用户名: 密码: 验证码:
几种金属材料弯曲微动疲劳试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯曲微动疲劳现象广泛存在于现代工业各领域中,例如火车轮轴、火车牵引电机转轴及小齿轮轴、航空发动机和架空电缆等。弯曲微动疲劳可导致关键零部件的失效甚至灾难性事故,但是目前该问题的研究尚少,且不够系统和深入。因此系统研究弯曲微动疲劳的行为和损伤机理,不仅在揭示微动疲劳损伤机理,完善微动摩擦学理论有重要的科学意义,而且在抗弯曲微动疲劳失效的实际应用中具有重要的工程指导意义。
     本研究在自主设计、研制的高精度弯曲微动疲劳试验机上,采用点和线接触方式,在不同弯曲载荷、法向接触载荷和循环周次下,对316L奥氏体不锈钢、7075铝合金、LZ50钢和17CrNiMo6钢等材料进行了系统的弯曲微动疲劳试验,建立了不同材料的常规和微动疲劳S-N曲线。在此基础上,采用光学显微镜(OM)、扫描电子显微镜(SEM)、电子能谱仪(EDS)、透射电子显微镜(TEM)和表面形貌仪等微观分析手段,结合微动疲劳断口分析、微动损伤区分析、剖面分析和显微组织TEM分析,系统研究了四种材料弯曲微动疲劳的损伤机理。获得的主要结论如下:
     (1)由于微动作用,弯曲微动疲劳寿命大大低于常规疲劳,寿命可能降到常规疲劳的30%,甚至更低。对于弯曲微动疲劳,交变应力对寿命的影响十分显著,应力水平越高,微动疲劳寿命越低,弯曲微动疲劳的S-N曲线呈“C”曲线型。对应C曲线的鼻子为微动运行的混合区,裂纹最容易萌生、扩展,寿命最低;在C曲线下方为部分滑移区,微动损伤较轻微,寿命较长;在C曲线上方为滑移区,该区域内磨损速率高,表面微裂纹核被磨掉,寿命得以延长。
     (2)微动疲劳的损伤区磨损机制主要表现为磨粒磨损、氧化磨损和剥层,损伤过程可总结为:a)在初始阶段,微动损伤区为环状形态,磨损区域有犁沟和少量氧化物磨屑,没有发现形成微观裂纹,磨损机制为轻微磨粒磨损和氧化磨损;b)随着循环次数的增加,损伤变得严重,出现剥落现象,在此阶段也没有发现表面裂纹和疲劳裂纹萌生,此时磨损机制为磨粒磨损、氧化磨损和剥层;c)随着循环周次的进一步作用,损伤继续加剧,表面倾斜裂纹和剖面微观裂纹均已形成,此时磨损机制仍为磨粒磨损、氧化磨损和剥层;d)次表面疲劳裂纹与接触表面呈一定角度方向扩展,在另一方向与表面倾斜裂纹相连,此时磨损机制为磨粒磨损、氧化磨损和剥层,并伴随着开裂。
     (3)不同于常规弯曲疲劳,弯曲微动疲劳的裂纹萌生于次表层,裂纹源常伴随杂质颗粒或第二相。影响弯曲微动疲劳过程的主要因素包括:材料性质、交变载荷、接触应力、接触几何、加载速率(频率)等。
     (4)微动疲劳裂纹的扩展分为三个阶段,即:阶段Ⅰ—裂纹扩展受接触应力控制,扩展方向与接触表面呈一定角度(-60°),主裂纹同时与独立扩展的表面倾斜裂纹沟通;阶段Ⅱ—裂纹扩展受接触应力和疲劳应力共同控制,扩展角度转向垂直接触表面方向;阶段Ⅲ—裂纹扩展仅受疲劳应力控制,扩展行为与常规疲劳一致,其扩展方向垂直于接触表面。
     (5)微动疲劳的损伤区显微组织和亚结构与材料的原始组织关系密切。TEM分析揭示,显微组织和亚结构的演变分两种类型。对于BCC结构的钢铁材料和高层错能FCC结构的铝合金,在交变应力作用下,微动疲劳裂纹的形核以位错胞变形机制形成,而对于低层错能的奥氏体不锈钢,微动疲劳裂纹的形核以孪生机制进行。
Failure phenomena of bending fretting fatigue broadly occur in the modern industrial fields, such as railway wheel-axles, electrical motor shaft and pinion shaft of train traction motors, aircraft engines, overhead conductors, and so on. So far, the bending fretting fatigue, which may lead to the failure of key parts or even cause disastrous accidents, has been rarely studied, and the understanding of its failure mechanism is still not systematical and thorough. Thus, a systematical study on the running behavior and damage characteristics of bending fretting fatigue not only has a great scientific significance to reveal the fretting fatigue damage mechanism and to improve the fretting theory, but also offers some engineering guides for practical applications of anti-failure of bending fretting fatigue.
     On a self-designed high-precision bending fretting fatigue test rig with the contact configurations of point and line, the bending fretting fatigue tests of316L austenitic stainless steel,7075aluminum alloy, LZ50steel and17CrNiMo6steel has been carried out under different bending loads, normal contact loads and cycle numbers. The S-N curves of conventional and fretting fatigue for non-identical materials were set up accordingly. Base on this, micro-analysis methods of optical microscope(OM), scanning electron microscopy(SEM), electron energy disperse spectroscopy(EDS), transmission electron microscope(TEM) and surface profile-meter were used to analyze the fracture surface, fretting damage zone, cross-section and microstructure of the bending fretting fatigue. The damage mechanisms of bending fretting fatigue for the four materials have been investigated systematically. The main obtained conclusions are summarized as follows:
     (1) The bending fretting fatigue life was much shorter than that of plain fatigue due to the fretting actions, which might decrease to30%, or even lower. The life of bending fretting fatigue was significantly influenced by the alternating stresses. The higher stress level was, the lower fatigue life occurred. The S-N curves of bending fretting fatigue appeared shapes of C type. The nose-shaped part of the C-curve was always corresponding to the mixed fretting regime, where the cracks were easy to initiate and propagate, and the life was the lowest. The partial slip regime located beneath the C-curve, where the fretting damage was slight and the life was longer. Above the C-curve, the slip regime presented higher wear rate, where the surface crack nucleuses were wiped off, resulting in lengthened the life.
     (2) The wear mechanisms of the fretting damage zone were abrasive wear, oxidative wear and delamination, and the evolution of fretting damage can be summarized as follows: a) In the initial stage, the damage zone exhibited the annular morphology, and some ploughing grooves, few oxidative debris particles and no crack were found in the wear zone, when the wear mechanisms were slight abrasive and oxidative wear. b) With the increase of the cycles, the damage was aggravated and the delamination also occurred. Also, no surface crack and fatigue crack initiated in this stage. However, the wear mechanisms of fretting damage zone were changed to abrasive wear, oxidative wear and delamination. c) The damage was further aggravated with the further increase of the cycles. The surface incline cracks and cross-section micro-cracks have been formed. The wear mechanisms has been never changed during this stage, d) Finally, the subsurface fatigue crack propagated along a direction with a small angle to the contact surface and linked to the surface incline crack at the another side. The wear mechanisms of this stage were abrasive wear, oxidative wear and delamination accompanied with cracking.
     (3) Different from the plain bending fatigue, the bending fretting fatigue cracks initiated at the subsurface usually accompanied with some impurity particles or second phases. The main influencing factors of the bending fretting fatigue process included:material properties, cyclic loads, contact stresses, contact geometries, loading velocity (frequency), and so on.
     (4) The fretting fatigue crack propagation can be divided into3stages:Stage Ⅰ—the direction of crack propagation was at a certain angle (~60°) to the contact surface which controlled by the contact stresses, and the main crack linked to the surface incline cracks which propagated alone; Stage Ⅱ—the crack propagation was both dominated by the contact stress and plain bending fatigue stress, and the propagation angle switched towards the direction vertical to the contact surface; Stage Ⅲ—the crack propagation was controlled only by the plain bending fatigue stress, and the propagation direction was perpendicular to the contact surface, its propagation behavior matched the plain fatigue.
     (5) The microstructure and sub-structure of fretting fatigue damage zone was close related to the original microstructure of the materials. The TEM analysis indicated that there were two types of microstructure and sub-structure evolution laws. For the steels with BCC structure and aluminum alloys with FCC structure and high-level stacking fault energy, the nucleation of fretting fatigue cracks accorded the mechanism of dislocation cell deformation. However, for the austenitic stainless steel with low-level stacking fault energy, its nucleation of fretting fatigue cracks deferred to the twinning mechanism.
引文
[1]Lubrication (Tribology) Education and Research-A Report on the Present Position and Industry's Needs. Her Majesty's Stationery Office, London:1966
    [2]刘维民,薛群基.摩擦学研究及发展趋势.中国机械工程.2000,11(Z1):77-80
    [3]C. St. C. Davison. Bearings since the Stone Age[J]. Engeering,1957, (2)
    [4]C. St. C. Davison. Transporting sixty-ton statues in early A s-syria and Egypt [J]. Technology and Culture,1961, (2)
    [5]J. Harris. The Lubrication of Rolling Bearing[M]. London:Shell-Mex and B. P.1967
    [6]谢友柏,张嗣伟.摩擦学学科学及工程应用现状与发展战略研究-摩擦学在工业节能、降耗、减排中地位与作用的调查.高等教育出版社,2009:1-2
    [7]黎明,雷源忠.摩擦学-前沿领域的探索.中国矿业大学学报.1999,28:117-118
    [8]张嗣伟.我国摩擦学工业应用的节约潜力巨大-谈我国摩擦学工业应用现状的调查.中国表面工程.2008,21(02):50-52
    [9]薛群基.中国摩擦学研究和应用的重要进展.科技导报.2008,(23):3
    [10]赵建明,顾丽英.摩擦学及其在铁路运输中的应用.机车车辆工艺.第2期2002年4月
    [11]崔海霞,陈建敏,周惠娣编著.奇妙的摩擦世界.科学出版社,2010年8月
    [12]罗军.车轴钢表面涂层、改性层的转动微动磨损研究.博士论文
    [13]周仲荣,朱旻昊.复合微动磨损.上海交通大学出版社,2004
    [14]周仲荣,L. Vincent微动磨损.科学出版社,2002
    [15]E. M. Eden, W. N. Rose, Cunningham F L. The endurance of metals. Proc. Instn. Mech.Eng,1911,4:839-974
    [16]H. W. Gillet, E. L. Mack. Notes on some endurance tests of metals. Proc. Am. Soc. TESTING Mater,1924,24:476
    [17]G. A. Tomlinson. The rusting of steel surface in contact. Proc. R. Soc, Ser. A,1927, 115:472-483
    [18]M. H. Zhu, Z. R. Zhou. An experimental study on radial fretting behavior. Tribology International 34 (2001) 321-326
    [19]J. L. Mo, M. H. Zhu, J. F. Zheng, J. Luo, Z. R. Zhou. Study on rotational fretting wear of 7075 aluminum alloy. Tribology International.2010,43(5-6):912-917
    [20]Z. B. Cai, M. H. Zhu, X. Z. Lin. Friction and wear of 7075 aluminum alloy induced by torsional fretting. Transactions of Nonferrous Metals Society of China.2010, 20(3):371-376
    [21]J. F. Zheng, J. Luo, J. L. Mo, J. F. Peng, X. S. Jin, M. H. Zhu. Fretting wear behaviors of a railway axle steel. Tribology International 43(2010) 906-911
    [22]D. A. Hills, D. No well. Mechanics of fretting fatigue. Dordrecht:Kluwer Academic Publishers; 1994
    [23]D. W. Hoeppner, V. Chandrasekaran, C. B. Elliot. Fretting fatigue:current technol-ogy and practices, ASTM STP 1367. American Society for Testing and Materials. 2000. (ISBN 0-8031-2851-7)
    [24]M. H. Zhu, Z. R. Zhou. On the mechanisms of various fretting wear modes. Tribology International,44(2011)1378-1388
    [25]R. B. WATERHOUSE微动磨损与微动疲劳.周仲荣,金雪岩,朱旻昊等译.成都:西南交通大学出版社,1999
    [26]刘道新,唐宾.加弧辉光离子渗NiCr与喷丸强化复合处理对钛合金微动疲劳性能的影响研究.摩擦学学报,2001,21(2):81-85
    [27]周仲荣,朱影音昊.多模式耦合复杂微动失效机制及防护.973项目,2007CB714704,2011.10
    [28]O. Vingsbo, D. Soerberg. On fretting maps. Wear.1988,126(2):131-147
    [29]Z. R. Zhou, S. Fayeulle, L. Vincent. Cracking behavior of various aluminium alloys during fretting wear. Wear.1992,155(2):317-330
    [30]Z. R. Zhou, L. Vincent. Effect of external loading on wear maps of alumiun alloys. Wear.1993,162-164:619-623
    [31]Z. R. Zhou, L. Vincent. Mixed fretting regime. Wear.1995,181-183:531-536
    [32]Z. R. Zhou, L. Vincent. Cracking induced by fretting of aluminum alloys. ASME Journal of Tribology.1997,119:36-42
    [33]朱旻昊,周惠娣,陈建敏,周仲荣.二硫化钼粘结固体润滑涂层的径向和切向微 动损伤的比较研究.摩擦学学报,2002年1月第22卷第1期
    [34]M. H. Zhu, H. Y. Yu, Z. B. Cai, Z. R. Zhou. Radial fretting behaviours of dental feldspathic ceramics against different counterbodies. Wear.2005,259(7-12): 996-1004
    [35]M. H. Zhu, Z. R. Zhou, Ph. Kapsa, L. Vincent. Radial fretting fatigue damage of surface coatings. Wear 250 (2001) 650-657
    [36]蔡振兵,杨莎,林修洲,何莉萍,朱旻昊.扭动微动条件下含水气氛对氧化行为的影响.摩擦学学报,2010,30(6):527-531
    [37]蔡振兵,高姗姗,何莉萍,朱旻昊.聚甲基丙烯酸甲酯的扭动微动摩擦学特性.四川大学学报(工程科学版).2009,41(01):96-101
    [38]Z. B. Cai, M. H. Zhu, H. M. Shen, Z. Z. Zhou, X. S. Jin. Torsional fretting wear behaviors of 7075 aluminum alloy in various relative humidity environment. Wear. 2009,267(1-4):330-339
    [39]Z. B. Cai, M. H. Zhu, J. F. Zheng, X. S. Jin, Z. Z. Zhou. Torsional fretting behaviors of LZ50 steel in ambient air and nitrogen atmosphere. Tribology International 2009, 42(11-12):1676-1683
    [40]Z. B. Cai, M. H. Zhu, J. F. Zheng, X. S. Jin, Z. Z. Zhou. Torsional fretting behaviors of LZ50 steel in air and nitrogen. Tribology International.2009,42(1-2):1676-1683
    [41]Z. B. Cai, M. H. Zhu, Z. R. Zhou. An experimental study torsional fretting behaviors of LZ50 steel. Tribology International 43 (2010) 361-369.
    [42]Z. B. Cai, M. H. Zhu, S. Yang, X. B. Xiao, X. Z. Lin, H. Y. Yu. In situ observations of the real-time wear of PMMA flat against steel ball under torsional fretting. Wear 271 (2011)2242-2251
    [43]Z. B. Cai, S. S. Gao, M. H. Zhu, X. Z. Lin, J. Liu, H. Y. Yu. Tribological behavior of polymethyl methacrylate against different counter-bodies induced by torsional fretting wear. Wear 270 (2011) 230-240
    [44]莫继良,朱旻昊,廖正君,姚崇跃,周仲荣.转动微动的模拟与试验研究.中国机械工程.2009,20(06):631-635.
    [45]王运动,罗军,莫继良,刘家浚,朱旻昊.LZ50钢低温离子渗硫转动微动摩擦学性能研究.中国表面工程.2010,23(04):44-47
    [46]J. L. Mo, Z. J. Liao, M. H. Zhu. Z. R. Zhou. An Experimental Study on the Rotational Fretting Wear Behavior of LZ50 Steel. Advanced Tribology.2010, Part 3, II:300-301
    [47]V. Clement, J. L. Mo, M. H. Zhu, M. X. Shen, Z. R. Zhou. Research on the rotational fretting wear of Ti6A14V alloy against silicon nitride. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology.2010,224(11): 1181-1187
    [48]杨皎,莫继良,C.VERRIER,郑健峰,廖正君,朱旻昊PMMA转动微动摩擦学行为的研究.材料工程.2010,(07):1-5
    [49]廖正君,莫继良,郑健峰,杨皎,周仲荣,朱旻昊.LZ50车轴钢转动微动摩擦学特性研究.机械强度.2010,32(04):566-569.
    [50]J. L. Mo, M.H. Zhu, J.F. Zheng, J.Luo, Z.R.Zhou. Study on rotational fretting wear of 7075 aluminum alloy. Tribology International 43(2010) 912-917
    [51]J. Luo, M. H. Zhu, Y. D. Wang, J. F. Zheng, J. L. Mo. Study on rotational fretting wear of bonded MoS2 solid lubricant coating prepared on medium carbon steel. Tribology International,2011,44(10):1565-1570
    [52]J. Luo, Y. D. Wang, C. Song, J. L. Mo, M. H. Zhu. Rotational fretting wear of ion nitrided medium carbon steel. International Conference on Manufacturing Science and Engineering (ICMSE 2009) Advanced Material Research.2010,97-101: 1532-1541
    [53]J.F. Zheng, S. Yang, M.X. Shen, J.L. Mo, M.H. Zhu. Study on rotational fretting wear under a ball-on-concave contact configuration. Wear 271 (2011) 1552-1562
    [54]B. J. Briscoe, A. Chateauminois, T.C. Lindley, D. Parsonage. Contact damage of poly (methylmethacrylate) during complex microdisplacements. Wear.2000,240(1-2): 27-39
    [55]B. J. Briscoe, A. Chateauminois. Measurements of friction-induced surface strains in a steel/polymer contact. Tribology International.2002,35(4):245-254
    [56]M. H. Zhu, Z. R. Zhou. Dual-motion fretting wear behaviour of 7075 aluminium alloy. Wear.2003,255(1-6):269-275
    [57]朱旻昊.径向与复合微动的运行和损伤机理研究.西南交通大学博士论文.2001
    [58]朱旻昊,周仲荣.GCr15轴承钢的复合微动磨损行为研究.机械工程材料.2003,27(02):10-13
    [59]朱旻昊,周仲荣.7075铝合金复合微动行为的研究.摩擦学学报.2003,23(04):320-325
    [60]M. H. Zhu, Z. R. Zhou. The Damage Mechanisms under Different Fretting Modes of Bonded Molybdenum Disulfide Coating. Materials Science Forum Vols.475-479 (2005) pp.1545-1550
    [61]M. H. Zhu, Z. R. Zhou. Composite Fretting Wear of Aluminum Alloy. Key Engineering Materials Vols.353-358 (2007) pp.868-873
    [62]M. X. Shen, X. Y. Xie, Z. B. Cai, J. F. Zheng, M.H. Zhu. An experiment investigation on dual rotary fretting of medium carbon steel. WEAR,2011,271:1504-1514
    [63]沈明学,谢兴源,蔡振兵,莫继良,朱曼吴.扭转复合微动模拟及其试验研究.机械工程学报,2011年8月第47卷第15期,89-94
    [64]朱旻昊,周仲荣.关于复合式微动的研究.摩擦学学报2001年5月第21卷第3期,182-185
    [65]M. H. Zhu, Z. R. Zhou, Ph. Kapsa, L. Vincent. An experimental investigation on composite fretting mode. Tribology International,2001,34(11):733-738
    [66]J. F. Peng; C. Song; M. X. Shen; J. F. Zheng; Z. R. Zhou; M. H. Zhu. An Experimental Study on Bending Fretting Fatigue Characteristics of 316L Austenitic Stainless Steel. TRIBOLOGY INTERNATIONAL.2011,44(10):1417-1426
    [67]J. F. Peng, J. H. Liu, Z. B. Cai, J. Luo, M. X. Shen, M. H. Zhu. Study on Bending Fretting Fatigue Damages of 7075 Aluminum Alloy. the 38th Leeds Lyon Symposium at INSA of Lyon
    [68]董锡明.德国高速列车ICE重大脱轨事故的启示[J].中国铁路,2000(11):46-49
    [69]G. A. Tomlison. The rusting of steel surface in contact. Proeeeding of the Royal Society.1927, Alls:472-483
    [70]E. J. WARLOW-DAVIES. Fretting corrosion and fatigue strength:brief results of preliminary experiment s [J]. Proceedings of the Institution of Mechanical Engineers, 1941,146:32-38
    [71]K. Nishioka, K. Hirakawa. Bull JSME 1972;15:135-44
    [72]Z. R. Zhou, S. Fayeulle, L. Vincent. Cracking behavior of various aluminum alloys during fretting wear [J].Wear,1992,155:317-330
    [73]M. P. Szolwinski, T. N. Farris. Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy[J]. Wear,1998,221:24-36
    [74]J. F. Matlik, T. N. Farris. High frequency, high temperature fretting fatigue investigations[R]. AIAA-2003-1681,2003
    [75]H. Lee, O. Jin, S. Mall. Effect on dissimilar mating materials on fretting fatigue of TI-6AL-4V[R]. AIAA-2003-1521,2003
    [76]M. Massingham, P. E. Irving. The effect of variable amplitude loading on stress distribution within a cylindrical contact subjected to fretting fatigue[J]. Tribology International,2006,39:1084-1091
    [77]H. Lee, S. Mall. Investigation into effects and interaction of various fretting fatigue variables under slip-controlled mode. Tribology International 39 (2006) 1213-1219
    [78]H. Lee, S. Mall. Fretting behavior of shot peened Ti-6Al-4V under slip controlled mode. Wear 260 (2006) 642-651
    [79]J. Meriaux, S. Fouvry, K. J. Kubiak, S. Deyber. Characterization of crack nucleation in TA6V under fretting-fatigue loading using the potential drop technique. International Journal of Fatigue 32 (2010) 1658-1668
    [80]P. R. Arora, M. S. D. Jacob, M. S. Salit, E. M. Ahmed, M. Saleem, P. Edi. Experimental evaluation of fretting fatigue test apparatus. International Journal of Fatigue 29 (2007) 941-952
    [81]C. Ruiz, P. H. B. Boddington, K. C. Chen. Exp Mech 1984;24:208-17
    [82]M. Ciavarella, D. Dini, G. P. Demelio. In:K. Ravi-Chandar, B. L. Karihaloo, T. Kishi, R. O. Ritchie, J. A. Yokobori, T. Yokobori, editors. Proceedings of the 10th International Conference on Fatigue, Honolulu, December 2001. Pergamon; 2001
    [83]R. W. Neu, J. A. Pape, D. R. Swalla. In:Hoeppner DW, Chandrasekaran V, Elliott CB, editors. Fretting Fatigue:Current Technology and Practices, ASTM STP 1367. West Conshohocken, PA:ASTM; 2000. p.369-88
    [84]M. P. Szolwinski, et al. Mechanics of fretting fatigue crack formation.Wear.1996, 198:93-107
    [85]K. N. Smith, et al. A stress strain function for the fatigue of metals. Journal of Material.1970,15:767-778
    [86]C. D. Lykins, et al. Combined experimental-numerical investigation of fretting fatigue crack initiation.International Journal of Fatigue.2001,23:703-711
    [87]S. Fouvry, P. Kapsa, L. Vincent. In:S. E. Kinyon, D. W. Hoeppner, Y. Mutoh, editors. Fretting Fatigue:Advances in the Basic Understanding and Applications, ASTM STP 1425. West Conshohocken, PA:ASTM; 2003. p.17-32
    [88]K. Dang Van, B. Griveau, O. Message. In:Brown MW, Miller KJ, editors. Biaxial and Multiaxial Fatigue. London:Mech. Eng Pubs; 1989. p.479-96
    [89]沈明学,彭金方,郑健峰,宋川,莫继良,朱旻昊.微动疲劳研究进展.材料工程,2010,12:86-91
    [90]B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, S. V Joshi, G. Sundararajan. Influence of microarc oxidation and hard anodizing on plain fatigue and fretting fatigue behaviour of Al-Mg-Si alloy. Surface & Coatings Technology 202 (2008) 1462-1469
    [91]K. K. Liu, M. R. Hill. The effects of laser peening and shot peening on fretting fatigue in Ti-6A1-4V coupons. Tribology International 42 (2009) 1250-1262
    [92]卫中山,王珉,张明,丁文江.TC4钛合金的微动疲劳行为研究.稀有金属材料与工程,2006年7月第35卷第7期,1050-1052
    [93]A. Vadiraj, M. Kamaraj. Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys. Tribology International 40 (2007) 82-88
    [94]S. Malla, H. K. Kim, E. C. Saladin, W. J. Porter. Effects of microstructure on fretting fatigue behavior of IN100. Materials Science and Engineering A 527 (2010) 1453-1460
    [95]C. Paulin, S. Fouvry, C. Meunier. Finite element modelling of fretting wear surface evolution:Application to a Ti-6A1-4V contact.Wear 264 (2008) 26-36
    [96]S. Fouvry, D. Nowell, K. Kubiak, D. A. Hills. Prediction of fretting crack propagation based on a short crack methodology. Engineering Fracture Mechanics 75 (2008) 1605-1622
    [97]H. Proudhon, J. Y. Buffiere, S. Fouvry. Characterisation of fretting fatigue damage using synchrotron X-ray micro-tomography. Tribology International 39(2006) 1106-1113
    [98]D. Nowell, D. Dini, D. A. Hills. Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics 73 (2006) 207-222
    [99]刘道新,何家文.微动疲劳影响因素及钛合金微动疲劳行为.航空学报,2001年9月第22卷第5期,454-457
    [100]李诗卓,董祥林编著.材料耐磨抗蚀及其表面技术丛书编委会主编.材料的冲蚀磨损与微动磨损.北京:机械工业出版社.1987
    [101]J. Dominguez. Cyelic variations in friction fores and contact stresses during Fretting fatigue. Wear,1998, Vol.218, P43-53
    [102]K. Nakazawa, M. Sumita, N. Maruyama. Effect of contact pressure on fretting fatigue of high strength steel and titanium alloy. In:Standardization of Fretting Fatigue Test Methods and Equipment, STP 1159. ASTM; 1992. p.115-25
    [103]高护生,顾海澄,周惠久.接触压力对微动疲劳强度的影响.西安石油学院学报,1993年9月第3期第8卷
    [104]W. J. Huang, A. H. Chen, B. Hou, et al. Journal of Wuhan University of Technology(武汉理工大学学报)[J],2004,26(9):23
    [105]唐辉.喷丸处理在提高某些核设备寿命方面的应用.核技术,1998年7月第7期第21卷,445-448
    [106]G. H. Majzoobi, A. R. Ahmadkhani. The effects of multiple re-shot peening on fretting fatigue behavior of A17075-T6, Surface & Coatings Technology 205 (2010) 102-109
    [107]H. Lee, S. Mall, S. Sathish. Investigation into effects of re-shot-peening on fretting fatigue behavior of Ti-6A1-4V, Materials Science and Engineering A 390 (2005) 227-232
    [108]N. K. Ramakrishna Naidu, S. Ganesh Sundara Raman. Effect of shot blasting on plain fatigue and fretting fatigue behaviour of Al-Mg-Si alloy AA6061, International Journal of Fatigue 27 (2005) 323-331
    [109]A. King, A. Steuwer, C. Woodward, P.J. Withers. Effects of fatigue and fretting on residual stresses introduced by laser shock peening. Materials Science and Engineering A 435-436 (2006) 12-18
    [110]B. Rajasekaran, S. Ganesh Sundara Raman. Plain fatigue and fretting fatigue behaviour of plasma nitrided Ti-6Al-4V, Materials Letters 62 (2008) 2473-2475
    [111]S. Ganesh Sundara Raman, M. Jayaprakash. Influence of plasma nitriding on plain fatigue and fretting fatigue behaviour of AISI 304 austenitic stainless steel. Surface & Coatings Technology 201 (2007) 5906-5911
    [112]G. H. Majzoobi, M. Jaleh. Duplex surface treatments on AL7075-T6 alloy against fretting fatigue behavior by application of titanium coating plus nitriding. Materials Science and Engineering A 452-453 (2007) 673-681
    [113]石冢弘道(日).姚英译.车轴微振磨损的对策.国外内燃机,1993,No 12(总No.282):48-52
    [114]赵云生.日本新干线车轴淬火技术应用综述.国外铁道车辆,2011年9月第5期第48卷,9-12
    [115]王树清,周振国,詹新伟.车轴感应淬火技术研究.金属热处理,2001,26(8):31-34
    [116]S. Saritas, R. P. M. Procter, W. A. Grant. Effect of ion implantation on fatigue, fretting and fretting-corrosion of Ti-6Al-4V. Materials Science and Engineering:A Volume 115,1 August 1989, Pages 307-314
    [117]S. Chakravarty, R. G. Andrews, P. C. Patnaik, A. K. Koul. Research summary:the effect of surface modification on fretting fatigue in titanium alloy turbine components. JOM (1995) 47 (4),31-35
    [118]G. S. Was, J. D. Demaree, V. Rotberg, K. Kim. Corrosion and mechanical behavior of ion implanted bearing steels for improved fretting behavior. Surface and Coatings, Technology Volume 66, Issues 1-3, August 1994, Pages 446-452
    [119]B. S. Xu, S. Zhu, S. N. Ma, et al. Advanced surface engineering and its progress. Contributions of Surface Engineering to Modern Manufacturing and Remanufacturing. Proceedings of 3rd International Conference on Surface Engineering. Chengdu:Southwest Jiaotong University Press,2002,11-16
    [120]X. H. Zhang, D. X. Liu. Effect of TiN/Ti multilayer on fretting fatigue resistance of Ti-811 alloy at elevated temperature, Trans. Nonferrous Met. Soc. China 19(2009) 557-562
    [121]X. H. Zhang, D. X. Liu, H. B. Tan, X. F. Wang. Effect of TiN/Ti composite coating and shot peening on fretting fatigue behavior of TC17 alloy at 350 ℃, Surface & Coatings Technology 203 (2009) 2315-2321
    [122]A. Vadiraj, M. Kamaraj. Damage characterization of unmodified and surface modified medical grade titanium alloys under fretting fatigue condition. Materials Science and Engineering A 416 (2006) 253-260
    [123]B. Rajasekaran, S. Ganesh Sundara Raman, S. V. Joshi, G. Sundararajan. Effect of microarc oxidised layer thickness on plain fatigue and fretting fatigue behaviour of Al-Mg-Si alloy, International Journal of Fatigue 30 (2008) 1259-1266
    [124]B. Rajasekaran, S. Ganesh Sundara Raman, S. V. Joshi, G. Sundararajan. Performance of plasma sprayed and detonation gun sprayed Cu-Ni-In coatings on Ti-6A1-4V under plain fatigue and fretting fatigue loading, Materials Science and Engineering A 479 (2008) 83-92
    [125]B. Rajasekaran, S. Ganesh Sundara Raman, S. V. Joshi, G. Sundararajan. Influence of detonation gun sprayed alumina coating on AA 6063 samples under cyclic loading with and without fretting. Tribology International 41 (2008) 315-322
    [126]P. J. Golden, A. Hutson, V. Sundaram, J. H. Arps. Effect of surface treatments on fretting fatigue of Ti-6Al-4V. International Journal of Fatigue 29 (2007) 1302-1310
    [127]A. Vadiraj, M. Kamaraj. Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys. Surface & Coatings Technology 200 (2006) 4538-4542
    [128]艾剑波,郭俊贤,覃海鹰,喻溅鉴,崔翰明,杨华高.Ti1023主桨毂中央件的微动疲劳及其防护.直升机技术,2011,2:25-29
    [129](日本)平川贤尔.高速动车用车轴的疲劳设计.国外内燃机车,1997,5:31-33
    [130]A. Saengsai, Y. Miyashita, Y. Mutoh. Effects of humidity and contact material on fretting fatigue behavior of an extruded AZ61 magnesium alloy. Tribology International,2009,42:1346-1351
    [131]刘启跃,周仲荣.脂润滑对looC6钢微动磨损特性的影响.摩擦学学报,1999,Vo1.19,No.2,P102-106.
    [132]Z. R. Zhou, Ph. Kapsa. Grease lubrication in fretting. ASME Joumal of Tribology, 1998, Vol.120, P734-743
    [133]李东紫,支福相等LY12CZ铝合金铆接件微动损伤防护技术研究.航空学报,1989,第12期第10卷,B576-B580
    [134]郭小川,蒋明俊,何灼成,孙玉秋,邓才超.润滑脂摩擦磨损自修复特性.石油学报(石油加工),2010年8月,第4期第26卷,564-570
    [135]宋子濂,史建平,邹定强等.车轴疲劳裂断的宏微观特征和裂纹车轴的寿命预测[J].中国铁道科学,1996,17(2):74-84
    [136]K. Hirakawa(日本)等.高速车轴疲劳设计方法[J].国外铁道车辆,1999(1):34-38
    [137]U. Zerbst, K. Michadler, H. Hintze. Fracture mechanics in railway applications-an overview [J]. Engineering Fracture Mechanics,2005,72:163-194
    [138]Z. R. Zhou, L. Vincent. Cracking induced by fretting of alunium alloys. ASME Journal of Tribology.1997,119:36-42
    [139]J. Beard. Palliative for fretting fatigue. Waterhouse R B, Lindley T C. Fretting Fatigue, ESIS Vol.18. London:Mechanical Engineering Publications,1994,419-436
    [140]彭志亮,左华付,肖先忠.机车电机转轴及小齿轮断裂失效分析.机械工程材料,2011年6月第35卷第6期93-97
    [141]叶武俊,张伟,丁传富等.两种超高强度钢的谱载疲劳行为及断裂机制和形貌的研究[J].材料工程,1992,(2):10-14
    [142]郭严.车轴材料弯曲微动过程的有限元分析.硕士论文,2010
    [143]K. Nakazawa, N. Maruyama, T. Hanawa. Effect of contact pressure on fretting fatigue of austenitic stainless steel. Tribology International 36(2003) 79-85
    [144]N. K. Ramakrishna Naidu, S. Ganesh Sundara Raman. Effect of contact pressure on fretting fatigue behaviour of Al-Mg-Si alloy AA6061. International Journal of Fatigue 27(2005) 283-291
    [145]Z. R. Zhou, L. Vincent. Fretting wear. Science publishing Company,2002
    [146]Z. R. Zhou, K. Nakazawa, M. H. Zhu, N. Maruyama, Ph. Kapsa, L. Vincent. Progress in fretting maps. Tribology International 39 (2006) 1068-1073
    [147]王弘.博士学位论文.40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探 讨,2004
    [148]K. N. Smith, P. Watson, T. H. Topper. A stress strain function for the fatigue of metals. Journal of Materials 1970,15:767-778
    [149]戴起勋,王安东,程晓农.低温奥氏体钢的层错能.钢铁研究学报,2002,14(4):34-37
    [150]于兴福,田素贵,杜洪强,王明罡,孟凡来.元素W,Co对Ni-Al合金层错能的影响.稀有金属材料与工程,2007,36(12):2148-2151
    [151]蒋春松.316L不锈钢弯曲微动疲劳特性的数值模拟研究.西南交通大学,硕士论文,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700