用户名: 密码: 验证码:
三类航危天气预报技术及业务系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪20年代起,航空气象保障就逐渐得到国内外航空公司和气象科技工作者的广泛关注,这主要是因为天气是影响航空安全、正常与效率的最重要因素之一,给航空企业和飞行员提供及时、准确的天气预报,进而提升飞行的安全性是航空气象服务的职责和任务。航空工业的迅猛发展,对航空气象服务提出了更新更高的要求。在诸多的天气因素中,雷暴被称为夏季飞行安全的杀手;雾造成的低能见度常造成机场关闭;风是对飞行影响最大的气象要素,大风可影响飞机正常起降并损坏机场设施。因此,关于这三类典型航空危险性天气的短期预报技术进行深入研究,对于进一步提高航空气象预报业务能力具有重要的现实意义。本论文首先分析了近30年我国三类航危天气的时空分布特征并总结其主要天气型,为了解其气候概率、发生机制以及提高预报水平提供有效的支持;然后通过深入分析三类航危天气的主要物理因子,采用事件概率回归和BP神经网络两种方法建立了三类航危天气的动力-统计预报模型,并对模型的预报性能进行了检验和比较;最后基于软件开发技术构建了能够用于航空气象服务的三类航危天气短期预报业务化系统,目前已投入准业务化运行。主要研究结果如下:
     1、在极端天气气候事件增多的大背景下,研究表明,我国大陆雷暴、雾霾和大风存在不同的时空变化特征。我国雷暴高发区主要位于东南沿海、华南、西南以及青藏高原东部地区,近30年来雷暴日数经历了两个相对多发期和一个相对少发期。雾在我国南方和沿海地区频发,多雾地区主要分布在辽东半岛、山东半岛沿海、福建西北及沿海、江浙沿海、四川盆地以及云南西南部,长江以南地区的雾日数明显多于长江以北地区。近30年来大雾日数整体呈现出减少的趋势,而轻雾日数呈增加趋势。霾日数具有东多西少的空间分布特征,东部地区的霾集中在三个多发区,分别为长江中下游、华北和华南地区;2001年以后霾日数呈现出增加的趋势。大风主要出现在北方地区,频发区主要位于新疆北部、内蒙古中西部、青藏高原东部以及东部沿海区域。
     2、通过统计分析,筛选出了不同预报对象的主要影响物理因子。雷暴预报方程中贡献大的因子反映了水汽含量、动力条件和不稳定能量。雾霾预报方程中的因子主要有水汽含量、全风速、垂直速度和稳定度指数等。大风预报方程中的因子主要有模式输出的U、V分量及对流层中下层的全风速,其次为垂直速度,槽的强度、温度和涡度平流也在方程中占较大比重。
     3、针对全国不同站点,分别建立了基于线性回归理论的三类航危天气事件概率回归预报模型,并对其预报性能进行了检验。对于三类天气,TS评分值在不同区域和不同预报时效均高于气候概率值。雷暴在华南、东部沿海和东北地区预报效果相比其他地区更好。对水平能见度小于10km的雾霾天气,预报评分的空间分布随季节变化而不同,预报效果较好的站点在春季主要分布在西北东南部、华北南部、黄淮东部和江淮中东部;夏季主要分布在两大区域,分别是东北地区南部、华北地区和江南中西部、华南中西部地区;秋冬季分布在东北地区南部、华北地区、黄淮地区以及江淮东部;且冬季在东南沿海、华南预报效果好于秋季。对水平能见度小于1km的雾,预报评分和其气候概率空间分布有较好的一致性,预报评分在东北地区南部、黄淮、江南东部以及西南地区较高。大风天气的预报评分在北方地区整体较高,秋季在东南沿海具有较高的评分。
     4、针对全国不同站点,分别建立了基于非线性动力系统的三类航危天气BP神经网络预报模型,检验了其预报性能并与事件概率回归预报模型进行对比。整体来看,由于输入端预报因子相同,两种预报模型试预报评分的空间分布基本一致。对于雷暴天气,随着预报时效的延长,预报评分明显减小,夜晚的评分较白天偏低,且神经网络预报模型效果明显好于事件概率回归预报模型,在白天的预报时段内更为明显。雾霾神经网络模型对水平能见度小于1km雾的预报好于事件概率回归预报模型。对于大风天气,事件概率回归模型预报效果更好。个例预报分析表明两种预报模型对于三类天气的区域性特征的预报与实况都有较好的一致性。
     5、三类航危天气短期业务预报系统的建立及准业务化运行。针对当前航空气象业务保障中短期预报任务特点和预报需求,综合利用数值预报产品释用技术和软件开发技术,开发了三类航危天气短期业务化预报系统。系统设计共分为五个模块,分别是预报模型构建模块、数据采集入库模块、基本要素和特征物理量计算入库模块、预报数据自动生成模块和预报信息显示模块。本系统实现了数据自动下载入库、单要素或多要素、单一时间或历史上某一时间段的自动预报、地理信息数据接入、预报结果图形化显示等多个功能。本预报系统具有建模方法先进、客观化与自动化程度高、操作简便等优点,可以辅助预报员高效客观地完成三类航危天气短期预报的制作。目前本系统已集成到航空气象灾害预报支持服务系统进行准业务化运行。
Aviation meteorological assurances have attracted wide attention from the airlines and meteorological scientists and technology workers around the world since1920's. This is mainly because that weather is one of the most important factors which affect aviation safety, normal and efficiency. It's the aviation meteorological service's responsibility and task to provide timely and accurate weather forecast for airlines and pilots to enhance flight safety. With the rapid development of the aviation industry, a newer and higher requirement for aviation weather service is needed. Thunderstorms are known as the killer of summer flight in many weather factors. Low visibility caused by fog often results in the closure of the airports. The bump caused by vertical wind shear is the most dangerous mereorological factors which affect flight safety. Gale not only affects the aircraft's normal taking off and landing but also damages airport facilities. Therefore, the in-depth study on the short-term forecast for three kinds of dangerous weather has important practical significance for improving aviation weather forecasting operational capacity. In this paper,the temporal and spatial distribution of three typical aviation dangerous weather for nearly30years were analyzed and their main weather patterns were summarized which can provide effective supports to understand the climatic probability of three typical aviation dangerous weather, pathogenesis and to improve the forecast level;after that analyzed the main physical factors of the three typical aviation dangerous weather and establish the dynamic-statical model using the event probability regression and BP neural network, in addition, the forecasting performancies of two model were tested. at last, the short-term forecasting operational system of three typical aviation dangerous weather which can be used for aviation meteorological services was built basing on software development techniques. The system is being used for quasi-operational running.The main conclusions are as follows:
     1. The results show that there were different spatial and temporal variations of thunderstorms, fog-haze and gale in the past three decades in mainland China in the context of global extreme weather events' increasing. Thunderstorms are more frequent in the southeast coast of China, southwest and eastern Tibetan Plateau region. In the past30years the annual thunderstorm days showed two periods of higher value and a lower period. Fog occurs frequently in south China and the coastal areas such as Liaodong Peninsula, Shandong Peninsula, Fujian, Jiangsu and Zhejiang coastal region, Sichuan Basin and the southwest of Yunnan. The number of foggy days in the south of the Yangtze River region is more significantly than the northern part of the Yangtze River, foggy days in the past30years showed a decreasing trend, howerver the number of mist days showed an increasing trend. Spatial distribution of Haze day showed more in east China and less in west. In east China area, there are three more frequent centers as follows:the middle-lower reaches of the Yangtze River, northern and southern China. Haze days showed an increase trend after2001. Gale mainly occurred in the northern China; such as northern Xinjiang, central and western Inner Mongolia, eastern Tibetan Plateau and the eastern coastal region.
     2. The main physical factors of the different forecasting objects had been selected by using statistical analysis. The top factors in the thunderstorm forecasting equations are water vapor content, dynamic conditions and unstable energy. The top factors in the fog-haze forecasting equations are water vapor content, wind speed and stability index. The top factors in the gale forecasting equations are U, V component of the model output, the middle and lower troposphere wind speed calculated by meridinal wind and zonal wind. In addition, the strength of the trough, temperature and vorticity advection also account for a larger proportion.
     3. Established the probability regression forecasting models basing on linear regression theory for three typical dangerous weather and the models's forecasting performances were tested.the TS score is higher than the climate probability value in different regions and different prediction time. The heidike score of thunderstorms forecast was higher in south China, the eastern coast and northeast. The sites which have good prediction effect on haze and mist that horizontal visibility is less than10km haze are mainly distributed in the southeast part of northwest China, the northern part of north China, the eastern part of Huanghuai, and the middle and eastern past of jiang-huai River in spring. In summer, there are two regions, one is southern part of northeast China and north China, another is the middle and western part of south of the Yangtze River. In autumn and winter, the sites having good forecast performance distribute in the southern part of northeast China, north China,Huang-huai area and eastern part of Jiang-huai and better in winter than autumn in the southeast coast and south China. The spatial distribution of fog's score demonstrates good consistency with the spatial distribution of the number of foggy days.The score is higher in northeast China,huang-huai,eastern part of south of the Yangtze River and southwest region. The gale's forecast performance shows better overall in north China and the score is higher in the southeast coastal in autumn。
     4. Established the BP neural network forecasting models basing on nonlinear dynamic system. for three typical dangerous weather.the models's forecasting performances were tested and compared with the REEP forecasting models.Overall, because of the same input factors of the two models, the spatial distribution of two prediction model scores is basically same. For thunderstorm, With the extension of perdition time the score significantly reduced fast, the score at night is lower than that during the day, and the neural network prediction model is obviously better than regression estimation of event probabilities, which is more obvious in the day time forecast period. BP Neural Network model is better for fog which horizontal visibility less than lkm. The regression estimation of event probabilities showed better performance on gale forecasting. The cases forecast results analysis indicates the regional characteristics of the three types of weather forecasts have more consistent with observations.
     5. Developed short-term forecasting system and achieved a quasi-operational running. According to characteristics of short-term forecasting task for the security of aviation weather services and forecast demand, Depending on the interpolation and explanation method of numerical forecast products and software development technology, the operational forecasting system was developed. The system is divided into five modules including forecasting model construction, data acquisition and storage, basic and characteristic physical element's computing, automatic generation of forecast data, geographic information data access and forecast information displaying. The system has many advantages such as modeling approach reasonably, operating easily and having a higher degree of objection and automation etc. It can help weather forecasters to make the forecasts of three types of dangerous weather efficiently. The system has been integrated into the aviation weather hazard forecasting support system for a quasi-operational running.
引文
[1]赵永德.航空气象科学的现状及发展趋势[J].山东气象,1991,(01):16-18.
    [2]胡家美,李萍.国际航空气象预报的发展趋势[J].广东气象,2009,(04):11-13+19.
    [3]赵树海航空气象学[M].北京:气象出版社.1994
    [4]李春生.雷暴——航空飞行的天敌[J].空中交通管理,2006,(01):38-39.
    [5]张朝光.低能见度对飞行的影响[J].气象,1976,(09):30-32.
    [6]中国民用航空发展第十二个五年规划[J].综合运输,2011,(08):73-84.
    [7]李耀东,高守亭,刘健文.对流能量计算及强对流天气落区预报技术研究[J].应用气象学报,2004,(01):10-20.
    [8]M. Duraisamy, S. K. R. Bhowmik, B. K. Bandyopadhyay. An objective method for predicting occurrence of pre-monsoon (March-May) thunderstorm events over Delhi using stability indices [J]. Mausam,2011,62 (3):329-338.
    [9]许爱华,刘献耀.T106物理量预报场在强对流天气落区预报中的应用[J].江西气象科技,2002,(01):15-18.
    [10]孙明生,汪细明,罗阳,徐华刚,易志安.北京地区强对流天气展望预报方法研究[J].应用气象学报,1996,(03):336-343.
    [11]纪晓玲,王式功,穆建华,陈晓娟,杨侃,辛尧胜.宁夏雷暴天气过程划分及环流分型和环境场特征[J].应用气象学报,2010,(03):329-334.
    [12]郁珍艳,何立富,范广洲,李泽椿,苏永玲.华北冷涡背景下强对流天气的基本特征分析[J].热带气象学报,2011,(01):89-94.
    [13]杨仲江,唐晓峰.逐步消空法在上海雷电潜势预报中的应用[J].气象科学,2009,(06):810-814.
    [14]A. Marroquin, D. J. Raymond. A Linearized Convective Overturning Model for Prediction of Thunderstorm Movement [J]. Journal of the Atmospheric Sciences,1982, 39 (1):146-151.
    [15]雷雨顺,吴宝俊,吴正华.用不稳定能量理论分析和预报夏季强风暴的一种方法[J].大气科学,1978,(04):297-306.
    [16]雷雨顺.强对流天气的几个问题[J].大气科学,1980,(01):94-102.
    [17]周后福,邱明燕,张爱民,翟菁.基于稳定度和能量指标作强对流天气的短时预报指标分析[J].高原气象,2006,(04):716-722.
    [18]刘伟,高艳红.能量参数在中川机场雷暴预测中的应用[J].高原气象,2007,(04):791-797.
    [19]李耀东,刘健文,高守亭.动力和能量参数在强对流天气预报中的应用研究[J].气象学报,2004,(04):401-409.
    [20]F. Wang, Y. J. Zhang, W. S. Dong. A Lightning Activity Forecast Scheme Developed for Summer Thunderstorms in South China [J]. Acta Meteorologica Sinica,2010,24 (5):631-640.
    [21]徐玉貌,唐洵昌,夏文梅.利用天气雷达判断强对流天气和作短时预报的一种客观方法[J].大气科学,1988,(04):434-438.
    [22]P. Bonelli, P. Marcacci. Thunderstorm nowcasting by means of lightning and radar data:algorithms and applications in northern Italy [J]. Natural Hazards and Earth System Sciences,2008,8 (5):1187-1198.
    [23]廖玉芳,潘志祥,郭庆.基于单多普勒天气雷达产品的强对流天气预报预警方法[J].气 象科学,2006,(05):564-571.
    [24]P. J. Croft, R. L. Pfost,J. M. Medlin,G. A. Johnson. Fog forecasting for the southern region:A conceptual model approach [J]. Weather and Forecasting,1997,12 (3):545-556.
    [25]M. Nakanishi, H. Niino. An improved mellor-yamada level-3 model:Its numerical stability and application to a regional prediction of advection fog [J]. Boundary-Layer Meteorology,2006,119 (2):397-407.
    [26]S. Remy, T. Bergot. Ensemble Kalman Filter Data Assimilation in a ID Numerical Model Used for Fog Forecasting [J]. Monthly Weather Review,2010,138 (5):1792-1810.
    [27]D. Yang, H. Ritchie, S. Desjardins, G. Pearson, A. MacAfee, I. Gultepe. High-Resolution GEM-LAM Application in Marine Fog Prediction:Evaluation and Diagnosis [J]. Weather and Forecasting,2010,25 (2):727-748.
    [28]W. Grace, P. Ferriere. Statistical-empirical forecasting guidance for the occurrence of fog at Mount Gambler Airport [J]. Australian Meteorological Magazine,2001,50 (1):15-27.
    [29]梁爱民,张庆红,申红喜,刘开宇,李秀连,冯建碧.北京地区一次平流雾过程的分析和数值模拟[J].应用气象学报,2009,(05):612-621.
    [30]C. L. Zhang, L. N. Zhang, B. Z. Wang, N. Hu, S. Y. Fan. Analysis and Modeling of a Long-Lasting Fog Event over Beijing in February 2007 [J]. Acta Meteorologica Sinica,2010,24 (4):426-440.
    [31]S. H. Gao, H. Lin, B. Shen, G. Fu.A heavy sea fog event over the Yellow Sea in March 2005:Analysis and numerical modeling [J]. Advances in Atmospheric Sciences,2007,24 (1):65-81.
    [32]H. J. Huang, J. Huang, C. X. Liu, J. N. Yuan, W. K. Mao, F. Liao. PREDICTION OF SEA FOG OF GUANGDONG COASTLAND USING THE VARIABLE FACTORS OUTPUT BY GRAPES MODEL [J]. Journal of Tropical Meteorology,2011,17 (2):166-174.
    [33]黄健,黄辉军,黄敏辉,薛登智,毛伟康,白玉洁.广东沿岸海雾决策树预报模型[J].应用气象学报,2011,(01):107-114.
    [34]王彦磊,曹炳伟,黄兵,董兆俊,路泽廷,陈兴明.基于神经网络的单站雾预报试验[J].应用气象学报,2010,(01):110-114.
    [35]高洁,刘端次,靳英燕.用事件概率回归方法预报咸阳机场辐射雾消散[J].气象,2005,(04):81-84.
    [36]程戴晖,杨美川.上海浦西地区雾持续时间的统计释用预报[J].气象,2001,(07):16-20.
    [37]吴春英,孙桂双,张昱,马晓颖.1986—2005年抚顺大风特征分析及预报[J].气象与环境学报,2008,(05):42-47.
    [38]陈传荣.黄渤海大风的分析与预报[J].航海技术,1999,(06):26-28.
    [39]田军,张云谨,刘开宇,王洪庆.郑州机场冬春季大风的分析预报[J].云南大学学报(自然科学版),2007,(S1):173-176+182.
    [40]刘作智,钟德明.南沙海区7—9月西南大风的天气形势及其预报[J].海洋通报,1983,(05):15-20.
    [41]陈信雄,姜德中.我国近海航区大风天气分析及其预报[J].海洋预报,1995,(01):55-61.
    [42]俞飞,姬鸿丽,雪原,高鸿飞,张丽娟.利用非线性回归技术建立洛阳机场大风预报方法[J].气象与环境科学,2010,(04):53-58.
    [43]陈淑琴,张蔺廉,黄辉.用支持向量机方法预报舟山沿海突发性冷空气大风[J].海洋预 报,2007,(01):51-55.
    [44]K. J. Eidsvik, A. Holstad, I. Lie, T. Utnes. A prediction system for local wind variations in mountainous terrain [J]. Boundary-Layer Meteorology,2004,112 (3):557-586.
    [45]A. K. Pattantyus, S. Chiao, S. Czyzyk. Improving High-Resolution Model Forecasts of Downslope Winds in the Las Vegas Valley [J]. Journal of Applied Meteorology and Climatology,2011,50 (6):1324-1340.
    [46]张玉玲,仲雅琴.东北低压大风天气的数值预报与模式诊断分析[J].气象学报,1985,(01):97-105.
    [47]王澄海,靳双龙,杨世莉.新疆“2.28”大风过程中热、动力作用的模拟分析[J].中国沙漠,2011,(02):511-516.
    [48]龚强,袁国恩,汪宏宇,齐丽丽,白乐生.应用MM5模式对地面大风过程的模拟试验[J].气象,2005,(04):53-57.
    [49]杨忠恩,陈淑琴,黄辉.舟山群岛冬半年灾害性大风的成因与预报[J].应用气象学报,2007,(01):80-85.
    [50]王雷,王坚侃.海岛地区分区大风预报探讨[J].气象科技,2005,(05):404-407.
    [51]K. S. Sow, L. Juneng, F. T. Tangang, A. G. Hussin, M. Mahmud. Numerical simulation of a severe late afternoon thunderstorm over Peninsular Malaysia [J]. Atmospheric Research,2011,99 (2):248-262.
    [52]R. A. Sobash, J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, S. J. Weiss.Probabilistic Forecast Guidance for Severe Thunderstorms Based on the Identification of Extreme Phenomena in Convection-Allowing Model Forecasts [J]. Weather and Forecasting,2011,26 (5):714-728.
    [53]周后福,郑媛媛,李耀东,邱明燕等强对流天气的诊断模拟及其预报应用[M].北京:气象出版社.2009
    [54]矫梅燕现代天气预报业务[M].北京:气象出版社.2010
    [55]丁士晟.中国MOS预报的进展[J].气象学报,1985,(03):332-338.
    [56]刘还珠,赵声蓉,陆志善,赵翠光,杨元琴,李玉华.国家气象中心气象要素的客观预报——MOS系统[J].应用气象学报,2004,(02):181-191.
    [57]杞明辉,肖子牛,晏红明.一种改进的考虑环流特征的MOS预报方法[J].高原气象,2003,(04):405-409.
    [58]陈豫英,陈晓光,马筛艳,马金仁,丁建军.精细化MOS相对湿度预报方法研究[J].气象科技,2006,(02):143-146.
    [59]陈豫英,陈晓光,马金仁,马筛艳.风的精细化MOS预报方法研究[J].气象科学,2006,(02):210-216.
    [60]林健玲,金龙,彭海燕.区域降水数值预报产品人工神经网络释用预报研究[J].气象科技,2006,(01):12-17.
    [61]熊秋芬,胡江林,陈永义.天空云量预报及支持向量机和神经网络方法比较研究[J].热带气象学报,2007,(03):255-260.
    [1]S. Vannitsem.Dynamical Properties of MOS Forecasts:Analysis of the ECMWF Operational Forecasting System[J]. Weather and Forecasting,2008,23 (5):1032-1043.
    [2]K. A. Hart, W. J. Steenburgh, D. J. Onton, A. J. Siffert. An evaluation of mesoscale-model-based model output statistics (MOS) during the 2002 Olympic and Paralympic Winter Games [J]. Weather and Forecasting,2004,19 (2):200-218.
    [3]吴君,裴洪芹,石莹,张京英,王庆华.基于数值预报产品的地面气温BP-MOS预报方法[J].气象科学,2007,(04):430-435.
    [4]车钦,赵声蓉,范广洲.华北地区极端温度MOS预报的季节划分[J].应用气象学报,2011,(04):429-436.
    [5]陈豫英,陈晓光,马筛艳,马金仁,丁建军.精细化MOS相对湿度预报方法研究[J].气象科技,2006,(02):143-146.
    [6]W. Grace, P. Ferriere.Statistical-empirical forecasting guidance for the occurrence of fog at Mount Gambler Airport [J]. Australian Meteorological Magazine,2001,50 (1):15-27.
    [7]赵声蓉,赵翠光,邵明轩.事件概率回归估计与降水等级预报[J].应用气象学报,2009,(05):521-529.
    [8]高洁,刘端次,靳英燕.用事件概率回归方法预报咸阳机场辐射雾消散[J].气象,2005,(04):81-84.
    [9]金龙神经网络气象预报建模理论方法与应用[M].北京:气象出版社.2004
    [10]金龙.人工神经网络技术发展及在大气科学领域的应用[J].气象科技,2004,(06):385-392.
    [11]A. Manzato.The use of sounding-derived indices for a neural network short-term thunderstorm forecast [J]. Weather and Forecasting,2005,20 (6):896-917.
    [12]D. W. Mccann. A Neural Network Short-Term Forecast of Significant Thunderstorms [J]. Weather and Forecasting,1992,7 (3):525-534.
    [13]J. J. Baik, H. S. Hwang. Tropical cyclone intensity prediction using regression method and neural network [J]. Journal of the Meteorological Society of Japan,1998, 76 (5):711-717.
    [14]T. Hall, H. E. Brooks, C. A. Doswell.Precipitation forecasting using a neural network [J]. Weather and Forecasting,1999,14 (3):338-345.
    [15]T. H. Chi, Y. M. Wang. Using Multiple Regression and Artificial Neural Network Approach for Modeling Airport Visibility [J]. Advances in Biomedical Engineering,2011,428-431.
    [16]赵旭寰,王振会,肖稳安,冯民学,李全景.神经网络在雷暴预报中的应用初步研究[J].热带气象学报,2009,(03):357-360.
    [17]黄小燕,史旭明,刘苏东,金龙.模糊神经网络方法在热带气旋强度预报中的应用研究[J].高原气象,2009,(06):1408-1413.
    [18]赵翠光.人工神经元网络方法在沙尘暴短期预报中的应用[J].气象,2004,(04):39-41.
    [19]张乐坚,程明虎,田付友.人工神经网络及支持向量机在降雨量预报中的应用[J].高原 气象,2010,(04):982-991.
    [20]钱莉,兰晓波,杨永龙.最优子集神经网络在武威气温客观预报中的应用[J].气象,2010,(05):102-107.
    [21]梁钟清,金龙,巩远发.低纬度地区局地暴雨的神经网络预报方法研究[J].热带气象学报,2009,(04):458-464.
    [22]孔玉寿,钱建明,臧增亮统计天气预报原理与方法[M].北京:气象出版社
    [23]陈起英,姚明明,王雨.国家气象中心新一代业务中期预报模式T213L31的主要特点[J].气象,2004,(10):16-21.
    [24]胡江凯,王雨,王毅涛.国家气象中心T213L31数值预报运行监控方案及预报效果评估[J].应用气象学报,2005,(02):249-259.
    [1]孙旭映.甘肃河东地区降水特征及天气系统分型[J].干旱区资源与环境,2006,(04):35-39.
    [2]汤桂生,杨克明,王淑静,赵梅.聚类分析在暴雨预报和环流形势分型中的应用[J].气象,1996,(08):35-40.
    [3]王建新,龚佃利,施能.我国梅雨降水的气候分布、客观分型及周期振荡特征[J].气象科学,1994,(01):46-52.
    [4]邹浩,高泉平.上海盛夏降水天气型的划分[J].气象,1986,(08):11-12.
    [5]巩崇水,曾淑玲,尚可政,王式功.基于MOS方法的环渤海地区大风中期预报[J].兰州大学学报(自然科学版),2011,(04):33-37.
    [6]孙兰东,张铁军.甘肃省常规天气要素客观分县预报系统[J].干旱气象,2004,(03):55-58.
    [7]杞明辉,肖子牛,晏红明.一种改进的考虑环流特征的MOS预报方法[J].高原气象,2003,(04):405-409.
    [8]D. E. Rudack, J. E. Ghirardelli. A Comparative Verification of Localized Aviation Model Output Statistics Program (LAMP) and Numerical Weather Prediction (NWP) Model Forecasts of Ceiling Height and Visibility [J]. Weather and Forecasting,2010, 25 (4):1161-1178.
    [9]E. Eccel, L. Ghielmi, P. Granitto, R. Barbiero, F. Grazzini, D. Cesari.Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models [J]. Nonlinear Processes in Geophysics,2007,14 (3):211-222.
    [10]M. J. Schmeits, K. J. Kok, D. H. P. Vogelezang. Probabilistic forecasting of (severe) thunderstorms in the Netherlands using model output statistics [J]. Weather and Forecasting,2005,20 (2):134-148.
    [11]雷雨顺,吴宝俊,吴正华.用不稳定能量理论分析和预报夏季强风暴的一种方法[J].大气科学,1978,(04):297-306.
    [12]R. Kaltenboeck, G. Diendorfer, N. Dotzek. Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports [J]. Atmospheric Research,2009,93 (1-3):381-396.
    [13]李勇,孔期.2006年5—9月雷暴天气及各种物理量指数的统计分析[J].气象,2009,(02):64-70.
    [14]A. J. Haklander, A. Van Delden. Thunderstorm predictors and their forecast skill for the Netherlands [J]. Atmospheric Research,2003,67-8 273-299.
    [15]M. Khole, H. R. Biswas.Role of total-totals stability index in forecasting of thunderstorm/non-thunderstorm days over Kolkata during pre-monsoon season [J]. Mausam,2007,58 (3):369-374.
    [16]王学忠,胡邦辉,吕梅,邹力,倪东鸿.沙瓦特指数的一种迭代算法[J].应用气象学报,2009,(04):486-491.
    [17]叶爱芬,伍志方,肖伟军,胡胜,刘运策.对流有效位能在强对流预报中的应用研究[J].热带气象学报,2006,(05):484-490.
    [18]刘健文,郭虎,李耀东.天气分析预报物理量计算基础[J].气象出版社,2005,91-143.
    [19]吴兑.灰霾天气的形成与演化[J].环境科学与技术,2011,(03):157-161.
    [20]K. Huang, G. Zhuang, Y. Lin, J. S. Fu, Q. Wang, T. Liu, R. Zhang, Y. Jiang, C. Deng, Q. Fu, N. C. Hsu, B. Cao. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai [J]. Atmospheric Chemistry and Physics,2012, 12 (1):105-124.
    [21]吴兑.再论都市霾与雾的区别[J].气象,2006,(04):9-15.
    [22]刘小宁,张洪政,李庆祥,朱燕君.我国大雾的气候特征及变化初步解释[J].应用气象学报,2005,(02):220-230+271.
    [23]兰晓波,刘明春,钱莉,杨晓玲.武威市乌鞘岭近55年大雾天气气候特征分析[J].干旱区资源与环境,2011,(04):84-89.
    [24]高歌.1961-2005年中国霾日气候特征及变化分析[J].地理学报,2008,(07):761-768.
    [25]靳利梅,史军.上海雾和霾日数的气候特征及变化规律[J].高原气象,2008,(S1):138-143.
    [26]D. Y. Liu, J. Yang, S. J. Niu, Z. H. Li. On the Evolution and Structure of a Radiation Fog Event in Nanjing [J]. Advances in Atmospheric Sciences,2011,28 (1):223-237.
    [27]王玮,黄玉芳,孔凡忠,刘继敏.中国东部一场持续性大雾的诊断分析[J].气象,2009,(09):84-90.
    [28]李耀辉,张存杰,高学杰.西北地区大风日数的时空分布特征[J].中国沙漠,2004,(06):55-63.
    [29]陈信雄,姜德中.我国近海航区大风天气分析及其预报[J].海洋预报,1995,(01):55-61.
    [30]杨忠恩,陈淑琴,黄辉.舟山群岛冬半年灾害性大风的成因与预报[J].应用气象学报,2007,(01):80-85.
    [1]邱崇践,郜吉东.模式误差对变分同化过程影响的数值研究[J].高原气象,1994,(04):67-74.
    [2]庄照荣,薛纪善,李兴良,张利红.GRAPES全球模式的模式误差估计[J].大气科学,2010,(03):591-598.
    [3]D. Orrell. Model error and predictability over different timescales in the Lorenz '96 systems [J]. Journal of the Atmospheric Sciences,2003,60 (17):2219-2228.
    [4]李江萍,王式功.统计降尺度法在数值预报产品释用中的应用[J].气象,2008,(06):41-45.
    [5]H. J. Huang, J. Huang, C. X. Liu, J. N. Yuan, W. K. Mao, F. Liao. PREDICTION OF SEA FOG OF GUANGDONG COASTLAND USING THE VARIABLE FACTORS OUTPUT BY GRAPES MODEL [J]. Journal of Tropical Meteorology,2011,17 (2):166-174.
    [6]J. E. Ghirardelli, B. Glahn.The Meteorological Development Laboratory's Aviation Weather Prediction System [J]. Weather and Forecasting,2010,25 (4):1027-1051.
    [7]D. E. Rudack, J. E. Ghirardelli. A Comparative Verification of Localized Aviation Model Output Statistics Program (LAMP) and Numerical Weather Prediction (NWP) Model Forecasts of Ceiling Height and Visibility [J]. Weather and Forecasting,2010, 25 (4):1161-1178.
    [8]辜旭赞.湖北分县MOS预报系统建立与评分[J].气象,2008,(02):43-51.
    [9]吴爱敏,郭江勇.HLAFS资料在短期降水、气温MOS预报方法中的应用[J].干旱气象,2006,(02):45-48.
    [10]严明良,曾明剑,濮梅娟.数值预报产品释用方法探讨及其业务系统的建立[J].气象科学,2006,(01):90-96.
    [11]吴君,裴洪芹,石莹,张京英,王庆华.基于数值预报产品的地面气温BP-MOS预报方法[J].气象科学,2007,(04):430-435.
    [12]王希娟.青藏高原地区最高、最低气温Mos预报的检验[J].高原气象,1991,(01):99-104.
    [13]刘还珠,赵声蓉,陆志善,赵翠光,杨元琴,李玉华.国家气象中心气象要素的客观预报——MOS系统[J].应用气象学报,2004,(02):181-191.
    [14]J. P. Charba, F. G. Samplatsky. High-Resolution GFS-Based MOS Quantitative Precipitation Forecasts on a 4-km Grid [J]. Monthly Weather Review,2011,139 (1):39-68.
    [15]J. P. Charba, F. G. Samplatsky. Regionalization in Fine-Grid GFS MOS 6-h Quantitative Precipitation Forecasts [J]. Monthly Weather Review,2011,139 (1):24-38.
    [16]F. Fundel.A. Walser.M. A. Liniger,C. Frei,C. Appenzeller. Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts [J]. Monthly Weather Review,2010,138 (1):176-189.
    [17]D. S. Wilks. Extending logistic regression to provide full-probability-distribution MOS forecasts [J]. Meteorological Applications,2009,16 (3):361-368.
    [18]Y. M. Min, V. N. Kryjov, J. H. Oh. Probabilistic interpretation of regression-based downscaled seasonal ensemble predictions with the estimation of uncertainty [J]. Journal of Geophysical Research-Atmospheres,2011,116
    [19]H. Yuan, X. Gao, S. L. Mullen, S. Sorooshian, J. Du, H.-M. H. Juang. Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network [J]. Weather and Forecasting,2007,22 (6):1287-1303.
    [20]赵翠光,赵声蓉.华北及周边地区夏季分区客观降水预报[J].应用气象学报,2011,(05):558-566.
    [21]B. B. Zhou, J. Du. Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System [J]. Weather and Forecasting,2010,25 (1):303-322.
    [22]D. R. J, D. R. M, K. M. J, paper presented at the 9th Conf Severe Local Storms, Norman, Oklahoma,1975.
    [23]I.Mason.Dependence of critical success index on sample climate and threshold probability [J]. Aust.Met.Mag,1989,37 (1989):75-81.
    [24]丁金才.天气预报评分方法评述[J].南京气象学院学报,1995,(01):143-150.
    [25]孔玉寿,钱建明,臧增亮统计天气预报原理与方法[M].北京:气象出版社
    [26]C. A, Doswell, Davies-Jones, D. L. Keller, on summary measures of skill in rare event forecasting based on contigency tables [J]. Weather and Forecasting,5 576-585.
    [27]罗阳,赵伟,翟景秋.两类天气预报评分问题研究及一种新评分方法[J].应用气象学报,2009,(02):129-136.
    [28]何立富,周庆亮,谌芸,唐文苑,张涛,蓝渝.国家级强对流潜势预报业务进展与检验评估[J].气象,2011,(07):777-784.
    [1]孔玉寿,钱建明,臧增亮统计天气预报原理与方法[M].北京:气象出版社
    [2]俞飞,姬鸿丽,雪原,高鸿飞,张丽娟.利用非线性回归技术建立洛阳机场大风预报方法[J].气象与环境科学,2010,(04):53-58.
    [3]S. K. R. Bhowmik, S. Nath, A. K. Mitra, H. R. Hatwar. Application of Neural Network Technique to improve the location specific forecast of temperature over Delhi from MM5 model [J]. Mausam,2009,60 (1):11-24.
    [4]Y. Guo, Y. Shao, C. Gao, W. He. Modeling Temperature prediction Using the Wavelet and Neural Networks Approach:A Case Study of Chongqing Municipality in Southwestern China [J]. Disaster Advances,2011,4119-124.
    [5]孙军波,钱燕珍,陈佩燕,郑铮,乐益龙.登陆台风站点大风预报的人工神经网络方法[J].气象,2010,(09):81-86.
    [6]M. C. Valverde Ramirez, N. J. Ferreira, H. F. de Campos Velho. Linear and nonlinear statistical downscaling for rainfall forecasting over southeastern Brazil [J]. Weather and Forecasting,2006,21 (6):969-989.
    [7]Y. R. Feng, D. H. Kitzmiller. A short-range quantitative precipitation forecast algorithm using back-propagation neural network approach [J]. Advances in Atmospheric Sciences,2006,23 (3):405-414.
    [8]T. H. Chi, Y. M. Wang.Using Multiple Regression and Artificial Neural Network Approach for Modeling Airport Visibility [J]. Advances in Biomedical Engineering,2011,428-431.
    [9]C. Marzban, S. Leyton, B. Colman. Ceiling and visibility forecasts via neural networks [J]. Weather and Forecasting,2007,22 (3):466-479.
    [10]王彦磊,曹炳伟,黄兵,董兆俊,路泽廷,陈兴明.基于神经网络的单站雾预报试验[J].应用气象学报,2010,(01):110-114.
    [11]赵旭寰,王振会,肖稳安,冯民学,李全景.神经网络在雷暴预报中的应用初步研究[J].热带气象学报,2009,(03):357-360.
    [12]A. Manzato.The use of sounding-derived indices for a neural network short-term thunderstorm forecast [J]. Weather and Forecasting,2005,20 (6):896-917.
    [1]拓瑞芳.世界区域预报系统的产品在中国的应用[J].民航经济与技术,1998,(08):34-35.
    [2]周建华,郑国光航空气象业务[M].北京:气象出版社.2011
    [3]刘还珠,赵声蓉,陆志善,赵翠光,杨元琴,李玉华.国家气象中心气象要素的客观预报——MOS系统[J].应用气象学报,2004,(02):181-191.
    [4]吴增福,杨庆苹,苏永清,卢荻.江苏北部雾的分析和预报系统[J].气象科学,1993,(02):219-225.
    [5]赵培娟,吴蓁,郑世林,范学峰,李朝兴.河南省强对流天气诊断分析预报系统[J].气象,2010,(02):33-38.
    [6]刘敦训,张经珍,郝家学,蔡冬梅.黄河三角洲冬半年大风预报系统[J].气象,2000,(11):48-51.
    [7]严明良,曾明剑,濮梅娟.数值预报产品释用方法探讨及其业务系统的建立[J].气象科学,2006,(01):90-96.
    [8]夏正龙,尹新怀,欧阳计跃,钟艳雯.SharpMap在实现湖南省降水色斑图显示中的应用[J].计算机系统应用,2011,(02):134-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700