用户名: 密码: 验证码:
荧光及共振光散射技术对某些食品添加剂的检测及反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品安全是大事,涉及人们身体健康、生命安全和社会稳定。调查显示,我国部分省市的许多餐饮业存在食品添加剂违规违法案例,具体表现为:1)食品添加剂的超标、超范围使用;2)添加非食品级添加剂,出现食品添加剂质量不合格,品质差;3)使用非食品添加剂,如苏丹红。近几年,食品安全成为困扰民生的-个头疼问题,出现了诸如“苏丹红事件”、“三聚氰胺事件”、“染色馒头事件”等重大食品安全事件,引发了社会忧虑情绪。由于食品添加剂种类多,添加范围广,产品组成复杂。方便快速、灵敏度高、选择性好、准确度好、重现性好的科学检测出食品添加剂的类别、用量是一个不小的挑战。本论文主要以某些食品添加剂为主要研究对象,包括有合法和非法使用的食品着色剂:如柠檬黄(tartrazine, Tz)日落黄(sunset yellow FCF, SY)及苏丹红Ⅰ-Ⅳ(Sudan Ⅰ-Ⅳ)等。同时为了研究的需要,也选择了非食品用有机染料亚甲基蓝(methylene blue, MB)做对比研究。以这些物质作为对象,用荧光技术、共振光散射技术建立相应的测试方法;选择非法食品添加剂三聚氰胺(melamine),研究其与磷酸盐的聚沉反应特点及反应机理;选择食品添加剂没食子酸(gallic acid),研究其与高聚物聚乙烯亚胺(ethylene imine polymer, PEI)在强碱条件下的反应特点及反应机理。本文主要研究内容和成果如下:
     1.基于荧光共振能量转移的快速高灵敏检测食品中的着色剂偶氮染料柠檬黄
     建立了一种基于吸附竞争反应的快速、高灵敏度测定食品着色剂Tz的荧光分析方法。强荧光探针fluorescein (Fl),能被还原态石墨烯(rGO)吸附生成Fl/rGO加合物并发生荧光共振能量转移(FRET),其荧光能被显著猝灭。加入Tz后,发生竞争吸附反应,将F1从其Fl/rGO加合物中置换出来,使荧光得到恢复。建立了Tz的荧光分析方法。在优化条件下,测定Tz时的一元线性回归方程为FEETTz=0.0159cTTz+0.0554;标准曲线的相关系数(R2)为0.9955;检出限(3σ/斜率)为0.53ngmL-1。该方法用于实际样品的测定,结果令人满意。
     2.基于荧光素/还原态石墨烯加合物的快速高灵敏检测有机染料通用分析方法研究
     建立了一种基于吸附竞争反应的快速、高灵敏度测定有机染料的通用荧光分析方法。强荧光探针F1,能被rGO吸附生成Fl/rGO加合物并发生FRET,其荧光能被显著猝灭。实验证明,不仅阴离子染料SY,而且阳离子染料MB都能与Fl/rGO加合物发生竞争吸附反应,将F1从其F1/rGO加合物中置换出来,使荧光得到恢复。从而建立起有机染料的通用荧光分析方法。在优化条件下,测定SY、MB时的—元线性回归方程分别为FEESY=0.0142cSY-0.0427和FEEMB=0.0192CMB-0.3103;检出限(36/斜率)分别为1.03ng mL-1和1.15ng mL-1。该方法用于实际样品的测定,结果令人满意。
     3.基于配体置换反应超灵敏选择性荧光检测苏丹红Ⅰ、Ⅲ
     建立了一种基于配体置换反应的高灵敏度选择性测定SudanⅠ、Ⅲ的荧光分析方法。强荧光探针钙黄绿素(calcein),能与Cu(Ⅱ)反应生成Cu(Ⅱ)-calcein配合物,其荧光能被Cu(Ⅱ)显著猝灭。加入Sudan Ⅰ、Ⅲ后,发生配体置换反应,将calcein从其Cu(Ⅱ)-calcein配合物置换出来,使荧光得到恢复。实验发现,SudanⅠ、Ⅲ能同等程度地恢复Cu(Ⅱ)-calcein配合物的荧光。但是Sudan Ⅱ、Ⅳ因为具有2-甲基位阻的作用,不能和Cu(Ⅱ)-calcein配合物发生配体置换反应,即不能使Cu(Ⅱ)-calcein配合物的荧光恢复。从而实现了对SudanⅠ、Ⅲ进行个别地检测或是对其总量的检测,并且不会受到SudanⅡ、Ⅳ的干扰。在优化条件下,测定SudanⅠ、Ⅲ时的一元线性回归方程分别为FEESudanⅠ=0.0032cSudan Ⅰ-0.02613和FEESudan Ⅲ=0.0033cSudanⅢ-0.02467;标准曲线的相关系数(R2)分别为0.9984和0.9955;检出限(3σ/斜率)分别为211.3和208.5pmol L-1。该方法用于实际样品的测定,结果令人满意。
     4.苏丹红Ⅰ-Ⅳ与[Cu(NH3)4]2+离子的反应机理研究及分析应用
     研究了Sudan Ⅰ-Ⅳ在含氨溶液中与[Cu(NH3)4]2+相互作用机理及分析应用。实验发现Sudan Ⅱ和[Cu(NH3)4]2+反应产生了极强的共振光散射信号,而Sudan Ⅰ、Ⅲ、IV却没有出现明显的共振光散射变化信号。分析了Sudan Ⅰ-Ⅳ在含氨溶液中与[Cu(NH3)4]2+相互作用机理。紫外光谱、红外光谱、XRD-粉末衍射等分析表明,SudanⅠ、Ⅲ与[Cu(NH3)4]2+生成了稳定的螯合物,而Sudan Ⅱ、Ⅳ与[Cu(NH3)4]2+形成了离子缔合物。这种不同的结果是由于Sudan Ⅱ、Ⅳ存在2-甲基,产生了空间位阻效应,影响了它与中心离子铜的配位,所以只能通过静电引力形成离子缔合物。实验并优化了以[Cu(NH3)4]2+为探针的测定Sudan Ⅱ的实验条件,在优化条件下,测定Sudan Ⅱ时的一元线性回归方程为△IRLs=1488.6c-82.2(c,μg mL-1);检出限(3σ/斜率)为2.1ng mL-1。该方法用于实际样品的测定,结果令人满意。
     5.pH诱导的三聚氰胺与磷酸盐聚沉反应机理研究
     应用共振光散射、X-单晶衍射、X-粉末衍射、傅里叶变换红外光谱以及紫外—可见光谱分析等手段系统地研究了pH诱导的三聚氰胺(Mel)与磷酸盐(Ps)聚沉反应机理。在实验条件下,三聚氰胺磷酸盐组成为2HMel-·HPO42-·3H2O,各组成成分间通过静电引力、氢键及π-π堆积作用组成了稳定的三聚氰胺磷酸盐。实验表明三聚氰胺与磷酸盐聚沉反应高度依赖于pH。pH的改变直接影响到Mel、Hmel-的组成比,从而改变其氢键及电性作用力,进而影响到三聚氰胺与磷酸盐聚沉与溶解。研究发现,聚沉过程中,三聚氰胺质子化有两种方式,发展和丰富了Peschar关于三聚氰胺磷酸盐质子转移观点,为三聚氰胺磷酸盐质子转移观点提供了有力的实验支撑。
     6.强碱性条件下没食子酸和聚乙烯亚胺主客体包合反应机理研究
     详细研究了在强碱性条件下(pH12.22),没食子酸与聚乙烯亚胺(PEI)形成主客体包合物的荧光光谱和吸收光谱。研究发现,没食子酸与PEI发生主客体包合作用生成具有荧光增强的主客体包合物。初步探讨了反应机理:在强碱条件下,没食子酸与PEI发生相互作用,并逐步地进入到PEI疏水性空腔形成组成比为1:1的没食子酸-PEI主客体包合物。根据包合物吸收光谱,证明了没食子酸在包合物中主要以对位醌式没食子酸离子形式存在,体系显淡黄色。在含有邻位醌式没食子酸的自氧化产物中加入PEI,橙红色的邻位醌式没食子酸会快速地向淡黄色对位醌式没食子酸转化,随后形成没食子酸-PEI主客体包合物。本研究说明没食子酸自氧化速率在PEI中能得到了有效地缓阻,PEI对没食子酸具有一定的保护作用,主客体包合物在相当长的时间里不会发生进一步地氧化。
Food safety issues that induced by the misuse of food additives have caused worldwide concern in recent years. The misuse of food additives is harmful to the pepole's health and safety which will further affect the social stability. In this thesis, some novel fluorescence and resonance light scattering methods have been developed to the dectection of some legal or illegal food additives (e.g. tartrazine, sunset yellow FCF, Sudan Ⅰ-Ⅳ). In addition, the intereaction between Sudan Ⅰ-Ⅳ and [Cu(NH3)4]2-, the mechanism of pH-induced aggregation reaction between melamine and phosphate, and the interaction between gallic acid and ethylene imine polymer in strong alkaline solution have also been studied. The main contents and some conclusions of the thesis are as follows:
     1. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer
     We introduce a sensitive, rapid, label-free and general fluorescent method for the determination of tartrazine (Tz) by competitive binding to reduced graphene oxide (rGO) against fluorescein, and the fluorescence recovery upon fluorescein desorption from rGO can be directly spectroscopically followed. It was found that the fluorescence enhancement efficiency (FEE) is proportional to the Tz concentration over the range of2.36-236.11ng mL-1. The linear regression equations were calculated as FEETz=0.0159CTz+0.0554, with the corresponding detection limit (3σ/slope) of0.53ng mL-1. The Tz in a lemon-flavored sports drink sample was assayed with satisfactory results.
     2. Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex
     We report on a fast, sensitive, label-free and general dye-sensor platform for synthetic organic dyes detection by competitive adsorption on the reduced graphene oxide (rGO) against fluorescent dye (FD). Fluorescein (Fl) as fluorescence indicator and the cationic dye methylene blue (MB) as model analyte were employed to investigate the analytical feature of this assay platform. The anionic dye sunset yellow FCF (SY) was chosen as comparison analyte to test the generality of this strategy. Results show that rGO can bind Fl and quench the fluorescence by fluorescence resonance energy transfer, while MB can displace Fl fast from the Fl/rGO complex by competitive adsorption, inducing the fluorescence recovery which provides a quantitative readout for MB. Besides, this design was simply based on the competitive adsorption of rGO between dye and FD, so it could be generally applied to other dyes for label-free detection of a broad range of analytes, as evidenced by the comparison analyte SY. It was found that the fluorescence enhancement efficiency (FEE) is proportional to the dye concentration over the range of7.60-420.00ng mL-1MB and7.28-400.25ng mL-1SY, respectively. The linear regression equations were calculated as FEEMB=0.0192CMB-0.3103for MB and FEESY=0.0142CSY-0.0427for SY, with the corresponding detection limits (3σ/slope) of1.03ng mL-1and1.15ng mL-respectively. The MB in waste water and SY in an orange-flavored sports drink samples were assayed with satisfactory results.
     3. An ultrasensitive and selective fluorescence assay for Sudan Ⅰ and Ⅲ against the influence of Sudan Ⅱ and Ⅳ
     We report on an ultrasensitive and selective fluorescence assay for Sudan Ⅰ and Ⅲ against the influence of Sudan Ⅱ and Ⅳ based on ligand exchange mechanism. Calcein as a fluorescence indicator and Sudan Ⅰ-Ⅳ as model analytes were employed to investigate the analytical feature of this assay platform. Results show that the fluorescence of calcein can be efficiently quenched by Cu(Ⅱ). When the ligand exchange reaction proceeds, calcein is deprived of Cu(Ⅱ) by Sudan Ⅰ and Ⅲ, resulting in the fluorescence recovery of calcein. However, the ligand exchange reaction does not happen in the presence of Sudan Ⅱ or Ⅳ due to the2-methyl steric effects, which is favorable for selective determination of Sudan Ⅰ and Ⅲ against the influence of Sudan Ⅱ and Ⅳ. It was found that the fluorescence enhancement efficiency (FEE) against the concentration of Sudan (CSudan nmol L-1) shows a linear relationship. The calibration equations are FEESudan1=0.0032CSudan1-0.02613, and FEESudanⅢ=0.0033CSudanⅢ-0.02467over the corresponding linear range of11.25-2078.29and9.441035.78nmol L-1with the correlation coefficients (R2) of0.9984and0.9955, respectively. And the detection limits (3σ/slope) are calculated to be211.3and208.5pmol L-1for Sudan Ⅰ and Ⅲ, respectively, showing ultralow detection limit. The Sudan dye in a commercial chilli powder sample was assayed with satisfactory results.
     4. Study on the reaction between Sudan Ⅰ-Ⅳ dye and [Cu(NH3)4]2+and its analytical application
     Sudan Ⅰ-Ⅳ in [Cu(NH3)4]2-circumstances had different resonance light scattering (RLS) properties. Only Sudan Ⅱ-[Cu(NH3)4]2+complex shows enhanced RLS signal and the the RLS intensity was proportional to the concentration of Sudan Ⅱ in the range of0.06-1.20μg mL-1with correlation coefficient,0.9981. Linear regression equation was△IRLS=1488.6c-82.2(c, μg mL-1). The detection limit was2.1ng mL-1. The reaction mechanism has been investigated by a combination of RLS spectra, UV-absorption spectra, infrared spectra, and X-ray diffraction. The results showed that the copper chelates of Sudan Ⅰ and Ⅲ were formed while the ion-association complexes of Sudan Ⅱ and Ⅳ were formed in the presence of [Cu(NH3)4]2-
     5. Mechanism of the pH-induced aggregation reaction between melamine and phosphate
     The mechanism of the pH-induced aggregation reaction between melamine (Mel) and phosphate (Ps) has been studied by a combination of resonance light scattering (RLS), FTIR, UV-visible spectra, single-crystal X-ray and powder X-ray diffraction for the first time. The results confirm that the aggregation reaction between Mel and Ps is highly pH-dependent. Changes of pH dramatically influence the mol ratio of Mel to melaminium (Hmel0) and subsequently affect the synergistic manner of hydrogen bonds, electrostatic and π-π stacking interactions, resulting in the reversibility of aggregation and dissolution process. The composition of the Mel-Ps aggregates has been characterized to be2[Hmel+]·[HPO42-]·3H2O. Mechanism analysis demonstrated that there existed two different ways for the transformation of Mel into Hmel-by considering the aggregation reaction process and conditions.
     6. Interaction between gallic acid and ethylene imine polymer in strong alkaline solution
     The interaction between gallic acid and PEI in strong alkaline solution has been studied by a combination of UV-visible spectra and fluorescence spectra. In basic solution (pH12.22), gallic acid undergoes fast autooxidation, leading to the production of orange red solution which is non-fluorescent. Howerer, it has been changed in the presence of PEI. A strong fluorescence gallic acid-PEI complex has been formed as a light yellow one by entrapping gallic acid inside the more hydrophobic PEI box. The UV-visible spectra showed that at pH value of12.22, gallic acid in the PEI box was in the form of p-quinone. The result of the continuous variation method showed that PEI could bind to gallic acid at a molar ratio of1:1. In addition, it is dramatical that the presence of PEI slows down the autooxidation of gallic acid compared to buffer solution only.
引文
[1]《食品添加剂使用标准》GB2760,2011.
    [2]钱和,韩婵,刘利兵.食品中化学添加剂的功能与风险控制,化学进展,2009,2l,2424-2434.
    [3]高彦祥,许正虹,食品科学2005,26,159-161.
    [4]李宁,王竹天.国外医学卫生学分册2008,35,321-327.
    [5]FDA. Recommendations for submission of chemical and technical data for direct food additive and GRAS food ingredient petitions. FDA,1993.
    [6]European Parliament and Council. Council Directive on the approximation of the laws of the member states concerning food additives authorized for rse in foodstuffs intended for human consumption.1988.
    [7]Scientific Committee on Food. Guidance on submissions for food additive.2001.
    [8]OECD. Repeated dose 902 dayoral toxicity study in rodents. Guideline 408, Adopted 2110911998. in eleventh addendum to the OECD guidelines for the testing of chemicals. Paris: Organisation for Economic Cooperation and Development,2000.
    [9]徐亚南,我国部分省市餐饮业食品添加剂使用现状调查与对策研究,[硕士学位论文],中国疾病预防控制中心,2008,3-5.
    [10]国家质检总局等三部门严查含苏丹红(一号)食品,http://bgt.aqsiq.gov.cn/tpxw/ywbd/ 200610/120061027 14236.htm.
    [11]国家质量监督检验检疫总局公告第54号.2005.
    [12]新华视点:“I级响应”发出以后--中国政府全力处置“三鹿奶粉”事件,http://news. xinhuanet.com/newscenter/2008-09/16/content 10024032.htm.
    [13]检出含三聚氰胺乳粉产品及企业名单http://www.aqsiq.gov.cn/zjxw/dfzjxw/dfftpxw/ 200809/t20080917 89994.htm
    [14]质检总局要求严查严办上海“染色馒头”生产企业违法行为http://www.aqsiq.gov.cn /zjxw/zjxw/zjftpxw/201104/t20110412_181873.htm.
    [15]上海“染色馒头”生产企业5人被刑拘http://news.163.com/11/0413/20/71120R5 B00014JB5.html.
    [16]陈文俊,食品添加剂应用问题的哲学思考,[硕士论文],武汉科技大学2006.7-8.
    [17]F. Puoci, C. Garreffa, F. lemma, et. al., Molecularly imprinted solid phase extraction for detection of sudan I in food matrices, Food Chem.,2005,93,349-353.
    [18]吴银良,李存,刘勇军等,高效液相色谱法快速测定鸭肉和鸭蛋中苏丹红染料,分析化 学, 2008,36,843-845.
    [19]V. Cornet, Y. Govaert, G. Moens, et. al., Development of a fast analytical method for the determination of Sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection, J. Agric. Food Chem.,2006,54,639-644.
    [20]O. Chailapakul, W. Wonsawat, W. Siangproh, et. al., Analysis of Sudan I, Sudan II, Sudan III, and Sudan IV in food by HPLC with electrochemical detection:comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode, Food Chem.,2008,109, 876-882.
    [21]邹建宏,陈卫东,邵景东,反相高效液相色谱法同时测定果汁中8种添加剂,分析化学,2001,29,1192-1195.
    [22]N. Yoshioka, K. Ichihashi, Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection, Talanta,2008,74,1408-1413.
    [23]K. S. Minioti, C. F. Sakellariou, N. S. Thomaidis, Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector, Anal. Chim. Acta,2007,583,103-111.
    [24]J. B. Nevado, J. R. Flores, M. J. V. LLerena, Square wave adsorptive voltammetric determination of sunset Yellow, Talanta,1997,44,467-474.
    [25]P. L. Lopez-de-Alba, L. Lopez-Martinez. L. M. De-Leon-Rodriguez, Simultaneous determination of synthetic dyes tartrazine, allura red and sunset yellow by differential pulse polarography and partial least squares. A multivariate calibration method, Electroanal.2002, 14,197-205.
    [26]W. K. Zhang, T. Liu, X. J. Zheng, et. al., Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode, Colloid Surf. B.,2009,74,28-31.
    [27]L. Ming, X. Xi, T. Chen, et. al.. Electrochemical determination of trace sudan I contamination in chili powder at carbon nanotube modified electrodes, Sensors,2008,8,1890-1900.
    [28]H. Y. Huang, Y. C.Shi, Y. C. Chen, Determining eight colorants in milk beverages by capillary Electrophoresis, J. Chromatogr. A.2002,959,317-325.
    [29]E. Mejia, Y. Ding, M.F. Mora, et. al., Determination of banned sudan dyes in chili powder by capillary electrophoresis, Food Chem.,2007.102,1027-1033.
    [30]S. Combeau, M. Chatelut, O. Vittori, Identification and simultaneous determination of azorubin, allura red and ponceau 4R by differential pulse polarography:application to soft drinks. Talanta,2002,56,115-122.
    [31]Y. N. Ni, Y. Wang, K. Serge, Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics, Talanta,2009,78,432-441.
    [32]E. Dinc, E. Baydan, M. Kanbur, et. al., Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta,2002, 58,579-594.
    [33]E. C. Vidotti, J. C. Cancino, C. C. Oliveria, et. al., simultaneous determination of food dyes first derivative spectrophotometry with sorption onto polyurethane foam. Anal. Sci.2005,21, 149-153.
    [34]P. L. Lopez-de-Alba, L. Lopez-Martinez, L. I. Michelini-Rodriguez, et. al., Extraction of sunset yellow and tartrazine by Ion-pair formation with adogen-464 and their simultaneous determination by bivariate calibration and derivative spectrophotometry, Analyst,1997, 122,1575-1579.
    [35]李积慧,杜国荣,康俊等.阴离子交换树脂结合近红外漫反射光谱测定碳酸饮料中日落黄,分析化学,2011,39,898-901.
    [36]T. M. Coelho, E. C. Vidotti. M. C. Rollemberg, et. al., Photoacoustic spectroscopy as a tool for determination of food dyes:Comparison with first derivative spectrophotometry, Talanta,2010, 81,202-207.
    [37]H. Chen, X. Zhang, M. Luo, Desorption electrospray ionization mass spectrometry for fast detection of Sudan dyes in foods without sample pretreatment. Chin. J. Anal. Chem.2006,34, 464-468.
    [38]D. Han, M. Yu, D. Knopp, et. al., Development of a highly sensitive and specific enzyme-linked immunosorbent assay for detection of Sudan I in food samples, J. Agric. Food Chem.2007,55.6424-6430.
    [39]韩丹,于梦,吴梅等酶联免疫吸附分析法测定食品中的苏丹红Ⅰ号,分析化学,2007,35,1168-1170.
    [40]Y. Liu. Z. Song. F. Dong. et. al., Flow injection chemiluminescence determination of sudan I in hot chilli sauce, J. Agric. Food Chem.,2007,55,614-617.
    [41]蔡其洪,邹哲祥,李耀群,同步荧光法同时测定苏丹红Ⅱ和苏丹红Ⅲ,高等学校化学学报,2007.28.1663-1665.
    [42]Z. D. Chen, Y. Xiao, Y. B. Zeng, et. al., Resonance Rayleigh scattering of palladium(II)-tartrazine-ionic liquid system andits analytical application. Acta. Chim. Sinica, 2010,68,334-338.
    [43]L. P. Wu, Y. F. Li, C. Z. Huang, et. al., Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles, Anal. Chem.2006,78,5570-5577.
    [44]Z. L. Jiang, M. J. Zou, A. P. Deng, et. al., A highly sensitive and selective immunonanogold resonance scattering spectral assay for Sudan I, Intern. J. Environ. Anal. Chem.2008,88, 649-661.
    [45]R. Rebane, I. Leito, S. Yurchenko, et. al., A review of analytical techniques for determination of Sudan Ⅰ-Ⅳ dyes in food matrixes, J. Chromatogr. A,2010,1217,2747-2757.
    [46]M. Kucharskaa, J. Grabka, A review of chromatographic methods for determination of synthetic food dyes, Talanta,2010,80,1045-1051.
    [47]B. Mahanty, K. Pakshirajan, and V. V. Dasu, Synchronous fluorescence as a selective method for monitoring pyrene in biodegradation studies, Polycyclic. Aromat. Compd.,2008,28, 213-227.
    [48]Y. Yi, G. Li, Y. Wang, et. al., Simultaneous determination of norfloxacin and lomefloxacin in milk by first derivative synchronous fluorescence spectrometry using Al (Ⅲ) as an enhancer, Anal. Chim. Acta,2011,707.128-134.
    [49]F. G. Sanchez, A. N. Diaz, A. G. Pareja, Micellar liquid chromatography of plant growth regulators detected by derivative fluorometry,J. Chromatogr. A.1996,723,227-233.
    [50]H. Y. Wang, Y. Xiao, J. Han, Simultaneous determination of carvedilol and ampicillin sodium by first-derivative fluorometry in the presence of human serum albumin, Anal. Sci.2005.21, 537-540.
    [51]J. M. Beechem, L. Brand, Time-resolved fluorescence of proteins, Annu. Rev. Biochem.,1985, 54,43-71.
    [52]J. S. Lee, R. B. M. Koehorst, H. v. Amerongen, et. al., Time-resolved fluorescence and fluorescence anisotropy of fluorescein-labeled poly(N-isopropylacrylamide) incorporated in polymersomes, J. Phys. Chem. B,2011,115,13162-13167.
    [53]T. Fujino, S. Y. Arzhantsev, T. Tahara, Femtosecond time-resolved fluorescence study of photoisomerization of trans-azobenzene,J. Phys. Chem. A,2001,105,8123-8129.
    [54]R. P. Bagwe, C. Yang, L. R. Hilliard, W. Tan, Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method, Langmuir,2004,20,8336-8342.
    [55]J. Szollosi, S. Damjanovich, L. Matyus, Application of fluorescence resonance energy transfer in the clinical laboratory:Routine and Research, Cvtometry,1998,34,159-179.
    [56]L. Kokko, T. Kokko, T. Lovgren. T. Soukka, Particulate and soluble Eu(Ⅲ)-chelates as donor labels in homogeneous fluorescence resonance energy transfer based immunoassay, anal. chim. acta,2008,606,72-79.
    [57]J. R. Grunwell, J. L. Glass, T. D. Lacoste, et. al., Monitoring the conformational fluctuations of DNA hairpins using single-pair fluorescence resonance energy transfer, J. Am. Chem. Soc., 2001,123,4295-4303.
    [58]P. J. Santangelo, B. Nix, A. Tsourkas, et. al., Dual FRET molecular beacons for mRNA detection in living cells, Nucleic Acids Res.2004,32, e57.
    [59]S. Santra, D. Dutta, G. A. Walter, et. al., Fluorescent nanoparticle probes for cancer imaging, Technol. in Cancer Res. Treat.,2005,4,593-602.
    [60]C. Maragos, Fluorescence polarization immunoassay of mycotoxins:A Review, Toxins,2009,1, 196-207.
    [61]S. A. Kawamoto, A. D. Thompson, A. Coleska, et. al., Analysis of the interaction of BCL9 with β-catenin and development of fluorescence polarization and surface plasmon resonance ninding assays for this interaction, Biochem.,2009,48,9534-9541.
    [62]J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, et. al., Fluorescence lifetime and polarization-resolved imaging in cell Biology, Curr. Opin. Biotechnol.2009,20,28-36.
    [63]N. T. Shaked, B. Katz, J. Rosen. Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods, Appl. Opt.,2009,48,120-136.
    [64]J. Rosen, B. Katz, G. Brooker, Review of three-dimensional holographic imaging by fresnel incoherent correlation holograms,3DRes.,2010,01,28-35.
    [65]K. Braeckmans, L. Peeters, N. N. Sanders, et. al., Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope, Biophys J.,2003,85, 2240-2252.
    [66]C. H. Cho, M. Chung, J. Lee, et. al.. Time- and space-resolved studies of the physics and chemistry of liquid water near a biologically relevant interface, J. Phys. Chem.,1995,99, 7806-7812.
    [67]Y. Q. Li, M. N. Yao, Space resolved fluorescence techniques, Chin. J. Anal. Chem.,2004,11, 1421-1425.
    [68]H.-P. Lehr. M. Reimann, A. Brandenburg, et. al.. Real-time detection of nucleic acid interactions by total internal reflection fluorescence, Anal. Chem.,2003,75,2414-2420.
    [69]A. Leung, P. M. Shankar, R. Mutharasan, A review of fiber-optic biosensors, Sens. Actuators, B,2007,125,688-703.
    [70]L. Wen-xu, C. Jian, Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor, Anal. Chem.2003,75,1458-1462.
    [71]A. Leung, P. M. Shankar, R. Mutharasan, Real-time monitoring of bovine serum albumin at femtogram/mL levels on antibody immobilized tapered fibers, Sens. Actuators, B:Chem.2007, 123,888-895.
    [72]R. A. Bissell, R. A. P. Silva, H. O. N. Gunaratne, et. al., Molecular fluorescent signalling with 'fluor-spacer-receptor' systems:approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev.,1992,21,187-195.
    [73]R. Martmez-Manez, F. Sancenon, Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev.2003,103,4419-4476.
    [74]C. McDonagh, C. S. Burke, B. D. MacCraith, Optical chemical sensors. Chem. Rev.,2008, 108,400-422.
    [75]J. S. Kim, D. T. Quang, Calixarene-derived fluorescent probes. Chem. Rev.,2007,107, 3780-3799.
    [76]S. W. Thomas Ⅲ, G. D. Joly, T. M. Swager. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev..2007,107:1339-1386.
    [77]K. Kiyose, H. Kojima, T. Nagano, Functional near-infrared fluorescent probes. Chem. Asian. J., 2008,3.506-515.
    [78]J. Otsuki, T. Akasaka, K. Araki, Molecular switches for electron and energy transferprocesses based on metal complexes. Coord. Chem. Rev.,2008.252,32-56.
    [79]M. Y. Chae, A. W. Czarnik, Fluorometric chemodosimetry. Mercury(Ⅱ) and silver(Ⅰ) indication in water via enhanced fluorescence signaling, J. Am. Chem. Soc.1992,114,9704-9705.
    [80]V. Dujols, F. Ford, A. W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(Ⅱ) ion in water, J. Am. Chem. Soc.1997,119,7386-7387.
    [81]N. Li, Y. Xiang, X. Chen, et. al., Salicylaldehyde hydrazones as fluorescent probes for zinc ion in aqueous solution of physiological pH, Talanta,2009,79,327-332.
    [82]N. Lim, V. Pavlova, C. Bruckner, Squaramide hydroxamate-based chemidosimeter responding to iron (Ⅲ) with a fluorescence intensity increase. Inorg. Chem.,2009,48.1173-1182.
    [83]A. Hennig. H. Bakirci. W. M. Nau, Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes, Nat. Methods,2007,4,629-632.
    [84]S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, et. al., Teaching old indicators new tricks, Acc. Chem. Res.2001,34,963-972.
    [85]L. Fabbrizzi, F. Foti, A. Taglietti, Metal-containing trifurcate receptor that recognizes and senses citrate in water, Org. Lett.,2005,7,2603-2606.
    [86]G. He, Y. Zhao, C. He, et al. "Turn-on" fluorescent sensor for Hg2+ via displacement approach, Inorg. Chem.,2008,47,5169-5176.
    [87]W. T. Gong, H. Kazuhisa. A novel amidepyridinium-based tripodal fluorescent chemosensor for phosphate ion via binding-induced excimer formation. Tetrahedron Letters,2008.49, 5655-5657.
    [88]K. C. Chang, L. Y. Luo, E. W. G. Diau, et al. Highly selective fluorescent sensing of Cu2+ion by an arylisoxazole modified calix[4]arene. Tetrahedron Lett.,2008,49,5013-5016.
    [89]H. Y. Luo, X. B. Zhang, C. L. He, et al. Synthesis of dipicolylamino substituted quinazoline as chemosensor for cobalt (Ⅱ) recognition based on excited-state intramolecular proton transfer. J. Chromatogr. A,2008,70,337-342.
    [90]K. Ghosh, A. R. Sarkar. Anthracene-based macrocyclic fluorescent chemosensor for selective sensing of dicarboxylate. Tetrahedron Lett.,2009,50,85-88.
    [91]E. U. Akkaya, M. E. Huston, A. W. Czarnik, Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution, J. Am. Chem. Soc.,1990,112, 3590-3593.
    [92]R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, et. al., Fluorescent PET (photoinduced electron transfer) sensors, Top. Curr. Chem.1993,168,223-264.
    [93]B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev.,2000,205,3-40.
    [94]A. P. de Silva, S. A. de Silva, Fluorescent signalling crown ethers; switching on of fluorescence by alkali metal ion recognition and binding in situ, J. Chem. Soc. Chem. Commun. 1986.23,1709-1710.
    [95]F. Fages, J.-P. Desvergne, H. Bouas-Laurent, Nonlinear triple exciplexes:thermodynamic and kinetic aspects of the intramolecular exciplex formation between anthracene and the two anchored nitrogens of an anthraceno-cryptand, J. Am. Chem. Soc.,1989,111,96-102.
    [96]A. P. de Silva, H. Q. N. Gunaratne, G. E.M. Maguire, Off-On fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic or logic gates, J. Chem. Soc. Chem. Commun.,1994,1213-1214.
    [97]F. Unob, Z. Asfari, J. Vicen, An anthracene-based fluorescent sensor for transition metal ions derived from calix[4]arene, Tetrahedron Lett.,1998,39,2951-2954.
    [98]G. E. Collins, L. S. Choi, J. H. Callahan, Effect of solvent polarity, pH. and metal complexation on the triple fluorescence of 4-(N-1,4,8,11-tetraazacyclotetradecyl)benzonitrile, J. Am. Chem. Soc.,1998,120,1474-1478.
    [99]G. A. Smith, T. R. Hesketh, J. C. Metcalfe, Design and properties of a fluorescent indicator of intracellular free Na+ concentration, Biochem. J.1988,250,227-232.
    [100]G. Grynkiewicz, M. Poenie, R. Y. Tsien, A new generation of Ca2+indicators with greatly improved fluorescence properties,J. Biol. Chem.,1985,260,3440-3450.
    [101]1 K. Iwamoto, K. Araki, H. Fujishima, et. al., Fluorogenic calix[4]arene, J. Chem. Soc. Perkin Trans.1992,1,1885-1887.
    [102]T. Forster,10th spiers memorial lecture, transfer mechanisms of electronic excitation, Discuss. Faraday Soc.1959,27.7-17.
    [103]C. G. D. Remedjos, P. D. J. Moens, Fluorescence resonance energy transfer spectroscopy is a reliable "Ruler" for measuring structural changes in proteins:Dispelling the problem of the unknown orientation factor, J. Struct. Biol.,1995,115,175-185.
    [104]A. R. Clapp, I. L. Medintz, J. M. Mauro, et. al., Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc.,2004,126, 301-310.
    [105]R. F. Pasternack, C. Bustamante, P. J. Collings, et. al., Porphyrin assemblies on DNA as studied by a resonance light-scattering Technique, J. Am. Chem. Sot.1993,115,5393-5399.
    [106]R. F. Pasternack P. J. Collings, Resonance Light Scattering:A new technique for studying chromophore aggregation. Science,1995,269,935-939.
    [107]S. P Liu, Z. F. Liu, Studies on the resonant luminescence spectra of rhodamine dyes and their ion-association complexes,J. Chromatogr. A.1995,51.1497-1500.
    [108]刘绍璞,刘忠芳,李明,离子缔合物二级散射光谱的分析应用Ⅰ,硒(Ⅳ)-碘化物-罗丹明B体系,化学学报,1995,53.1178-1184.
    [109]刘绍璞,刘忠芳,李明,离子缔合物二级散射光谱的分析应用Ⅱ,汞(Ⅳ)-硫氰酸盐-碱性三苯甲烷染料体系,化学学报,1995,53,473-479.
    [110]X. F. Long, Q. Miao, S. P. Bi, et. al.. Resonance Rayleigh scattering method for the recognition and determination of double-stranded DNA using amikacin, Talanta,2004,64, 366-372.
    [111]H. Chen, Q. Zou, H. Yu, et. al., Study on interaction between cationic polystyrene nanoparticles and DNA, and the detection of DNA by resonance light scattering technology, Microchim. Acta,2010,168,331-340
    [112]J. Du, H. Zheng, C. Huang, et. al., Positive charged polymer as a probe for DNA determination by resonance Light scattering, Anal.Sci.2009,25,727-730.
    [113]S. P. Liu, Q. Liu, Resonance Rayleigh-scattering method for the determination of proteins with some monoazo dyes of chromotropic acid, Anal Sci.,2001,17,239-242.
    [114]S. P. Liu, R. Yang, Q. Liu, Resonance Rayleigh scattering method for the determination of proteins with orange G, Anal Sci.,2001,17,243-247.
    [115]X. Long, S. Liu, L. Kong, et. al. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method, Talanta, 2004,63,279-286.
    [116]S. P. Liu, H. Q. Luo, N. B. Li, et. al., Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes,Anal. Chem.,2001,76,3907-3914.
    [117]H. Q. Luo, S. P. Liu, Z. F. Liu, et. al., Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications, Anal. Chim. Acta,2001,449,261-270.
    [118]X. Q. Wei, Z. F. Liu, S. P. Liu, Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue. Anal. Biochem.,2005,346, 330-332.
    [119]S. P. Liu. Y. H. Chen, Z. F. Liu, et. al., A highly sensitive resonance Rayleigh scattering method for the determination of vitamin B1 with gold nanoparticles probe,Microchim. Acta, 2006,154,87-93.
    [120]X. L. Hu, S. P. Liu, N. B. Li, Resonance Rayleigh scattering spectra for studying the interaction of aminoglycoside antibiotics with pontamine sky blue and their analytical applications, Anal. Bioanal. Chem,2003,376,42-48.
    [121]P. Chen, S. Liu, Z. Liu. et. al., Determination of promethazine hydrochloride with palladium(II) and Na2WO4 by resonance Rayleigh scattering and resonance nonlinear scattering spectra, Spectrosc. Lett.,2010,43,491-499.
    [122]J. Wang, Z. Liu, J. Liu, et. al., Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application, J. Chromaiogr. A,2008,69,956-963.
    [123]J. Liu, Z. Liu, X. Hu, et. al., A highly sensitive resonance Rayleigh scattering method for the determination of bleomycin A5 and bleomycin A2 with some halofluorescein dyes, J. Pharm. and Biomed. Anal.2007,43,1452-1459.
    [124]S. P. Liu, Z. F. Liu, M. Li, et. al., Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide-basic triphenylmethane dye systems. Fresenius J Anal Chem,2000,368,848-852.
    [125]S. P. Liu, Q. Liu, Z. F. Liu, et. al., Resonance Rayleigh scattering of chromium(VI)-iodide-basic triphenylmethane dye systems and their analytical application, Anal. Chim. Acta,1999,379,53-61.
    [126]X. F. Long, S. P. Bi, H.Y. Ni, et. al., Resonance Rayleigh scattering determination of trace amounts of Al in natural waters and biological samples based on the formation of an Al(Ⅲ)-morin-surfactant complex. Anal. Chim. Acta 2004,501,89-97.
    [127]Z. L. Jiang, Q. Y. Liu, S. P. Liu, Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)n (Ag)s nanoparticle. Spectrochim. Acta. A,2002,58,2759-2764.
    [128]X. L. Liu, H. Yuan, D. W. Pang, et. al., Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application. Specrochim. Acta,2004,60,385-389.
    [129]N. B. Li, H. Q. Luo, S. P. Liu, et. al., Resonance Rayleigh scattering technology as a new method for the determination of the inclusion constant of (3-cyclodextrin. Spectrochim. Acta A, 2002,58,501-507.
    [130]N. B. Li, H. Q. Luo, S. P. Liu. Resonance Rayleigh scattering study of the inclusion complexation of chloramphenicol with β-cyclodextrin. Talanta.2005.66.495-500.
    [131]N. B. Li, S. P. Liu, H. Q. Luo. A new method for the determination of the first and second CMC in CTAB solution by resonance Rayleigh scattering technology. Anal. Lett.,2002,35. 1229-1238.
    [132]N. B. Li, H. Q. Luo, S. P. Liu. A new method for the determination of the critical micelle concentration of Triton X-100 in the absence and presence of β-cyclodextrin by resonance Rayleigh scattering technology. Spectrochim. Acta Part A,2004,60,1811-1815.
    [133]Y. X. Wang, L. Li, Z. S. Xu, et. al., Study on the binding equilibrium between surfactant FC-134 and DNA by resonance light scattering technique, J.Dispersion Sci. Technol.,2010,32, 114-119.
    [134]C. Z. Huang, Y. H. Wang, H. P. Guo, et. al.. A backscattering light detection assembly for sensitive determination of analyte concentrated at the liquid/liquid interface using the interaction of quercetin with proteins as the model system, Analyst,2005,130,200-205.
    [135]Y. H. Wang, H. P. Guo, K. J. Tan, et. al., Backscattering light detection of nucleic acids with tetraphenylporphyrin-Al(Ⅲ)-nucleic acids at liquid/liquid interface, Anal. Chim. Acta.,2004, 521.109-115.
    [136]J. Ling, Y. F. Li, C. Z. Huang, Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles,Anal. Chem.,2009,81,1707-1714.
    [137]J. Ling. Y. F. Li, C. Z. Huang, A label-free visual immunoassay on solid support with silver nanoparticles as plasmon resonance scattering indicator. Anal. Biochem.,2008,383,168-173.
    [138]H. W. Zhao, C. Z. Huang, Y. F. Li, A novel optical immunosensing system based on measuring surface enhanced light scattering signals of solid supports, Anal. Chim. Acta,2006, 564,166-172.
    [139]C. Z. Huang, Y. Liu, Y. H. Wang, et. al., Resonance light scattering imaging detection of proteins with α,β,γ,δ-tetrakis(p-sulfophenyl)porphyrin, Anal. Biochem.2003,321.236-243
    [140]J. Ling, C. Z. Huang, Y. F. Li, Directly light scattering imaging of the aggregations of biopolymer bound chromium(Ⅲ) hydrolytic oligomers in aqueous phase and liquid/liquid interface, Anal. Chim. Acta,2006,567,143-151
    [141]H. P. Guo, C. Z. Huang, J. Ling, Resonance light scattering imaging determination of heparin, Chin. Chem. Lett.,2006,17,53-56.
    [142]P. Feng, W. Q. Shu, C. Z. Huang, et. al., Total internal reflected resonance light scattering determination of chlortetracycline in body fluid with the complex cation of chlortetracycline europium trioctyl phosphine oxide at the water/tetra chloromethane interface, Anal. Chem.2001, 73,4307-4312.
    [143]X. B. Pang, C. Z. Huang, A selective and sensitive assay of berberine using total internal reflected resonance light scattering technique with fluorescein at the water/1,2-dichloroethane interface,J.Pharm. Biomed Anal,2004,35,185-191.
    [144]C. Z. Huang, P. Feng, Y. F. Li, et. al., Adsorption of penicillin-berberine ion associates at a water/tetra chloromethane interface and determination of penicillin based on total internal-reflected resonance light scattering measurements, Anal. Chim. Acta,2005,538, 337-343.
    [145]L. Dong, X. Chen, Z. Hu, Total internal reflected resonance light scattering determination of protein in human blood serum at water/tetra chloromethane interface with Arsenazo-TB and Cetyltrimethylammonium bromide, Talanta,2007,71,555-560.
    [146]E. Vidal, M. E. Palomeque, A. G. Lista, et. al., Flow injection analysis:Rayleigh light scattering technique for total protein determination, Anal. Bioanal. Chem.,2003,376,38-41.
    [147]K. Tan, Y. Li, C. Huang, Flow-injection resonance light scattering detection of proteins at the nanogram level, Luminescence,2005,20,176-180.
    [148]C. Z. Huang, X. B. Pang, Y. F. Li, Determination of heparin using azure B by flow injection analysis-resonance light scattering coupled technique, Anal. Lett.,2005,38,317-330.
    [149]D. Xu, S. Liu, Z. Liu, et. al., Determination of verapamil hydrochloride with 12-tungstophosphoric acid by resonance Rayleigh scattering method coupled toflow injection system, Anal. Chim. Acta,2007,588,10-15.
    [150]L. Zhang, J. Peng, S. Liu, et. al., The dynamics of a novel method coupling high-performance liquid chromatography with resonance Rayleigh scattering, J. Separa. Sci.,2011 34,2997-3003.
    [151]L. Zhang, J. Peng, J. Tang. et. al., Description and validation of coupling high performance liquid chromatography with resonance Rayleigh scattering in aminoglycosides determination, Anal. Chim. Acta,2011,706,199-204.
    [152]L. F. Wang, J. D. Peng, L. M. Liu, A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics, anal. Chimi. Acta,2008,630,101-106.
    [153]X. Lu, D. Zhang, C. Liu, et. al., Development of a non-derivatization high-performance liquid chromatography method with resonance Rayleigh scattering detection for the detection of sisomicin in rat serum, J. Chromatogr. B,2009,877,4022-4026.
    [154]Y. J. Long, Y. F. Li, C. Z. Huang, A wide dynamic range detection of biopolymer medicines with resonance light scattering and absorption ratiometry, Anal. Chim. Acta,2005,552,175-181
    [155]C. Z. Huang, X. B. Pang, Y. F. Li, et. al., A resonance light scattering ratiometry applied for binding study of organic small molecules with biopolymer, Talanta,2006,69,180-186.
    [156]X. X. Dai, Y. F. Li, W. He, et. al., A dual-wavelength resonance light scattering ratiometry of biopolymer by its electrostatic interaction with surfactant, Talanta,2006,70,578-583.
    [157]凌剑,银纳米粒子的局域表面等离子体共振散射在生化药物分析中的应用研究,[博士论文],西南大学,2009,12.
    [158]J. Yang, X. Chen. R. Fu, et. al., Kinetics of phase separation in polymer blends revealed by resonance light scattering spectroscopy, Phys. Chem. Chem. Phys.,2010,12,2238-2245.
    [159]W. Luo, X. Chen, Z. Liao, et. al., Evolution of density fluctuation to a lamellar crystal in a poly(trimethylene terephthalate) film revealed by the resonance light scattering technique, Phys. Chem. Chem. Phys.,2010,12,4686-4693.
    [160]Y. Q. He, S. P. Liu. Z. F. Liu, A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering, Spectrochim. Acta A,2005,612861-2866.
    [161]蒋治良,李芳,李廷盛等,共振散射光强度与金粒子粒径的关系,高等学校化学学报,2000,21,1488-1490.
    [162]钟福新,蒋治良、李芳等.纳米银胶的光化学制备及其共振散射光谱研究,光谱学与光谱分析,2000,20.724-726
    [163]凌绍明,蒋治良.闭献树等Ag/AgCl纳米粒子的制备及其共振散射光谱研究,光谱学 与光谱分析,2001,21,819-821.
    [164]蒋治良,冯忠伟,李廷盛等,金纳米粒子的共振散射光谱,中国科学B,2001,31,183-188.
    [165]蒋治良,蒙冕武,刘绍璞,黄色硫化镉纳米粒子的共振瑞利散射光谱研究,分析化学,2003,31,315-317.
    [166]白燕,李维嘉,吴雅琴等,液相纳米硒微粒的性质及其共振瑞利散射光谱研究,光谱学与光谱分析,2006,26,313-316.
    [167]J. Zhu, L. Huang, J. Zhao, et. al., Shape dependent resonance light scattering properties of gold nanorods, Mater. Sci. Eng. B,2005,121,199-203.
    [168]P. J. Collings, E. J. Gibbs, T. E. Starr, et. al., Resonance light scattering and its application in determining the size, shape, and aggregation number for supramolecular assemblies of chromophores, J. Phys. Chem. B 1999,103,8474-8481.
    [169]I. Smirnov, R. H. Shafer, Lead is unusually effective in sequence-specific folding of DNA, J. Mol.Biol.,2000,296,1-5.
    [170]X. B. Fu, F. Qu, N. B. Li, et. al., A label-free thrombin binding aptamer as a probe for highly sensitive and selective detection of lead(Ⅱ) ions by a resonance Rayleigh scattering method, Analyst,2012,137,1097-1099.
    [171]白光弼译,异配与异金属络合物及其在分析化学中的应用,西安陕西师范大学出版社,1989,110,226.
    [172]李树伟,苏小东,王小红等,共振光散射光谱法测定痕量氯离子,化学研究与应用,2004,16,535-536.
    [173]衷明华,黄俊盛,痕量银的共振散射光谱法测定,仪器戊表与分析监测,2005,3,36-37.
    [174]曾铭,李树伟,王小红等,共振光散射法测定环境水中镉的研究及应用,四川师范大学学报,2005,28,218-221.
    [175]衷明华,温红丽,吕虎等,微晶腊相反射散射光度测定镍的研究,冶金分析,2003,23,17-19.
    [176]韩志辉,吕昌银,杨胜圆等,硫化银体系共振散射光谱研究及分析应用,光谱实验,2005,22.242-246.
    [177]S. Liu, Z. Liu, G. Zhou, Resonant Rayleigh scattering for the determination of trace amounts of mercury (Ⅱ) with thiocyanate and basic triphenylmethane dyes, Anal. Lett.,1998,31, 1247-1259.
    [178]S. P. Liu, Z. F. Liu, H. Q. Luo, Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide-rhodamine dye systems, Anal. Chim. Acta,2000,407, 255-260.
    [179]S. P. Liu, Z. F. Liu, C. Z. Huang, Resonance Rayleigh scattering for an indirect determination of trace amounts of selenium(Ⅳ) with iodide-basic triphenylmethane dye systems, Anal. Sci., 1998,14,799-802.
    [180]刘绍璞,周光明,刘忠芳等,共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中的痕量钼,高等学校化学学报,1998,19,1040-1044.
    [181]S. Fu, Z. Liu, S. Liu, et. al., Study on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra of the interactions of palladium(II)-ceftriaxone chelate with anionic surfactants and their analytical applications, Talanta,2008,75,528-535.
    [182]Z. Chen, T. Song, Y. Peng, et. al., A new way to detect the interaction of DNA and anticancer drugs based on the decreased resonance light scattering signal and its potential application, Analyst,2011,136,3927-3933.
    [183]Q. Cao, Z. Ding, R. Fang, et. al., A sensitive and rapid method for the determination of protein by the resonance Rayleigh light-scattering technique with pyrogallol red, Analyst,2001, 126,1444-1448.
    [184]Z. Chen, J. Liu, L. Zhu. et. al., Development of a sensitive and rapid nucleic acid assay with tetraphenyl porphyrinatoiron chloride by a resonance light scattering technique. Luminescence. 2007,22,493-500.
    [185]H. L.Wu, W. Y. Li, X. W. He, et. al., Interactions of night blue with nucleic acids and determination of nucleic acids using resonance light scattering technique, Chinese J. Chem., 2003,21,305-310.
    [186]C. Z. Huang, Y. F. Li, X. D. Liu, The interactions of safranine T with nucleic acids as studied by a resonance light-scattering technique, Biomed. Chromatogr.,1999,13,125-126.
    [187]Y. j. Chen, J. h. Yang, X. Wu, et. al.. Resonance light scattering technique for the determination of proteins with resorcinol yellow and OP, Talanta,2002,58,869-874.
    [188]H. Q. Luo, S. P. Liu, N. B. Li, et. al.. Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application, Anal. Chim. Acta,2002.468.275-286.
    [189]Y. F. Long, C. Z. Huang, Y. F. Li, Hybridization detection of DNA by measuring organic small molecule amplified resonance light scattering signals, J. Phys. Chem. B 2007,111, 4535-4538.
    [190]W. W. Song, N. B. Li, H. Q. Luo, Gemini surfactant applied to the heparin assay at the nanogram level by resonance Rayleigh scattering method, Anal. Biochem.,2012,422,1-6.
    [191]Y. W. Wang, N. B. Li, H. Q. Luo, Resonance Rayleigh scattering method for the determination of chitosan with some anionic surfactants, Luminescence,2008,23,126-131.
    [192]Y. Y. Cai, D. Wu, J. W. Zhang, et. al., Rapid determination of ovalbumin in food by resonance light scattering technique with anion surfactant, Luminescence,2010,25,117-118.
    [193]L. Li. Q. A. Pan, Y. X. Wang, et. al., Study on the binding equilibrium between surfactant FC95 and DNA by resonance light-scattering technique, App. Sur. Sci.,2011,257,4547-4551.
    [194]J. Liu, Z. Liu, X. Hu, et. al., Determination of chondroitin sulfate A by resonance Rayleigh scattering and resonance non-linear scattering with proteins as probes, Chinese J. App. Chem.,2010,27,842-848.
    [195]Y. Ma, N. B. Li, Hong Qun Luo, Resonance Rayleigh scattering of K2Zn3[Fe(CN)6]2 nanoparticles and its application for the determination of vitamin C, Instru. Sci. Tech.,2009,37, 345-358.
    [196]J. X. Dong, W. W., N. B. Li, et. al., Determination of dopamine at the nanogram level based on the formation of Prussian blue nanoparticles by resonance Rayleigh scattering technique, J. Chromatogr. A,2012,86,527-532.
    [197]Y. Ma, N. B. Li, H. Q. Luo, Novel and sensitive methods for the determination of dopamine based on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering quenching effects, J. Chromatogr. A,2009,73,747-751.
    [198]H. Y. Wang, Y. F. Li, C. Z. Huang, Detection of ferulic acid based on the plasmon resonance light scattering of silver nanoparticles, Talanta,2007,72,1698-1703.
    [199]A. Andreu-Navarro, J. M. Fernandez-Romero, A. Gomez-Hens, Determination of antioxidant additives in foodstuffs by direct measurement of gold nanoparticle formation using resonance light scattering detection, Anal. Chim. Acta,2011,695,11-17.
    [200]J. Yguerabide, E. E. Yguerabide, Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications, J. Cel. Biochem.,2001,84,71-81.
    [201]S. P. Liu, Z. Yang, Z. F. Liu, et. al., Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe. Anal. Biochem.,2006,353,108-116.
    [202]S. P. Liu, Y. Q. He, Z. F. Liu, et. al., Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe. Anal. Chim. Acta,2007,598, 304-311.
    [203]Y. Fan, Y. F. Long, Y. F. Li, A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Anal. Chim. Acta,2009,653,207-211.
    [204]W. J. Qi, D. Wu, J. Ling, et. al., Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition, Chem. Commun.,2010,46,4893-4895.
    [205]C. Wu, C. Xiong, L. Wang, et. al., Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag- with unmodified gold nanoparticles, Analyst,2010, 135,2682-2687.
    [206]J. J. Peng, S. P. Liu, L. Wang, et. al., Studying the interaction between CdTe quantum dots and nile blue by absorptiofluorescence and resonance Rayleigh scatte ring spectra, J. Chromatogr. A,2010,75,1571-1576.
    [207]Z. Liu, S. Liu, J. Peng, et. al., Resonance Rayleigh scattering and resonance non-linear scattering method for the determination of aminoglycoside antibiotics with water solubility CdS quantum dots as probe, J. Chromatogr. A,2009,74.36-41.
    [208]G. A. Miller, Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media, J. Phys. Chem.,1978,82,616-618.
    [209]罗红群,共振瑞利散射及共振非线性散射测定肝素和某些物理化学参数的新方法研究,[博士论文],西南大学,2002,4.
    [210]杨清玲,共振瑞利散射和共振非线性散射光谱在环境分析中的新应用研究,[博士论文],西南大学,2008,12.
    [211]彭敬东,共振瑞利散射光谱在天然药物分析中的应用研究,[博士论文],西南大学,2005,6.
    [212]孔玲.蛋白质、多肽与DNA相互作用的共振瑞利散射和共振非线性散射光谱及其分析应用研究.[博士论文],西南大学,2011,5.
    [1]A. Downham and P. Collins, Colouring our foods in the last and next millennium, Int. J. Food Sci. Technol.2000,35,5-22.
    [2]K. S. Minioti, C. F. Sakellariou, N. S. Thomaidis, Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector, Anal. Chim. Acta,2007,583,103-110.
    [3]M. Kucharskaa, J. Grabka, A review of chromatographic methods for determination of synthetic food dyes, Talanta,2010,80,1045-1051.
    [4]邹建宏,陈卫东,邵景东,反相高效液相色谱法同时测定果汁中8种添加剂,分析化学,2001,29,1192-1195.
    [5]N. Yoshioka, K. Ichihashi, Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection, Talanta,2008,74,1408-1413.
    [6]E. C. Vidotti, W. F. Costa. C. C. Oliveira, Development of a green chromatographic method for determination of colorants in food samples, Talanta,2006,68,516-521.
    [7]Y. N. Ni, Y. Wang, K. Serge, Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics, Talanta,2009,78,432-441.
    [8]E. C. Vidotti, J. C. Cancino, C. C. Oliveria et. al., Simultaneous determination of food dyes by first derivative spectrophotometry with sorption onto polyurethane foam, Anal. Sci.2005,21, 149-153.
    [9]E. Dinc, E. Baydan, M. Kanbur et. al., Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta,2002, 58,579-594.
    [10]P. L. Lopez-de-Alba, L. Lopez-Martinez, L. I. Michelini-Rodriguez, et. al., Extraction of sunset yellow and tartrazine by ion-pair formation with adogen-464 and their simultaneous determination by bivariate calibration and derivative spectrophotometry, Analyst,1997, 122,1575-1579.
    [11]T. M. Coelho, E. C. Vidotti, M. C. Rollemberg, et. al., Photoacoustic spectroscopy as a tool for determination of food dyes:Comparison with first derivative spectrophotometry, Talanta,2010, 81,202-207.
    [12]Z. D. Chen, Y. Xiao, Y. B. Zeng, et. al., Resonance Rayleigh scattering of palladium(II)-tartrazine-ionic liquid system and its analytical application, Acta. Chim. Sinica, 2010,68,334-338.
    [13]H. Y. Huang, Y. C.Shih, Y. C. Chen, Determining eight colorants in milk beverages by capillary electrophoresis, J. Chromatogr. A.2002,959,317-325.
    [14]W. K. Zhang, T. Liu, X. J. Zheng, et. al., Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode, Colloid Surf. B.,2009,74,28-31.
    [15]J. J. Berzas Nevado, J. Rodriguez Flores, M. J. Villasenor LLerena, Square wave adsorptive voltammetric determination of sunset yellow, Talanta,1997,44,467-474.
    [16]P. L. Lopez-de-Alba, L. Lopez-Martinez, L. M. De-Leon-Rodriguez, Simultaneous determination of synthetic dyes tartrazine, allura red and sunset yellow by differential pulse polarography and partial least squares. A multivariate calibration method, Electroanal.,2002, 14,197-205.
    [17]J. Kim, F. Kim, J. X. Huang, Seeing graphene-based sheets, Mater. Today,2010,3,28-38.
    [18]R. S. Swathi, K. L. Sebastian, Resonance energy transfer from a dye molecule to graphene, J. Chem. Phvs.,2008.129.054703;
    [19]R. S. Swathi, K. L. Sebastian, Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence. J. Chem. Phys.,2009,130,086101.
    [20]S. J. He, B. Song, D. Li, et. al., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis, Adv. Funct. Mater.,2010,20,453-459.
    [21]C. H. Lu, H. H. Yang, C. L. Zhu, et. al., A graphene platform for sensing biomolecules, Angew. Chem. Int. Ed.2009,48,4785-4787.
    [22]H. X. Chang, L. H. Tang, Y. Wang, et. al., Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection, Anal. Chem.2010,82,2341-2346.
    [23]Y. Q, Wen, F. F. Xing. S. J. He. et. al., A graphene-based fluorescent nanoprobe for silver(Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide, Chem. Commun.,2010, 46,2596-2598.
    [24]Y. Shi, W. T. Huang, H. Q. Luo, et. al., A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin, Chem. Commun., 2011,47,4676-4678.
    [25]W. T. Huang, Y. Shi., W. Y. Xie, et. al., A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide:Use for detection of Hg2+ and molecular logic-gate operation, Chem. Commun.,2011,47,7800-7802.
    [26]M. Liu. H. M. Zhao, S. Chen. et. al., Label-free fluorescent detection of Cu(Ⅱ) ions based on DNA cleavage-dependent graphene-quenched DNAzymes, Chem. Commun.,2011,47. 7749-7751.
    [27]W. S. Hummers, R. E. Offeman, preparation of graphitic oxide, J. Am. Chem. Soc.,1958,80. 1339.
    [28]D. Li. M. B.Muller, S. Gilje. et. al., Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 2008,3,101-105.
    [29]Y. Xu, L. Zhao, H. Bai, et. al., Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions, J. Am. Chem. Soc.,2009,131,13490-13497.
    [30]R. S. Razmara, A. Daneshfar, R. Sahrai, Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid-liquid extraction, J. lnd. Eng. Chem.,2011,17,533-536.
    [31]J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso. et. al., Graphene oxide dispersions in organic solvents, Langmuir,2008,24,10560-10564.
    [32]J. L. Chen, X. P. Yan, A dehydration and stabilizer-free approach to production of stable water dispersions of graphene nanosheets, J. Mater. Chem.2010,20,4328-4332.
    [33]S. Stankovich, D. A. Dikin, R. D. Piner, et. al.. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon,2007,45,1558-1565.
    [34]Y. Si, E. T. Samulski, Synthesis of water soluble graphene, Nano Lett.,2008,8,1679-1682.
    [35]R. Sjoback, J. Nygren, M. Kubista, Absorption and fluorescence properties of fluorescein, Spectrochim. Acta A,1995,51, L7-L21.
    [36]Y. Zhang, Y. Liu, S. J. Zhen, et. al., Graphene oxide as an efficient signal-to-background enhancer for DNA detection with a long range resonance energy transfer strategy, Chem. Commun.,2011.47,11718-11720
    [37]J. R. Chipley, in:A.L. Branen, P.M. Davidson (Eds.), Sodium benzoate and benzoic acid in antimicrobials in foods. Marcel Dekker, New York,1983.
    [38]L. R. Vartanian, M. B. Schwartz, K. D. Brownell, Effects of soft drink consumption on nutrition and health:A systematic review and meta-analysis, Am. J. Public Health,2007,4,667-675.
    [1]W. W. Cai, R. D. Piner, F. J. Stadermann, et. al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide, Science,2008,321,1815-1817.
    [2]L. B. Casabianca, M. A. Shaibat, W. W. Cai, et. al., NMR-based structural modeling of graphite oxide using multidimensional 13C solid-State NMR and ab initio chemical shift calculations, J. Am. Chem. Soc.2010,132,5672-5676.
    [3]J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, et. al., Graphene oxide dispersions in organic solvents, Langmuir,2008,24,10560-10564.
    [4]Z. Liu, J. T. Robinson, X. M. Sun. et. al., PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs, J. Am. Chem. Soc.2008,130,10876-10877.
    [5]N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett.2008, 8.4469-4476.
    [6]Y. F. Xu, Z. B. Liu, X. L. Zhang, et. al., A graphene hybrid material covalently functionalized with porphyrin:Synthesis and optical limiting property, Adv. Mater.2009,21,1275-1279.
    [7]J. Balapanuru, J. X. Yang, S. Xiao, et. al., A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties, Angew. Chem. Int. Ed.2010,49,6549-6553.
    [8]R. S. Swathi, K. L. Sebastian, Resonance energy transfer from a dye molecule to graphene, J. Chem. Phys.2008,129,054703
    [9]R. S. Swathi, K. L. Sebastian, Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence, J. Chem. Phys.2009,130,086101.
    [10]C. H. Lu, H. H. Yang, C. L. Zhu, et. al., A graphene platform for sensing biomolecules, Angew. Chem. Int. Ed.2009,48,4785-4787.
    [11]S. He. B. Song, D. Li, et. al., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater.2010,20,453.
    [12]H. Dong, W. Gao, F. Yan, et. al., Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules, Anal. Chem.2010,82,5511-5517.
    [13]F. Li, Y. Huang, Q. Yang, et. al., A graphene-enhanced molecular beacon for homogeneous DNA detection, Nanoscale.2010,2,1021-1026.
    [14]C. H. Lu, J. Li, J. J. Liu, et. al., Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the "nanoquencher", Chem. Eur.J.2010,16, 4889-4894.
    [15]H. Chang, L. Tang, Y. Wang. et. al., Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem.2010,82,2341-2346.
    [16]Y. Wang, Z. Li, D. Hu, et. al., Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells, J. Am. Chem. Soc.2010,132,9274-9276.
    [17]C. Zhang, Y. Yuan, S. Zhang, et. al., Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide, Angew. Chem. Int. Ed.2011, 50,6851-6854.
    [18]J. L. Chen, X. P. Yan, K. Meng, et. al., A graphene oxide based photo-induced charge transfer label-free near-infrared fluorescent biosensor for dopamine, Anal. Chem.2011,83,8787-8793.
    [19]Y. Q. Wen, F. F. Xing, S. J. He, et. al., A graphene-based fluorescent nanoprobe for silver(Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide, Chem. Commun. 2010,46,2596-2598.
    [20]M. Liu, H. Zhao, S. Chen, et. al., A "turn-on" fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme, Biosens. Bioelectron.2011,26,4111-4116.
    [21]Y. Wen, C. Peng. D. Li, L. Zhuo, et. al., Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range, Chem. Commun.,2011,47,6278-6280.
    [22]Y. Shi, W. T. Huang, H. Q. Luo et.al., A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin, Chem. Commun., 2011,47,4676-4678.
    [23]W. T. Huang, Y. Shi., W. Y. Xie, et. al.. A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide:Use for detection of Hg2+ and molecular logic-gate operation, Chem. Commun.,2011,47,7800-7802.
    [24]M. Liu, H. M. Zhao, S. Chen, et. al.. Label-free fluorescent detection of Cu(Ⅱ) ions based on DNA cleavage-dependent graphene-quenched DNAzymes, Chem. Commun.,2011,47, 7749-7751.
    [25]P. Bradder, S. K. Ling, S. B. Wang, S. M. Liu, Dye Adsorption on Layered Graphite Oxide, J. Chem. Eng. Data.2011,56,138-141.
    [26]Y. Yao, F. Xu, M. Chen, et. al., Adsorption behavior of methylene blue on carbon nanotubes, Bioresource. Technol.2010,101,3040-3046.
    [27]M. Zhao, P. Liu, Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder, Desalination,2009,249,331-336.
    [28]S. T. Yang, S. Chen, Y. Chang, et. al., Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interf. Sci.2011,359,24-29.
    [29]G. K. Ramesha, A. V. Kumara, H. B. Muralidhara, et. al., Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes, J. Colloid Interf. Sci.2011,361,270-277.
    [30]J. Kim, L. J. Cote, F. Kim, et. al., Visualizing graphene based sheets by fluorescence quenching microscopy, J. Am. Chem. Soc.2010,132,260-267.
    [31]J. Kim, F. Kim, J. Huang, Seeing graphene-based sheets. Mater. Today,2010,13,28-38.
    [32]K. P. Loh, Q. Bao, G. Eda, et. al., Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem.,2010,2,1015-1024.
    [33]A. Downham, P. Collins, Colouring our foods in the last and next millennium, Int. J. Food Sci. Tech.2000,35,5-22.
    [34]P. M(?)ller, H. Wallin, Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene, Mutat. Res-Rev. Mutat.2000,462,13-30.
    [35]R. D. Combes, R. B. Haveland-Smith, A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes, Mutat. Res-Gen. Tox. EN.1982,98, 101-243.
    [36]M. Kucharska, J. Grabka, A review of chromatographic methods for determination of synthetic food dves, Talanta,2010,80,1045-1051.
    [37]E. C. Vidotti, W. F. Costa,C. C. Oliveira, Development of a green chromatographic method for determination of colorants in food samples, Talanta,2006,68,516-521.
    [38]K. S. Minioti, C. F. Sakellariou, N. S. Thomaidis, Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector, Anal. Chim. Acta.2007,583,103-110.
    [39]Y. N. Ni, Y. Wang, K. Serge, Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics, Talanta,2009,78,432-441.
    [40]E. C. Vidotti, J. C. Cancino, C. C. Oliveria, et. al., Simultaneous determination of food dyes by first derivative spectrophotometry with sorption onto polyurethane foam, Anal. Sci.2005,21, 149-153.
    [41]E. Dinc, E. Baydan, M. Kanbur, et. al., Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta,2002,58, 579-594.
    [42]P. L. Lopez-de-Alba, L. Lopez-Martinez, L. I. Michelini-Rodriguez, et. al., Extraction of sunset yellow and tartrazine by ion-pair formation with adogen-464 and their simultaneous determination by bivariate calibration and derivative spectrophotometry, Analyst,1997, 122,1575-1579.
    [43]T. M. Coelho, E. C. Vidotti, M. C. Rollemberg, et. al., Photoacoustic spectroscopy as a tool for determination of food dyes:Comparison with first derivative spectrophotometry, Talanta,2010, 81,202-207.
    [44]Z. D. Chen, Y. Xiao, Y. B. Zeng, et. al., Resonance Rayleigh scattering of palladium(Ⅱ)-tartrazine-ionic liquid system and its analytical application, Acta. Chim. Sinica, 2010,68,334-338.
    [45]H. Y. Huang, Y. C.Shih, Y. C. Chen, Determining eight colorants in milk beverages by capillary electrophoresis,J.Chromatogr. A.2002,959,317-325.
    [46]W. K. Zhang, T. Liu, X. J. Zheng, et. al., Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode, Colloid Surf. B.,2009,74,28-31.
    [47]J. J. Berzas Nevado, J. Rodriguez Flores, M. J. Villasenor LLerena, Square wave adsorptive voltammetric determination of sunset yellow, Talanta.1997,44,467-474.
    [48]P. L. Lopez-de-Alba, L. Lopez-Martinez, L. M. De-Leon-Rodriguez, Simultaneous determination of synthetic dyes tartrazine, allura red and sunset yellow by differential pulse polarography and partial least squares. A multivariate calibration method. Electroanal..2002,14, 197-205.
    [49]S. T. Huang. Y. Shi, N. B. Li, H. Q. Luo, Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer, Chem. Commun.,2012,48,747-749.
    [50]W. S. Hummers and R. E. Offeman, preparation of graphitic oxide. J. Am. Chem. Soc.,1958,80, 1339.
    [51]D. Li, M. B.Muller, S. Gilje, et.al., Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol.,2008,3,101-105.
    [52]R. S. Razmara, A. Daneshfar, R. Sahrai, Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid-liquid extraction, J. Ind. Eng. Chem.,2011,17,533-536.
    [53]J. Kim, L. J. Cote, F. Kim, J. Huang, Visualizing graphene based sheets by fluorescence quenching microscopy, J. Am. Chem. Soc.2010,132,260-267.
    [54]J. Kim, F. Kim, J. X. Huang, Seeing graphene-based sheets, Mater. Today,2010,3,28-38.
    [55]K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications Nat. Chem.,2010,2,1015-1024.
    [56]R. Sjoback, J. Nygren, M. Kubista, Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A,1995,51, L7-L21.
    [57]Y. Zhang, Y. Liu, S. J. Zhen, et. al., Graphene oxide as an efficient signal-to-background enhancer for DNA detection with a long range resonance energy transfer strategy, Chem. Commun.,2011,47,11718-11720
    [58]L. N. Bogdanova, N. O. Mchedlov-Petrossyan, N. A. Vodolazkaya, et. al., The influence of β-cyclodextrin on acid-base and tautomeric equilibrium of fluorescein dyes in aqueous solution, Carbohvd. Res.,2010,345,1882-1890.
    [59]K. S. Minioti, C. F. Sakellariou, N. S. Thomaidis, Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector, Anal. Chim. Acta,2007,583,103-110.
    [60]Y. N. Ni, Y. Wang, K. Serge, Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics, Talanta,2009,78,432-441.
    [61]T. M. Coelho, E. C. Vidotti, M. C. Rollemberg, et. al., Photoacoustic spectroscopy as a tool for determination of food dyes:Comparison with first derivative spectrophotometry, Talanta,2010, 81,202-207.
    [62]J. J. B. Nevado, J. R. Flores, M. J. V. LLerena, Square wave adsorptive voltammetric determination of sunset yellow, Talanta,1997,44,467-474.
    [63]J. R. Chipley, in:A.L. Branen, P.M. Davidson (Eds.), Sodium benzoate and benzoic acid in antimicrobials in foods, Marcel Dekker, New York,1983.
    [64]L. R. Vartanian, M. B. Schwartz, K. D. Brownell, Effects of soft drink consumption on nutrition and health:A systematic review and meta-analysis, Am. J. Public Health,2007,4,667-675.
    [1]P. M(?)ller, H. Wallin, Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat. Res-Rev. Mutat.2000,462,13-30.
    [2]M. Stiborova, V. Martinek. H. Rydlova, et. al., Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes,Cancer Res,2002,62,5678-5684.
    [3]M. Dracinsky, J. Cvacka, M. Semanska, et. al., Mechanism of formation of (deoxy) guanosine adducts derived from peroxidase-catalyzed oxidation of the carcinogenic nonaminoazo dye 1-phenylazo-2-hydroxynaphthalene (Sudan Ⅰ), Chem. Res. Toxicol.,2009,22,1765-1773.
    [4]L. P. Wu, Y. F. Li, C. Z. Huang, et. al., Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles, Anal. Chem.2006,78,5570-5577.
    [5]Z. L. Jiang, M. J. Zou, A. P. Deng, et. al., A highly sensitive and selective immunonanogold resonance scattering spectral assay for Sudan I, Intern. J. Environ. Anal. Chem.2008,88, 649-661.
    [6]F. Calbiani, M. Careri, L. Elviri, et. al., Development and in-house validation of a liquid chromatography-electrospray-tandem mass spectrometry method for the simultaneous determination of Sudan Ⅰ, Sudan Ⅱ. Sudan Ⅲ and Sudan Ⅳ in hot chilli products, J. Chromatogr. A,2004,1042,123-130.
    [7]R. Rebane, I. Leito, S. Yurchenko, et. al., A review of analytical techniques for determination of Sudan I-IV dyes in food matrixes. J. Chromatogr. A,2010,1217,2747-2757.
    [8]F. Puoci, C. Garreffa, F. lemma, et. al., Molecularly imprinted solid phase extraction for detection of sudan I in food matrices, Food Chem.,2005,93,349-353.
    [9]L. He. Y. Su, B. Fang, et. al., Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography-mass spectrometry, Anal. Chim. Acta,2007,594, 139-146.
    [10]V. Cornet, Y. Govaert, G. Moens, et. al., Development of a fast analytical method for the determination of Sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection,J.Agric. Food Chem.,2006,54,639-644.
    [11]L. D. Donna, L. Maiuolo, F. Mazzotti, et. al., Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Anal. CHem.,2004,76,5104-5108.
    [12]K. Molder, A. Kiinnapas, K. Herodes, et. al., "Fast peaks" in chromatograms of Sudan dyes, J. Chromatogr. A,2007,1160,227-234.
    [13]F. Mazzotti, L. D. Donna, L. Maiuolo, et. al., Assay of the set of all Sudan azodye (Ⅰ, Ⅱ, Ⅲ, Ⅳ, and para-red) contaminating agents by liquid chromatography-tandem mass spectrometry and isotope dilution methodology, J. Agric. Food Chem.2008,56,63-67.
    [14]O. Chailapakul, W. Wonsawat, W. Siangproh, et. al., Analysis of Sudan Ⅰ, Sudan Ⅱ, Sudan Ⅲ, and Sudan Ⅳ in food by HPLC with electrochemical detection:Comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode, Food Chem.,2008,109, 876-882.
    [15]E. Mejia, Y. S. Ding, M. F. Mora, et. al., Determination of banned Sudan dyes in chili powder by capillary electrophoresis. Food Chem.2007,102,1027-1033.
    [16]S. F. Liu, X. Zhang, X, C. Lin, et. al., Development of a new method for analysis of Sudan dyes by pressurized CEC with amperometric detection. Electrophoresis,2007,28,1696-1703.
    [17]T. S. Fukuji, M. Castro-Puyana. M. F. M. Tavares, et. al., Fast determination of Sudan dyes in chilli tomato sauces using partial filling micellar electrokinetic chromatography, J. Agric. Food Chem.2011.59,11903-11909.
    [18]Z. Zhang, S. Xu, J. Li, et. al., Selective solid-phase extraction of Sudan I in chilli sauce by single-hole hollow molecularly imprinted polymers, J. Agric. Food Chem.2012,60,180-187.
    [19]C. V. D. Anibal, M. Odena, I. Ruisanchez, et. al., Determining the adulteration of spices with Sudan Ⅰ-Ⅱ-Ⅱ-Ⅳ dyes by UV-visible spectroscopy and multivariate classification techniques. Talanta,2009,79,887-892.
    [20]A. A. Ensafi, B. Rezaei, M. Amini, et. al., A novel sensitive DNA-biosensor for detection of a carcinogen, Sudan Ⅱ, using electrochemically treated pencil graphite electrode by voltammetric methods, Talanta,2012,88,244-251.
    [21]L. Ming, X. Xi, T. Chen, et. al., Electrochemical determination of trace Sudan I contamination in chili powder at carbon nanotube modified electrodes. Sensors,2008,8,1890-1900.
    [22]D. Han. M. Yu, D. Knopp, et. al., Development of a highly sensitive and specific enzyme-linked immunosorbent assay for detection of Sudan I in food samples, J. Agric. Food Chem.2007,55, 6424-6430.
    [23]Y. H. Qi, W. C. Shan, Y. Z. Liu, et. al., Production of the polyclonal antibody against Sudan 3 and immunoassay of Sudan Dyes in food samples, J. Agric. Food Chem.2012,60,2116-2122.
    [24]W. Cheung, 1. T. Shadi, Y. Xu, et. al., Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics, J. Phys. Chem. C. 2010,114,7285-7290.
    [25]C. V. D. Anibal, L. F. Marsal, M. P. Callao, et. al., Surface enhanced Raman spectroscopy (SERS) and multivariate analysis as ascreening tool for detecting Sudan I dye in culinary spices, Spectrochim. Acta A,2012,87,135-141.
    [26]S. Y. Yang, C. Y. Nii, H. X. Yang, J. H. Yu, Fluorescence resonance energy transfer quenching method for determination of Sudan I with human serum albumin, Chem. Online 2008,2, 154-157.
    [27]Q. H. Cai, Z. X. Zou, Y. Q. Li, Simultaneous determinati on of Sudan II and Sudan III via synchronous fluorescence spectrometry, Chem. J. Chinese U.2007,28,1663-1665.
    [28]D. F. H. Wallach, T. L. Steck, Fluorescence techniques in the microdetermination of metals in biological materials. Utility of 2,4-bis-[N, N'-di (carboxymethyl) aminomethyl] fluorescein in the fluorometric estimation of Al+3, alkaline earths, Co+2, Cu+2, Ni+2, and Zn+2 in micromolar concentrations, Anal. Chem.1963,35,1035-1044.
    [29]L. A. Saari, W. R. Seitz. Immobilized calcein for metal ion preconcentration, Anal. Chem.1984, 56,810-813.
    [30]H. Diehl, J. L. Ellingboe, Indicator for titration of calcium in presence of magnesium using disodium dihydrogen ethylenediamine tetraacetate, Anal. Chem.1956,28,882-884.
    [31]B. L. Kepner, D. M. Hercules, Fluorometric determination of calcium in blood serum, Anal. Chem.,1963,35,1238-1240.
    [32]M. A. Demertzis, Fluorimetric determination of calcium in serum with calcein:complexation of calcein with calcium and alkali metals. Anal. Chim. Acta.1988,209,303-308.
    [33]S. Saito, T. Anada, S. Hoshi, et. al., Chemical suppression of contaminant metal Ions using a metastable state in precolumn derivatizing HPLC:an ultratrace fluorometric detection of Al(III), Anal. Chem.2005,77,5332-5338.
    [34]F. Thomas, G. Serratrice, C. Beguin, et. al., Calcein as a fluorescent probe for ferric iron, J. Biol. Chem.1999,274,13375-13383.
    [35]S. Chung, S. Nam, J. Lim, et. al., A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging, Chem. Commun.,2009,2866-2868.
    [36]K. E. Dean, G. Klein, O. Renaudet, et. al., A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases, Bioorg. Med. Chem. Lett.2003,13,1653-1656.
    [37]D. Seto, N. Soh, K. Nakano, et. al., Selective fluorescence detection of histamine based on ligand exchange mechanism and its application to biomonitoring, Anal. Biochem.2010,404, 135-139.
    [38]N. Tomita, Y. Mori, H. Kanda, et. al., Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products, Nat. Protoc.,2008,3,877-882.
    [39]S. Sarkar, P. K. Dhara, M. Nethaji, et. al., Copper(Ⅱ) complexes of tridentate SNO ligands: synthesis, characterization and crystal structure, J. Coord. Chem.,2009,62,817-824.
    [40]H. Adams, R. M. Bucknall, D. E. Fenton, et. al., Self association in the structures of two copper(Ⅱ)-Azo-dye complexes, Polyhedron,1998,17,4169-4177.
    [41]M. A. Rauf, Z. Akhter, S. Kanwal, Photometric studies of the complex formation of Cu2+ and Cr3+ions with Sudan Red B, Dyes Pigments,2005,67,77-79.
    [42]M. A. Rauf, Z. Akhter, S. Kanwal, Photometric studies of the complexation of Sudan Red B with Mn2+ and Fe3+ ions. Dyes Pigments,2004:63,213-215.
    [43]J. A. J. Jarvis, The crystal structure of Copper(Ⅱ) bis (benzene azo-β-naphthol), Acta Cryst. 1961.14,961-964.
    [44]National Standard of the People's Republic of China, GB/T 19681-2005, method for the determination of Sudan dyes in foods-High performance liquid chromatography,2005.
    [45]T. Forster,10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation, Discuss. Faraday Soc.1959,27,7-17.
    [46]P. R. Selvin, The renaissance of fluorescence resonance energy transfer, Nat. Struct. Boil.,2000, 7,730-734.
    [47]C. G. D. Remedios, P. D. J. Moens, Fluorescence resonance energy transfer spectroscopy ss a reliable "ruler" for measuring structural changes in proteins:dispelling the problem of the unknown orientation factor, J. Struct. Biol.,1995,115,175-185.
    [48]A. R. Clapp, I. L. Medintz. J. M. Mauro, et. al.. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc.2004,126,301-310.
    [1]P. M(?)ller, H. Wallin, Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat. Res-Rev. Mutat.2000,462,13-30.
    [2]L. P. Wu, Y. F. Li, C. Z. Huang, et. al., Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles, Anal. Chem.2006,78,5570-5577.
    [3]Z. L. Jiang, M. J. Zou, A. P. Deng, et. al., A highly sensitive and selective immunonanogold resonance scattering spectral assay for Sudan I, Intern. J. Environ. Anal. Chem.2008,88, 649-661.
    [4]M. Stiborova, V. Martinek, H. Rydlova, et. al., Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes, Cancer Res.2002,62,5678-5684.
    [5]R. Rebane, I. Leito, S. Yurchenko. et. al., A review of analytical techniques for determination of Sudan I-IV dyes in food matrixes. J. Chromatogr. A,2010,1217.2747-2757.
    [6]European Commission. Health and Consumer Protection Directorate General, Committee IV-food safety in production and currency, part Ⅲ-physical and chemical harmful substances surveillance, New Method Declaration 03/99.
    [7]F. Puoci, C. Garreffa, F. lemma, et. al., Molecularly imprinted solid phase extraction for detection of sudan I in food matrices, Food Chem.,2005,93,349-353.
    [8]L. D. Donna. L. Maiuolo, F. Mazzotti, et. al., Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Anal. Chem.,2004,76,5104-5108.
    [9]H. W. Chen, X. Zhang, M. B. Luo, Desorption electrospray ionization mass spectrometry for fast detection of Sudan dyes in foods without sample pretreatment. Chin. J. Anal. Chem.2006, 34,464-468.
    [10]V. Cornet, Y. Govaert, G. Moens, et. al.. Development of a fast analytical method for the determination of Sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection, J. Agric. Food Chem.,2006,54,639-644.
    [11]O. Chailapakul, W. Wonsawat, W. Siangproh, et. al., Analysis of Sudan Ⅰ, Sudan Ⅱ, Sudan Ⅲ, and Sudan IV in food by HPLC with electrochemical detection:Comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modfied electrode, Food Chem.,2008,109, 876-882.
    [12]E. Mejia, Y. S. Ding, M. F. Mora, et. al., Determination of banned Sudan dyes in chili powder by capillary electrophoresis. Food Chem.2007,102,1027-1033.
    [13]S. F. Liu, X. Zhang, X. C. Lin, et. al., Development of a new method for analysis of Sudan dyes by pressurized CEC with amperometric detection. Electrophoresis,2007,28,1696-1703.
    [14]T. S. Fukuji, M. Castro-Puyana, M. F. M. Tavares, et. al., Fast determination of Sudan dyes in chilli tomato sauces using partial filling micellar electrokinetic chromatography, J. Agric. Food Chem.2011,59,11903-11909.
    [15]Z. Zhang, S. Xu. J. Li, et. al., Selective solid-phase extraction of Sudan I in chilli sauce by single-hole hollow molecularly imprinted polymers, J. Agric. Food Chem.2012,60.180-187.
    [16]C. V. D. Anibal. M. Odena,I. Ruisanchez, et. al.. Determining the adulteration of spices with Sudan Ⅰ-Ⅱ-Ⅱ-Ⅳ dyes by UV-visible spectroscopy and multivariate classification techniques. Talanta,2009,79.887-892.
    [17]A. A. Ensafi, B. Rezaei, M. Amini, et. al., A novel sensitive DNA-biosensor for detection of a carcinogen, Sudan Ⅱ, using electrochemically treated pencil graphite electrode by voltammetric methods, Talanta,2012,88,244-251.
    [18]L. Ming, X. Xi, T. Chen, et. al., Electrochemical determination of trace Sudan I contamination in chili powder at carbon nanotube modified electrodes, Sensors,2008,8, 1890-1900.
    [19]D. Han, M. Yu, D. Knopp, et. al., Development of a highly sensitive and specific enzyme-linked immunosorbent assay for detection of Sudan I in food samples, J. Agric. Food Chem.2007,55,6424-6430.
    [20]Y. H. Qi, W. C. Shan, Y. Z. Liu, et. al., Production of the polyclonal antibody against Sudan 3 and immunoassay of Sudan Dyes in food samples, J. Agric. Food Chem.2012,60,2116-2122
    [21]W. Cheung, I. T. Shadi, Y. Xu, et. al., Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics, J. Phys. Chem. C, 2010,114,7285-7290.
    [22]C. V. D. Anibal, L. F. Marsal, M. P. Callao, et. al., Surface enhanced Raman spectroscopy (SERS) and multivariate analysis as ascreening tool for detecting Sudan I dye in culinary spices, Spectrochim. Acta A.2012,87,135-141.
    [23]R. F. Pasternack, C. Bustamante. P. J. Collings, et. al., Porphyrin assemblies on DNA as studied by a resonance light-scattering technique, J. Am. Chem. Soc.,1993,115,5393-5399.
    [24]R. F. Pastemack, P. J. Collings. Resonance light scattering:a new technique for studying chromophore aggregation. Science,1995,269,935-939.
    [25]C. Z. Huang. K. A. Li, S. Y. Tong, Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the Cobalt(Ⅱ)/4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene complex, Anal. Chem.,1997,69, 514-520.
    [26]X. F. Long, Q. Miao, S. P. Bi, et. al. Resonance Rayleigh scattering method for the recognition and determination of double-stranded DNA using amikacin, Talanta,2004,64, 366-372.
    [27]S. P. Liu, Q. Liu, Resonance Rayleigh-scattering method for the determination of proteins with some monoazo dyes of chromotropic acid. Anal. Sci.,2001,17,239-242.
    [28]S. P. Liu, R. Yang, Q. Liu, Resonance Rayleigh scattering method for the determination of proteins with orange G, Anal. Sci.,2001,17,243-247.
    [29]S. P. Liu, H. Q. Luo, N. B. Li, et. al., Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes, Anal. Chem.,2001,76, 3907-3914.
    [30]H. Q. Luo, S. P. Liu, Z. F. Liu, et. al., Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications. Anal. Chim. Acta.,2001,449,261-270.
    [31]X. Q. Wei, Z. F. Liu, S. P. Liu, Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue. Anal Biochem.,2005,346, 330-332.
    [32]S. P. Liu. Y. H. Chen, Z. F. Liu, et. al., A highly sensitive resonance Rayleigh scattering method for the determination of vitamin B1 with gold nanoparticles probe,Microchim. Acta, 2006,154,87-93.
    [33]X. L. Hu, S. P. Liu, N. B. Li, Resonance Rayleigh scattering spectra for studying the interaction of aminoglycoside antibiotics with pontamine sky blue and their analytical applications, Anal. Bioanal. Chem.,2003,376,42-48.
    [34]S. P. Liu, Z. F. Liu. Studies on the resonant luminescence spectra of rhodamine dyes and their ion-association complexes, Spectrochim. Acta. A,1995,51,1497-1500.
    [35]S. P. Liu, Z. F. Liu, M. Li, et. al., Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide-basic triphenylmethane dye systems. Fresenius J. Anal. Chem.,2000,368,848-852.
    [36]S. P. Liu, Q. Liu, Z. F. Liu, et. al., Resonance Rayleigh scattering of chromium(Ⅵ)-iodide-basic triphenylmethane dye systems and their analytical application, Anal Chim. Acta,1999,379,53-61.
    [37]X. F. Long, S. P. Bi, H. Y. Ni, et. al., Resonance Rayleigh scattering determination of trace amounts of Al in natural waters and biological samples based on the formation of an Al(Ⅲ)-morin-surfactant complex. Anal. Chim. Acta 2004,501,89-97.
    [38]Z. L. Jiang, Q. Y. Liu, S. P. Liu, Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)n (Ag)s nanoparticle. Spectrochim. Acta. A.2002.58,2759-2764.
    [39]X. L. Liu, H. Yuan, D. W. Pang, et. al.. Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application. Spectrochim. Acta A,2004,60,385-389.
    [40]N. B. Li, H. Q. Luo, S. P. Liu, et. al. Resonance Rayleigh scattering technology as a new method for the determination of the inclusion constant of β-cyclodextrin. Spectrochim. Acta A, 2002,58,501-507.
    [41]N. B. Li, H. Q. Luo, S. P. Liu. Resonance Rayleigh scattering study of the inclusion complexation of chloramphenicol with β-cyclodextrin. Talanta,2005,66,495-500.
    [42]N. B. Li, S. P. Liu, H. Q. Luo. A new method for the determination of the first and second CMC in CTAB solution by resonance Rayleigh scattering technology. Anal. Lett.,2002,35, 1229-1238.
    [43]N. B. Li, H. Q. Luo, S. P. Liu. A new method for the determination of the critical micelle concentration of Triton X-100 in the absence and presence of β-cyclodextrin by resonance Rayleigh scattering technology. Spectrochim. Acta. Part A,2004,60,1811-1815.
    [44]P. Feng, W. Q. Shu, C. Z. Huang, et. al., Total internal reflected resonance light scattering determination of chlortetracycline in body fluid with the complex cation of chlortetracycline europium trioctyl phosphine oxide at the water/ytetrachloromethane interface, Anal. Chem., 2001,73,4307-4312.
    [45]A. Yi, Z. F. Liu, S. P. Liu, et. al., Study on the interaction between palladium(Ⅱ)-lincomycin chelate and erythosine by absorption, fluorescence and resonance Rayleigh scattering spectra and its analytical applications, Luminescence,2009,24,23-29.
    [46]X. L. Hu. D. P. Xu. S. P. Liu, et. al., Determination of meclofenoxate hydrochloride by resonance Rayleigh scattering method coupled with flow injection technique, Anal. Lett., 2010,43,2125-2133.
    [47]P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, et. al., Langmuir,2004,20, 7825-7836.
    [48]National Standard of the People's Republic of China. GB/T 19681-2005, Method for the determination of Sudan dyes in foods-high performance liquid chromatography,2005.
    [49]S. P. Liu, G. M. Zhou, Z. F. Liu, et. al., Resonance Rayleigh scattering method for the determination of trace amounts of molybdenum with thiocyanate-basic triphenylmethane dye systems. Chem. J. Chinese U.,1998,19,1040-1044.
    [50]H. Q. Luo, S. P. Liu, N. B. Li, et. al., Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application. Anal. Chim. Acta.,2002,468,275-286.
    [51]J. Vazquez-Arenas, I. Lazaro, R. Cruz, Electrochemical study of binary and ternary copper complexes in ammonia-chloride medium, Electrochim. Acta,2007.52,6106-6117.
    [52]H. Yu, L.M. Qi, Polymer-assisted crystallization and optical properties of uniform microrods of organic dye Sudan Ⅱ, Langmuir,2009,25,6781-6786.
    [53]T. Yoshida, An X-Ray photoelectron spectroscopic study of several hydroxyl azo metal complexes, Bull. Chem. Soc. Jpn.,1981,54,709-712.
    [54]J. A. J. Jarvis, The crystal structure of Copper(II)bis(benzene azo-β-naphthol), Acta. Cryst. 1961,14,961-964.
    [55]M. Mikuraya, T. Sasaki, A. Anjiki, et. al., Binuclear nickel(Ⅱ) complexes of schiff bases derived from salicylaldehydes and 1,n-Diamino-n'-hydroxyalkanes (n,n(?)= 3,2; 4,2; and 5,3) having an endogenous alkoxo bridge and a pyrazolato exogenous bridge, Bull. Chem. Soc. Jpn.,1992,65,334-339.
    [56]M. Lee, Y. S. Yoo, M. G. Chol, Novel metallomesogenic polymers derived from eta.1-benzylideneaniline palladium(Ⅱ) complex, Macromolecules,1999,32,2777-2782.
    [57]K. Nejati, Z. Rezvani, Syntheses, characterization and mesomorphic properties of new bis(alkoxyphenylazo)-substituted N,NO salicylidene diiminato Ni(Ⅱ), Cu(Ⅱ) and VO(Ⅳ) complexes, New J. Chem.,2003,27,1665-1669.
    [58]P. P. Dholayika, M.N. Patel, Preparation, characterization, and antimicrobial aActivities of some mixed-ligand complexes of Mn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) with monobasic bidentate (ON) schiff Base and neutral bidentate (NN) ligands, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chem.,2005,34,383-395.
    [59]M. A. Rauf. Z. Akhter, S. Kanwal, Photometric studies of the complex formation of Cu2+ and Cr3+ ions with Sudan red B, Dyes Pigm.,2005,67,77-79.
    [1]D. C. Sherrington, K. A. Taskinen, Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions, Chem. Soc. Rev.2001,30,83-93.
    [2]G. M. Whitesides, E.E. Simanejk, J. P. Mathias, et. al., Noncovalent synthesis:using physical-organic chemistry to make aggregates, Ace. Chem. Res.1995,28,37-44.
    [3]C. T. Seto, G. M. Whitesides, Molecular self-assembly through hydrogen bonding: supramolecular aggregates based on the cyanuric acid melamine lattice, J. Am. Chem. Soc. 1993,115,905-916.
    [4]C. T. Seto, G. M. Whitesides, Self-assembly based on the cyanuric acid-melamine lattice. J. Am. Chem. Soc.1990,112,6409-6411.
    [5]A. Ranganathan, V. R. Pedireddi, C. N. R. Rao, Hydrothermal synthesis of organic channel structures:1:1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric Acids, J. Am. Chem. Soc.1999,121,1752-1753.
    [6]S. Yagai, T. Nakajima, T. Karatsu, et. al., Phototriggered self-assembly of hydrogen-bonded rosette,J.Am. Chem. Soc.2004,126,11500-11508.
    [7]H. F. Ji, X. Xu, Hexagonal organic nanopillar array from the melamine-cyanuric acid complex, Langumuir.2010,26,4620-4622.
    [8]J. C. MacDonald, G. M. Whitesides, Solid-state structures of hydrogen-bonded tapes based on cyclic secondary diamides, Chem. Rev.1994,94,2383-2420.
    [9]A. W. Frazler, K. R. Waerstad, Y. K. Kim, Phase systems melamine-H3PO4-H3O and melamine-NH3-H3PO4-H2O at 25 ℃, J. Chem. Eng. Data.1988,333,518-523.
    [10]X. Li, S. Yang. W. Xiang, Q. Shi. A novel porous supramolecular complex constructed by the co-crystallization of melamine and sulfate via hydrogen bonds and aromatic π-π interaction, Struct Chem,2007,18.661-666.
    [11]J. Janczak, G. J. Perpetuo, Bis(melaminium) sulfate dehydrate, Acta Cryst.,2001, C57, 1431-1433.
    [12]F. Adam, S. K. Lin, K. M. Hello, et. al., Melaminium nitrate-melamine-water (1/1/1), Acta Cryst.,2010, E66, o3033-o3034.
    [13]R. Tanbug, K. Kirschbaum, A. A. Pinkerton, Energetic materials:The preparation and structural characterization of melaminium dinitramide and melaminium nitrate, J. Chem. Crvst.,1999,29,45-55.
    [14]V. Brodski, R. Peschar. H. Schenk, et. al., Structure of melaminium dihydrogenpyrophosphate and ilts formation from melaminium dihydrogenphosphate studied with powder diffraction data, solid-State NMR, and theoretical calculations, J. Phys. Chem. B.2004,108, 15069-15076.
    [15]V. Brodski, R. Peschar, H. Schenk, Structural analysis of a melaminium polyphosphate from X-ray powder diffraction and solid-state NMR data, J. Phys. Chem. B,2005,109, 13529-13537.
    [16]S. Jahromi, W. Gabrielse, A. Braam, Effect of melamine polyphosphate on thermal degradation of polyamides:a combined X-ray diffraction and solid-state NMR study, Polymer, 2003,44,25-37.
    [17]J. G. Kersjes, R. H. M. Kierkels, polyphosphate salt of a 1,3,5-triazine compound with a high degree of condensation, a process for its preparation and use as flame retardant in polymer compositions, U. S. Pat.6653474 B1,2003.
    [18]J. G. Kersjes. R. H. M. Kierkels, melamine phosphate, U. S. Pat.4,080.501,1978.
    [19]W. Y. Chen, Y. Z. Wang, F. C. Chang, Thermal and flame retardation properties of melamine phosphate-modified epoxy resins, J. Polym. Res.2004,11,109-117
    [20]S. Y. Liu, Q. Wang. G. X. Fei, et. al.. Preparation of polyamide resin-encapsulated melamine cyanurate/melamine phosphate composite flame retardants and the fire-resistance to glass fiber-reinforced polyamide 6, J. Applied Polym. Sci.2006,102,1773-1779
    [21]S. Zhou. L. Song, Z. Wang, et. al., Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate, Polym. Degrad. and Stabil.2008,93,1799-1806.
    [22]S. Zhou, Z. Wang, Z. Gui, et. al., Flame retardation and thermal degradation of flame-retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate, Fire Mater.2008,32,307-319.
    [23]Y. Chen, Q.Wang, Reaction of melamine phosphate with pentaerythritol and its products for flame retardation of polypropylene, Polym. Advan. Technol.2007,18,587-600.
    [24]J. Janczak, G. Perpetuo, Hexakis(melaminium) tetrakis-(dihydrogenphosphate) mono-hydrogenphosphate tetrahydrate, Acta Cryst.2002, C58, o455-o459.
    [25]X. M. Li, S. S. Feng, F. Wang, et. al., Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate, Acta Cryst.2010. E66, o239-o240.
    [26]D. J. A. De Ridder, K. Goubitz, V. Brodski, et. al., Crystal structure of melaminium orthophosphate from high-resolution synchrotron powder-diffraction data, Hel. Chim. Acta. 2004,87,1894-1905.
    [27]V. Brodski, R. Peschar, H. Schenk, Structure of tetrakis(melaminium) bis(dihydrogenphosphate) monohydrogenphosphate trihydrate from X-ray powder diffraction and solid-state NMR spectroscopy, J. Phys. Chem. C.2008,112,12515-12523.
    [28]H. Dou, M. Jiang, H. Peng, et. al., H-dependent self-assembly:Micellization and micelle-hollow-sphere transition of cellulose-based copolymers, Angew. Chem., Int. Ed., 2003,42,1516-1519.
    [29]J. Nam, N. Won, H. Jin, et. al., pH-induced aggregation of gold nanoparticles for photothermal cancer therapy, J. Am. Chem. Soc.2009,131,13639-13645.
    [30]A. Peralvarez-Marin, A. Barth, A. Graslund, Time-resolved infrared spectroscopy of pH-induced aggregation of the alzheimer Aβ1-28 peptide, J. Mol. Biol.2008,379,589-596.
    [31]A. C. Alting, M. Weijers, E. H. A. de Hoog, et. al., Acid-induced cold gelation of globular proteins:Effects of protein aggregate characteristics and disulfide bonding on rheological properties, J. Agric. Food Chem.,2004,52,623-631.
    [32]J. S. Shen, Q. G. Cai, Y. B. Jiang, et. al., Anion-triggered melamine based self-assembly and hydrogel, Chem. Commun.2010,46,6786-6788.
    [33]R. F. Pasternack, C. Bustamante, P. J. Collings, et. al., Porphyrin assemblies on DNA as studied by a resonance light-scattering technique, J. Am. Chem. Soc.1993,115,5393-5399.
    [34]R. F. Pasternack, P. J. Collings, Resonance Light Scattering:A new technique for studying chromophore aggregation, Science.1995,269,935-939.
    [35]F. Mallamace, N. Micali, S. Trusso, et. al., Experimental evidence for self-similar structures in the aggregation of porphyrins in aqueous solutions, Phys. Re. Lett.1996,76,4741-4744.
    [36]N. B. Li, H. Q. Luo, S. P. Liu, A new method for the determination of the critical micelle concentration of Triton X-100 in the absence and presence of β-cyclodextrin by resonance Rayleigh scattering technology, Spectrochimica Acta Part A.2004,60,1811-1815.
    [37]L. P. Wu, Y. F. Li, C. Z. Huang, Q. Zhang, Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles, Anal. Chem.2006,78, 5570-5577.
    [38]S. P. Liu, H. Q. Luo, N. B. Li, et. al., Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes, Anal. Chem.2001,76, 3907-3914.
    [39]X. Q. Wei, Z. F. Liu, S. P. Liu, Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue, Anal. Biochem.2005,346, 330-332.
    [40]J. Ling, C. Z. Huang, Y. F. Li, et. al., Light-scattering signals from nanoparticles in biochemical assay, pharmaceutical analysis and biological imaging, Trend. Anal. Chem.2009, 28,447-453.
    [41]Z. L. Jiang, L. P. Zhou A. H. Liang, Resonance scattering detection of trace melamine using aptamer-modifled nanosilver probe as catalyst without separation of its aggregations, Chem. Commun.2011,47,3162-3164.
    [42]W. Luo, J. Yang, K. Mai, et. al., Evolution of density fluctuation to a lamellar crystal in a poly(trimethylene terephthalate)film revealed by the resonance light scattering technique, Phys. Chem. Chem. Phys.2010,12,4686-4693.
    [43]J. Yang, X. Chen, R. Fu, et. al., Kinetics of phase separation in polymer blends revealed by resonance light scattering spectroscopy, Phys. Chem. Chem. Phys.2010,12,2238-2245.
    [44]R. Venkatraman, P. C. Ray, C. S. Choi, Self-assembly structure of the levulinic acid-melamine lattice, Int. J. Quantum Chem.2004,100,758-763.
    [45]W. J. Jones, W. J. Orville-Thomas, The infra-red spectrum and structure of melamine, Trans. Faraday Soc.1959,55.203-210.
    [46]M. Scoponi. E. Polo, F. Pradella. et. al., Crystal structure and spectroscopic analysis of melamine hydrobromide. Evidence for iso-melamine cations and charge-transfer complexes in the solid state. J. Chem. Soc. Perkin Trans.1992,2,1127.
    [47]R. C. Hirt, R. G. Schmitt, Ultraviolet absorption spectra of derivatives of symmetric triazine-Ⅱ:Oxo-triazines and their acyclic analogs. Spectrochim. Acta.1958,12,127-138.
    [48]A. Weinstabl, W. H. Binder, H. Gruber, et. al., Melamine Salts as Hardeners for Urea Formaldehyde Resins, J. Appl. Polym. Sci.,2001,81,1654-1661.
    [49]Y. H. Jang, S.G. Hwang, S. B. Chang, et. al., Acid dissociation constants of melamine derivatives from density functional theory calculations, J. Phys. Chem. A,2009,113, 13036-13040.
    [50]C. Lorente, A. L. Capparelli, A. H. Thomas, et. al., Quenching of thefluorescence of pterin derivatives by anions, Photochem. Photobiol. Sci.,2004,3,167-173.
    [51]H. T. Fu, Y. P. Lu, M. J. Xie, Nonlinear function retention model in weak acid anion Chromatography, J. Chromatogr. A,2002,945.97-102.
    [52]A. Saha, S. Manna, A. K. Nandi, A mechanistic approach on the self-organization of the two-component thermoreversible hydrogel of riboflavin and melamine, Langmuir.2007,23, 13126-13135.
    [1]R. Chirinos, H. Rogez, D. Campos, et. al., Optimization of extractionconditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruiz & Pavon) tubers, Sep. Purif. Technol.,2007,55,217-225
    [2]E. M. Silva, H. Rogez, Y. Larondelle, Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology, Sep. Purif. Technol.,2007,55.381-387.
    [3]J. Shi, J. Yu, J. Pohorly, et. al., Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution, J. Food. Agric. Environ.,2003,1,42-47.
    [4]M. S. Guerrero, J. S. Torres, M. J. Nunez, Extraction of polyphenols from white distilled grape pomace:Optimization and modeling, Bioresour. Technol.,2008,99,1311-1318.
    [5]Y. Zuo, H. Chen, Y. Deng, Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector, Talanta, 2002,57,307-316
    [6]C. A. Rice-Evans, N. J. Miller, G. Pagana, Structure-antioxidantactivity relationships of flavonoids and phenolicacids, Free Rad. Biol. Med.,1996,20,933-956.
    [7]M. T. Huag, R. C. Smart, C. Q. Wong, et. al., Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-0-Tetradecanoylphorbol-13-acetate, Cancer Rec.,1988,48,5941-5946.
    [8]H. Hayatsu, S. Arimoto, T. Negishi, Mutant. Res.1990,202,1678.
    [9]M. G. L. Hertog, P. C. H. Hollman, B. van de Putte, Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices, J. Agric. Food Chem.,1993,41, 1242-1246.
    [10]Y. Amakura, M. Okada, S. Tsuji, et. al., Determination of phenolic acids in fruit juices by isocratic column liquid chromatography, J. Chromatogr. A,2000,891,183-188.
    [11]E. Giannakopoulos, K. C. Christoforidis, A. Tsipis, et. al., Influence of Pb(Ⅱ) on the Radical Properties of Humic Substances and Model Compounds, J. Phys. Chem. A,2005,109, 2223-2232.
    [12]O. I. Aruoma. A. Murcia. J. Butler, et. al., Evaluation of the Antioxidant and Prooxidant Actions of Gallic Acid and Its Derivatives, J. Agric. F& Chem.1993.41.1880-1885.
    [13]W. Wang, Q. Chen, C. Jiang, et. al., One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-N-vinyl-2-pyrrolidone), Colloids Surf. A,2007,301, 73-79.
    [14]G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, et. al., Synthesis and antibacterial activity of silver nanoparticles with different sizes, J. Nanopart. Res.,2008,10, 1343-1348
    [15]N. Takenaka, M. Tanaka, K. Okitsu, et. al., Rise in the pH of an Unfrozen Solution in Ice Due to the Presence of NaCl and Promotion of Decomposition of Gallic Acids Owing to a Change in the pH, J. Phys. Chem. A,2006,110,10628-10632
    [16]X. Kong, L. Jin, M. Wei, et. al., Antioxidant drugs intercalated into layered double hydroxide: Structure and in vitro release, Appl. Clay Sci.,2010,49,324-329
    [17]S. Losada-Barreiro, C. Bravo-Diaz, Reactivity of 3-Methylbenzenediazonium Ions with Gallic Acid. Kinetics and Mechanism of the Reaction, Hely. Chim. Acta,2009,92,2009-2023.
    [18]M. Bedner, D. L. Duewer, Dynamic Calibration Approach for Determining Catechins and Gallic Acid in Green Tea Using LC-ESI/MS, Anal. Chem.2011,83,6169-6176.
    [19]Y. Amakura, M. Okada, S. Tsuji, et. al., Determination of phenolic acids in fruit juices by isocratic column liquid chromatography, Journal of Chromatography A,2000,891,183-188.
    [20]V. Tulyathan, R. B. Boulton, V. L. Singleton. Oxygen Uptake by Gallic Acid as a Model for Similar Reactions in Wines, J. Agric. Food Chem.1989,37,844-849.
    [21]K. Polewski, S. Kniat, D. Slawinska, Gallic acid, a natural antioxidant, in aqueous and micellar environment:spectroscopic studies. Curr. Top. Biophys.,2002,26,217-227.
    [22]G. R. Newkome, C. N. Mo(?)d, V. F. Dendrimers, et. al., Concepts, Syntheses, Applications; Wiley-VCH:Wein-heim, Germany,2001.
    [23]Dendrimers, Other Dendritic Polymers; Tomalia, D. A., Frechet; J. M. J., Eds.; Wiley: Amsterdam, The Netherlands,2001.
    [24]D. Astruc, E. Boisselier, C. Ornelas, Dendrimers Designed for Functions:From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine, Chem. Rev.2010,110,1857-1959.
    [25]D. A. Tomalia. A. M. Naylor, W., Ⅲ Goddard. Starburst Dendrimers:Molecular-Level Control of Size, Shape. Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter, Angew. Chem., Int. Ed.1990,29,138-175.
    [26]T. Qin, G. Zhou, H. Scheiber, et. al.,Polytriphenylene Dendrimers:A Unique Design for Blue-Light-Emitting Materials, Angew. Chem. Int. Ed.,2008,47,8292-8296.
    [27]W. R. Chen. L. Porcar, Y. Liu., et. al., Small Angle Neutron Scattering Studies of the Counterion Effects on the Molecular Conformation and Structure of Charged G4 PAMAM Dendrimers in Aqueous Solutions, Macromolecules 2007,40,5887-5898.
    [28]C. N.Likos, M. Ballauff, Equilibrium Structure of Dendrimers-Results and Open Questions, Top. Curr. Chem.2005,245,239-252.
    [29]G. R. Newkome, Z. Yao, G. R. Baker, et. al., Micelles. Part 1. Cascade molecules:a new approach to micelles. A [27]-arborol, J. Org. Chem.1985,50,2003-2004.
    [30]M. E. Piotti, F. J. Rivera. R. Bond; et. al.. Synthesis and catalytic activity of unimolecular dendritic reverse micelles with "internal" functional groups, J. Am. Chem. Soc.1999,121, 9471.9472.
    [31]C. J. Hawker, K. L. Wooley, J. M. Frechet, Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents, J. Chem. Soc, Perkin Trans.1 1993,1,1287-1297.
    [32]D. A. Tomalia, V. Berry, M. Hall, et. al., Starburst dendrimers.4. Covalently fixed unimolecular assemblages reiminiscent of spheroidal micelles, Macromol.1987,20, 1164-1167.
    [33]G. R. Newkome. C. N. Moorefield, G. R. Baker, et. al., Unimolecular Micelles. Angew. Chem., Int. Ed. Engl.1991,30,1178-1180.
    [34]J. Li, L. T. Piehler. D. Qin, et. al., Visualization and Characterization of Poly (amidoamine) Dendrimers by Atomic Force Microscopy, Langmuir,2000,16,5613-5616.
    [35]A E. Beezer, A. S. H. King, I. K. Martin, et. al., Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives, Tetrahedron 2003,59,3873-3880.
    [36]S. Xu, Y. Luo, R. Haag, Structure-Transport Relationship of Dendritic Core-Shell Nanocarriers for Polar Dyes, Macromol. Rapid Commun.2008,29,171-174.
    [37]D. Kannaiyan, T. Imae, pH-Dependent Encapsulation of Pyrene in PPI-Core:PAMAM-Shell Dendrimers, Langmuir,2009,25,5282-5285.
    [38]Y. Ochi, M. Suzuki, T. Imaoka, Controlled Storage of Ferrocene Derivatives as Redox-Active Molecules in Dendrimers, J. Am. Chem. Soc.2010,132.5061-5069.
    [39]D. M. Watkins, Y. Sayed-Sweet, J. W. Klimash, et. al., Dendrimers with Hydrophobic Cores and the Formation of Supramolecular Dendrimer-Surfactant Assemblies, Langmuir 1997,13, 3136-3141.
    [40]J. F. G. A. Jansen, E. M. M. de Brabander-van den Berg, E. W. Meijer, Encapsulation of Guest Molecules into a Dendritic Box, Science,1994.266.1226-1229.
    [41]J. Zheng, J. T. Petty, R. M. Dickson, High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots, J. Am. Chem. Soc.,2003,125,7780-7781.
    [42]L. Pastor-Perez, Y. Chen. Z. Shen, et. al., Unprecedented Blue Intrinsic Photoluminescence from Hyperbranched and Linear Polyethylenimines:Polymer Architectures and pH-Effects, Macromol. Rapid Commun.2007,28,1404-1409.
    [43]D. Wang, T. Imae, Fluorescence Emission from Dendrimers and Its pH Dependence, J. Am. Chem. Soc.,2004,126,13204-13205.
    [44]D. Wang, T. Imae, M. Miki, Fluorescence emission from PAMAM and PPI dendrimers, J. Colloid Interface Sci.,2007,306,222-227
    [45]W. I. Lee, Y. Bae, A. J. Bard, Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles, J. Am. Chem. Soc.,2004,126,8358-8359.
    [46]B. Klajnert, M. Bryszewska, Interactions between PAMAM dendrimers and gallic acid molecules studied by spectrofluorimetric methods, Bioelectrochemistry,2007,70,50-52.
    [47]L. D. Carlos, R. A. SaFerreira, R. N. Pereira, et. al.. White-Light Emission of Amine-Functionalized Organic/Inorganic Hybrids:Emitting Centers and Recombination Mechanisms,J. Phys. Chem. B 2004,108.14924-14932.
    [48]M. T. Morgan, M. A. Carnahan. C. Immoos, et. al., Dendritic Molecular Capsules for Hydrophobic Compounds, J. Am. Chem. Soc.2003,125,15485-15489.
    [49]A. E. Beezer, A. S. H. King, I. K. Martin, et. al., Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives, Tetrahedron, 2003,59,3873-3880.
    [50]S. M. Ghoreishi, M. Behpour, M. Khayatkashani, et. al., Simultaneous determination of ellagic and gallic acid in Punica granatum. Myrtus communis and Itriphal formulation by an electrochemical sensor based on a carbon paste electrode modied with multi -walled carbon nanotubes, Anal. Methods,2011,3,636-645.
    [51]侯毓汾、吴祖望、胡家振等译,格里菲思著,颜色与有机分子结构,化学工业出版社.1983126-130
    [52]T. Forster,10th spiers memorial lecture. Transfer mechanisms of electronic excitation Discuss. Faraday Soc.1959,27,7-17
    [53]C. G. D. Remedios, P. D. J. Moens, Fluorescence resonance energy transfer spectroscopy is a reliable "Ruler" for measuring structural changes in proteins:Dispelling the problem of the unknown orientation factor, J. Struct. Biol.,1995.115.175-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700