技术的原理及应用.材料科学与工艺.2003,11:327-331.
    [128]杨俊逸,李小强,郭亮,陈维平,李元元.放电等离子烧结(SPS)技术与新材料研究.材料导报.2006,20:94-97.
    [129]刘科高. MA-SPS制备CoSb3和RExCo4Sb(12-x)的热电性能及其机理研究[硕士论文].北京:北京工业大学.2004.
    [130]高濂.放电等离子烧结技术.无机材料学报.1997,12:129-133.
    [131]张东明,傅正义.放电等离子加压烧结(SPS)技术特点及应用.武汉工业大学学报.1999,21:15-7.
    [132] Maizza G., Grasso S., Sakka Y. Moving finite-element mesh model for aiding spark plasmasintering in current control mode of pure ultrafine WC powder. Journal of Materials Science[J].2009,44:1219-1236.
    [133] Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metallurgy[J].2002,45:322-328.
    [134] Johnson D.L., Rusin R.P., Hansen J.D. Application of a new sintering model. Advances inPowder Metallurgy.1992,3:17-24.
    [1]张鉴. ZrO2增强Zr基大块非晶复合材料制备工艺探索及其力学性能研究[硕士论文].上海:上海交通大学.2009.
    [2] Mamedov V. Spark plasma sintering as advanced PM sintering method. PowderMetallurgy.2002,45:322-328.
    [3] Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by sparkplasma sintering. Trans Tech Publ.1999,308:83-88.
    [4]李维火.块体非晶合金及其复合材料微观力学性能研究[博士论文].上海:上海大学.2005.
    [5] Oliver WC, Pharr GM. Improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments. Journal ofMaterials Research.1992,7:1564-1583.
    [1] Klement W, Willens R.H., Duwez P. Non-crystalline structure in solidified Gold-Silicon alloys.Nature[J].1960,187:869-70.
    [2] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. ActaMaterialia[J].2000,48:279-306.
    [3] Inoue A, Saito T, Yamamoto H, Masumoto T. Production of amorphous La-Al-Ni and Zr-Al-Nialloy tubes by a metallic-mould casting method. Journal of Materials Science Letters[J].1993,12:946-8.
    [4] Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Preparation of16mm diameter rod ofamorphous Zr65Al7.5Ni10Cu17.5alloy. Materials Transactions, JIM[J].1993,34:1234-1237.
    [5] Inoue A, Kita K, Zhang T, Masumoto T. Amorphous La55Al25Ni20alloy prepared by waterquenching. Materials Transactions, JIM[J].1989,30:722-725.
    [6] Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphousPd40Cu30Ni10P20alloy cylinder of72mm in diameter. Materials Transactions, JIM[J].1997,38:179-83.
    [7] Lou H.B., Wang X.D., Xu F, Ding S.Q., Cao Q.P., Hono K, et al.73mm-diameter bulk metallicglass rod by copper mould casting. Applied Physics Letters[J].2011,99(5):910-912.
    [8] Kawamura Y, Inoue A, Kojima A, Masumoto T. Fabrication of nanocrystalline Fe86Zr7B6Cu1soft-magnetic compacts with high saturation magnetization. Journal of Applied Physics[J].1994,76:5545-551.
    [9] Shingu P.H. Metastability of amorphous phases and its application to the consolidation ofrapidly quenched powders. Materials Science and Engineering A[J].1988,97:137-141.
    [10] Ishihara S, Zhang W, Inoue A. Hot pressing of Fe-Co-Nd-Dy-B glassy powders in supercooledliquid state and hard magnetic properties of the consolidated alloys. Scripta Materialia[J].2002,47:231-235.
    [11] Liebermann H.H. Warm consolidation and cladding of glassy alloy ribbons. Materials Scienceand Engineering A[J].1980,46:241-248.
    [12] Xie G, Louzguine-Luzgin D.V., Kimura H, Inoue A. Nearly full density Ni52.5Nb10Zr15Ti15Pt7.5bulk metallic glass obtained by spark plasma sintering of gas atomized powders. Applied PhysicsLetters[J].2007,90:241901-3.
    [13] Maizza G, Grasso S, Sakka Y. Moving finite-element mesh model for aiding spark plasmasintering in current control mode of pure ultrafine WC powder. Journal of Materials Science[J].2009,44:1219-1236.
    [14] Xie G, Louzguine-Luzgin D.V, Kimura H, Inoue A, Wakai F. Large-size ultrahigh strengthNi-based bulk metallic glassy matrix composites with enhanced ductility fabricated by spark plasmasintering. Applied Physics Letters[J].2008,92:121907-121910.
    [15] Xie G, Louzguine-Luzgin D.V, Kimura H, Inoue A. Microstructure and mechanical propertiesof crystalline particulates dispersed Ni-based metallic glassy composites fabricated by spark plasmasintering. Intermetallics[J].2010,18:851-858.
    [16] Xie G, Louzguine-Luzgin D.V, Fukuhara M, Kimura H, Inoue A. Cu particulate dispersedCu50Zr45Al5bulk metallic glassy composite with enhanced electrical conductivity. Intermetallics[J].2010,18:1973-1977.
    [17] Shin S, Kim T.S, Kang S.K. The influence of spark plasma sintering temperature on themechanical properties and corrosion resistance of Zr65Al10Ni10Cu15metallic glass powder.Intermetallics[J].2010,18:2005-2008.
    [18] Harimkar S.P., Paital S.R., Singh A, Aalund R, Dahotre N.B. Microstructure and properties ofspark plasma sintered Fe-Cr-Mo-Y-B-C bulk metallic glass. Journal of Non-Crystalline Solids[J].2009,355:2179-2182.
    [19] Qi M, Fecht H.J. On the thermodynamics and kinetics of crystallization of aZr-Al-Ni-Cu-based bulk amorphous alloy. Materials Characterization[J].2001,47:215-218.
    [20] Chathoth S.M, Damaschke B, Embs J.P, Samwer K. Dynamics in Cu46Zr42Al7Y5melts:Interplay between packing density and viscosity. Applied Physics Letters.2009,94:201906-3.
    [21] Xu D, Duan G, Johnson W.L. Unusual glass-forming ability of bulk amorphous alloys based onordinary metal copper. Physical Review Letters[J].2004,92:245504-245510.
    [22] Wang D.J., Huang Y.J., Shen J, Wu Y.Q., Huang H, Zou J. Temperature influence on sinteringwith concurrent crystallization behavior in Ti-based metallic glassy powders. Materials Science andEngineering A[J].2010,527:2662-2668.
    [23] Jin H.J., Wen J, Lu K. Shear stress induced reduction of glass transition temperature in a bulkmetallic glass. Acta Materialia[J].2005,53:3013-3020.
    [24] Angell C.A. Formation of glasses from liquids and biopolymers. Science[J].1995,267:1924-1935.
    [25] Turnbull D, Cohen M.H. On the free-volume model of the liquid-glass transition. The Journalof Chemical Physics[J].1970,52:3038-3041.
    [26] Cohen M.H., Turnbull D. Molecular transport in liquids and glasses. The Journal of ChemicalPhysics[J].1959,31:1164-1169.
    [27] Kelton K.F., Spaepen F. Kinetics of structural relaxation in several metallic glasses observed bychanges in electrical resistivity. Physical Review B[J].1984,30:5516-5524.
    [28] Duine P.A, Sietsma J, van den Beukel A. Defect production and annihilation near equilibriumin amorphous Pd40Ni40P20investigated from viscosity data. Acta Metallurgica Et Materialia[J].1992,40:743-751.
    [29]黄培云,金展鹏,陈振华.粉末冶金基础理论与新技术.长沙:中南工业大学出版社.1995:125-136.
    [30] Hulbert D.M., Anders A, Andersson J, Lavernia E.J., Mukherjee A.K. A discussion on theabsence of plasma in spark plasma sintering. Scripta Materialia[J].2009,60:835-838.
    [31] Xie G, Ohashi O, Yamaguchi N, Song M, Mitsuishi K, Furuya K, et al. Behavior of oxide filmat interface between particles of Al-Mg alloy powder compacts prepared by pulse electric currentsintering. Japanese Journal of Applied Physics[J], Part1: Regular Papers and Short Notes andReview Papers.2003,42:4725-4728.
    [32]惠希东,陈国良.块体非晶合金.北京:化学工业出版社.2006:200-201.
    [1] Wang W.H., Dong C, Shek C.H. Bulk metallic glasses. Materials Science and Engineering R:Reports[J].2004,44:5-10.
    [2] Hui X., Dong W., Chen G.L., Yao K.F. Formation, microstructure and properties of long-periodorder structure reinforced Mg-based bulk metallic glass composites. Acta Materialia[J].2007,55:907-920.
    [3] Kato H., Inoue A. Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloyscontaining ZrC particles. Materials Transactions JIM[J].1997,38:793-800.
    [4] Eckert J., Kühn U., Mattern N., He G., Gebert A. Structural bulk metallic glasses with differentlength-scale of constituent phases. Intermetallics[J].2002,10:1183-1190.
    [5] Hays C.C., Kim C.P., Johnson W.L. Microstructure controlled shear band pattern formation andenhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendritedispersions. Physical Review Letters[J].2000,84(13):2901-2903.
    [6] Fan C., Inoue A. Ductility of bulk nanocrystalline composites and metallic glasses at roomtemperature. Applied Physics Letters[J].2000,77:46-48.
    [7] Choi-Yim H., Busch R., K ster U., Johnson W.L. Synthesis and characterization of particulatereinforced Zr57Nb5Al10Cu15.4Ni12.6bulk metallic glass composites. Acta Materialia[J].1999,47:2455-2462.
    [8] Lin H.M., Chen C.Y., Tsay C.Y., Hsu C.F., Lee P.Y. Microstructure and mechanical properties ofmechanically alloyed Al2O3/Ti-Cu-Ni-Sn bulk metallic glass composites prepared by vacuumhot-pressing. Journal of Alloys and Compounds[J].2010,504:110-113.
    [9] Venkateswara Rao K.T., Ritchie R.O. Fatigue crack propagation resistance of ductileTiNb-reinforced gamma-TiAl intermetallic matrix composites. Material Science and EngineeringA[J].1992,153:479-485.
    [10] Krstic V.V, Nicholson P.S, Hoagland R.G. Toughening of glasses by metallic particles. Journalof the American Ceramic Society[J].1981,64:499-504.
    [11] Hing P., Groves G.W. The strength and fracture toughness of polycrystalline magnesium oxidecontaining metallic particles and fibres. Journal of Materials Science[J].1972,7:427-434.
    [12] Sigl L.S, Exner H.E. Experimental study of the mechanics of fracture in WC-Co alloys.Metallurgical transactions A, Physical metallurgy and materials science[J].1987,18A:1299-1308.
    [13] Qiao J.W., Zhang Y, Liaw P.K., Chen G.L. Micromechanisms of plastic deformation of adendrite/Zr-based bulk-metallic-glass composite. Scripta Materialia[J].2009,61:1087-1090.
    [14] Yang B., Liaw P.K., Wang G., Morrison M., Liu C.T., Buchanan R.A., et al. In-situthermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensileexperiments. Intermetallics[J].2004,12:1265-1274.
    [15] Lewandowski J.J., Greer A.L. Temperature rise at shear bands in metallic glasses. NatureMaterials[J].2006,5:15-18.
    [16] Fan C., Li H., Kecskes L.J, Tao K., Choo H., Liaw P.K., et al. Mechanical behavior of bulkamorphous alloys reinforced by ductile particles at cryogenic temperatures. Physical ReviewLetters[J].2006,96(14):145506-145510.
    [17] Méar F.O., Wada T., Louzguine-Luzgin D.V, Inoue A. Highly inhomogeneous compressiveplasticity in nanocrystal-toughened Zr-Cu-Ni-Al bulk metallic glass. Philosophical MagazineLetters[J].2009,89:276-281.
    [18] Pauly S., Liu G., Gorantla S., Wang G., Kühn U., Kim D.H., et al. Criteria for tensile plasticityin Cu-Zr-Al bulk metallic glasses. Acta Materialia[J].2010,58:4883-4890.
    [19] Fornell J., Rossinyol E., Suri ach S., Baró M.D., Li W.H., Sort J. Enhanced mechanicalproperties in a Zr-based metallic glass caused by deformation-induced nanocrystallization. ScriptaMaterialia[J].2010,62:13-16.
    [20] Yu H.B., Hu J., Xia X.X., Sun B.A., Li X.X., Wang W.H, et al. Stress-induced structuralinhomogeneity and plasticity of bulk metallic glasses. Scripta Materialia[J].2009,61:640-643.
    [21] Masumoto T., Maddin R. The mechanical properties of palladium20%silicon alloy quenchedfrom the liquid state. Acta Metallurgica[J].1971,19:725-741.
    [22] Donovan P.E. Compressive deformation of amorphous Pd40Ni40P20. Materials Science andEngineering A[J].1988,98:487-490.
    [23] Donovan P.E. A yield criterion for Pd40Ni40P20metallic glass. Acta Metallurgica[J].1989,37:445-456.
    [24]汤莹莹. Zr基块体非晶合金过冷液相区力学性能及本构关系研究[硕士论文].武汉:华中科技大学.2009.
    [25] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses.Acta Metallurgica[J].1977,25:407-415.
    [26]王彦波. TiNb记忆合金的显微组织,力学性能与腐蚀行为[博士论文].哈尔滨:哈尔滨工程大学.2006.
    [27]郭贻成,王震西.非晶态物理学.北京:科学出版社;1984:57-67.
    [28] Argon A.S. Plastic deformation in metallic glasses. Acta Metallurgica[J].1979,27:47-58.
    [29] Nieh T.G., Schuh C., Wadsworth J., Li Y. Strain rate-dependent deformation in bulk metallicglasses. Intermetallics[J].2002,10:1177-1182.
    [30] Schuh C.A., Nieh T.G. A nanoindentation study of serrated flow in bulk metallic glasses. ActaMaterialia[J].2003,51:87-99.
    [31] Lee S.C., Lee C.M., Yang J.W., Lee J.C. Microstructural evolution of an elastostaticallycompressed amorphous alloy and its influence on the mechanical properties. Scripta Materialia[J].2008,58:591-594.
    [32] González S., Chen N., Zhang Q.S., Louzguine-Luzgin D.V, Perepezko J.H., Inoue A. Effect ofshear bands initiated in the pre-yield region on the deformation behaviour of Zr-based metallicglasses. Scripta Materialia[J].2011,64:713-716.
    [33] Ke H.B., Wen P., Peng H.L., Wang W.H., Greer A.L. Homogeneous deformation of metallicglass at room temperature reveals large dilatation. Scripta Materialia[J].2011,64:966-910.
    [34] Ott R.T., Sansoz F., Molinari J.F., Almer J., Ramesh K.T., Hufnagel T.C. Micromechanics ofdeformation of metallic-glass-matrix composites from in situ synchrotron strain measurements andfinite element modeling. Acta Materialia[J].2005,53:1883-1893.
    [35] Wang Y.B., Qu D.D., Wang X.H., Cao Y., Liao X.Z., Kawasaki M., et al. Introducing astrain-hardening capability to improve the ductility of bulk metallic glasses via severe plasticdeformation. Acta Materialia[J].2012,60:253-60.
    [36] Zhang J.L., Yu H.B., Lu J.X., Bai H.Y., Shek C.H. Enhancing plasticity of Zr46.75Ti8.25Cu7.5Ni10Be27.5bulk metallic glass by precompression. Applied Physics Letters[J].2009,95(7):071906-071909.
    [37] Zhang Y., Wang W.H., Greer A.L. Making metallic glasses plastic by control of residual stress.Nature Materials[J].2006,5:857-860.
    [38] Park K.W., Lee C.M., Wakeda M., Shibutani Y., Fleury E., Lee J.C. Homogeneous deformationof bulk amorphous alloys during elastostatic compression and its packing density dependence.Scripta Materialia[J].2008,59:710-713.
    [1] Lund A.C., Schuh C.A. The Mohr-Coulomb criterion from unit shear processes in metallic glass.Intermetallics[J].2004,12:1159-1165.
    [2] Gilman J. Flow via dislocations in ideal glasses. Journal of Applied Physics[J].1973,44:675-679.
    [3] Choi-Yim H., Busch R., K ster U., Johnson W. Synthesis and characterization of particulatereinforced Zr57Nb5Al10Cu15.4Ni12.6bulk metallic glass composites. Acta Materialia[J].1999,47:2455-2462.
    [4] Lin H.M., Chen C.Y, Tsay C.Y., Hsu C.F., Lee P.Y. Microstructure and mechanical properties ofmechanically alloyed Al2O3/Ti-Cu-Ni-Sn bulk metallic glass composites prepared by vacuumhot-pressing. Journal of Alloys and Compounds[J].2011,504:110-113.
    [5]叶大伦,热力学.实用无机物热力学数据手册.北京:冶金工业出版社.1981:298-303.
    [6] Zhang Y.L., Jin X.J., Rong Y.H., Hsu T.Y., Jiang D.Y., Shi J.L. On the t→m martensitictransformation in Ce-Y-TZP ceramics. Acta Materialia[J].2006,54:1289-1295.
    [7]边赞.大体积非晶材料的研究[博士学位论文].北京:北京科技大学.2001.
    [8] Pan D.G., Zhang H.F., Wang A.M., Hu Z.Q. Enhanced plasticity in Mg-based bulk metallic glasscomposite reinforced with ductile Nb particles. Applied Physics Letters[J].2006,89(26):261904-261907.
    [9] Sun Y., Zhang H.F., Wang A.M., Fu H.M., Hu Z.Q., Wen C.E., et al. Mg-based metallicglass/titanium interpenetrating phase composite with high mechanical performance. Applied PhysicsLetters[J].2009,95(17):171910-171912.
    [10] Jang J.S., Ciou J.Y., Li T.H., Huang J.C., Nieh T.G. Dispersion toughening of Mg-based bulkmetallic glass reinforced with porous Mo particles. Intermetallics[J].2010,18:451-458.
    [11] Jang J.S., Jian S.R., Li T.H., Huang J.C., Tsao C.Y.A., Liu C.T. Structural and mechanicalcharacterizations of ductile Fe particles-reinforced Mg-based bulk metallic glass composites.Journal of Alloys and Compounds[J].2009,485:290-294.
    [12] Jang J.S., Chang Y.S., Li T.H., Hsieh P.J., Huang J.C, Tsao C.Y.A. Plasticity enhancement ofMg58Cu28.5Gd11Ag2.5based bulk metallic glass composites dispersion strengthened by Ti particles.Journal of Alloys and Compounds[J].2010,504:102-105.
    [13] Choi-Yim H., Busch R, K ster U., Johnson W.L. Synthesis and characterization of particulatereinforced Zr57Nb5Al10Cu15.4Ni12.6bulk metallic glass composites. Acta Materialia[J].1999,47:2455-2462.
    [14] Xie G., Louzguine-Luzgin D.V, Kimura H., Inoue A. Microstructure and mechanical propertiesof crystalline particulates dispersed Ni-based metallic glassy composites fabricated by spark plasmasintering. Intermetallics[J].2010,18:851-858.
    [15] Xie G., Louzguine-Luzgin D.V., Wakai F., Kimura H., Inoue A. Microstructure and propertiesof ceramic particulate reinforced metallic glassy matrix composites fabricated by spark plasmasintering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology[J].2008,148:77-81.
    [16] Li J.B., Jang J.S., Jian S.R., Chen K.W., Lin J.F., Huang J.C. Plasticity improvement ofZrCu-based bulk metallic glass by ex situ dispersed Ta particles. Materials Science and EngineeringA[J].2011,528:8244-8248.
    [17]王彦波. TiNb记忆合金的显微组织、力学性能与腐蚀行为[博士论文].哈尔滨:哈尔滨工程大学.2006.
    [18]殷家悦,张忠提,艾红军,司文捷,包扬.钇稳定氧化锆基底材料与饰面瓷结合性能的实验研究.华西口腔医学杂志.2009,27:669-672.
    [19]尹健. Mg-(Cu, Ni)-(Gd, Nd)金属玻璃的形成能力、力学和腐蚀行为[博士论文].上海:上海交通大学.2010.
    [20] Ren H.T., Pan J., Chen Q., Chan K.C., Liu Y., Liu L. Enhancement of plasticity and toughnessin monolithic Zr-based bulk metallic glass by heterogeneous microstructure. Scripta Materialia[J].2011,64:609-612.
    [21] Yang Y., Ye J., Lu J., Liu C. Dual character of stable shear banding in bulk metallic glasses.Intermetallics[J].2011,19:1005-1013.
    [22] Hufnagel T.C., El-Deiry P., Vinci R.P. Development of shear band structure during deformationof a Zr57Ti5Cu20Ni8Al10bulk metallic glass. Scripta Materialia[J].2000,43:1071-1075.
    [1] Hui X.D., Kou H.C., He J.P., Wang Y.L., Dong W., Chen G.L. Preparation, microstructure andmechanical properties of Zr-based bulk amorphous alloys containing tungsten. Intermetallics[J].2002,10:1065-1069.
    [2] Louzguine-Luzgin D.V., Vinogradov A., Li S., Kawashima A., Xie G., Yavari A.R., et al.Deformation and fracture behavior of metallic glassy alloys and glassy-crystal composites.Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science[J].2011,42:1504-1510.
    [3] Xie G., Louzguine-Luzgin D.V., Fukuhara M., Kimura H., Inoue A. Cu particulate dispersedCu50Zr45Al5bulk metallic glassy composite with enhanced electrical conductivity. Intermetallics[J].2010,18:1973-1977.
    [4] Fu X.L., Li Y., Schuh C.A. Mechanical properties of metallic glass matrix composites: Effects ofreinforcement character and connectivity. Scripta Materialia[J].2007,56:617-620.
    [5] Kinaka M., Kato H., Hasegawa M., Inoue A. High specific strength Mg-based bulk metallicglass matrix composite highly ductilized by Ti dispersoid. Materials Science and Engineering A[J].2008,494:299-303.
    [6] Park E., Kim D. Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallicglasses. Acta Materialia[J].2006,54:2597-2604.
    [7] Pampillo C.A. Flow and fracture in amorphous alloys. Journal of Materials Science[J].1975,10:1194-227.
    [8] Pampillo C., Chen H. Comprehensive plastic deformation of a bulk metallic glass. MaterialsScience and Engineering A[J].1974,13:181-188.
    [9] Mukai T., Nieh T., Kawamura Y., Inoue A., Higashi K. Dynamic response of a Pd40Ni40P20bulkmetallic glass in tension. Scripta Materialia[J].2002,46:43-47.
    [10] Lewandowski J.J., Greer A.L. Temperature rise at shear bands in metallic glasses. NatureMaterials[J].2006,5:15-18.
    [11] Kawashima A., Kurishita H., Kimura H., Zhang T., Inoue A. Fracture Toughness ofZr55Al10Ni5Cu30Bulk Metallic Glass by3-Point Bend Testing. Materials transactions JIM[J].2005,46:1725-1731.
    [12] Lowhaphandu P., Lewandowski J. Fracture toughness and notched toughness of bulkamorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Materialia[J].1998,38:1811-1817.
    [13] Zhao Y.Y., Zhao X. Structural relaxation and its influence on the elastic properties and notchtoughness of Mg-Zn-Ca bulk metallic glass. Journal of Alloys and Compounds[J].2012,515:154-160.
    [14] Qu R.T., Calin M., Eckert J., Zhang Z.F. Metallic glasses: Notch-insensitive materials. ScriptaMaterialia[J].2012,66:733-736.
    [15] Hassan H.A., El-Shabasy A.B., Lewandowski J.J. The effects of changes in test temperatureand loading conditions on fracture toughness of a β toughened Zr-based bulk metallic glasscomposite. Materials Science and Engineering A[J].2012,540:97-101.
    [16] Guo S.F., Chan K.C., Liu L. Notch toughness of Fe-based bulk metallic glass and composites.Journal of Alloys and Compounds[J].2011,509:9441-9446.
    [17] Conner R., Rosakis A., Johnson W., Owen D. Fracture toughness determination for aberyllium-bearing bulk metallic glass. Scripta Materialia[J].1997,37:1373-1378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700