用户名: 密码: 验证码:
电化学氧化工艺处理焦化废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过基础电极筛选、表面预处理、稀土金属掺杂和析氧材料涂覆等研究工作,制备了具有竞争力的用于电化学法处理焦化废水的高活性、高稳定性的高效电极。同时对比了二维电极和以焦粉为粒子电极的三维电极法处理焦化废水中COD和NH4+-N的效果,研究优化了电化学氧化工艺的运行参数,并探索了两种工艺对污染物的降解机理。在此基础上,通过对焦粉粒子改性使其具有良好的电氧化性能,强化三维电极系统的电解效率。通过筛选对比可知,采用Fe(NO3)2改性焦粉的三维电极对于焦化废水的生化出水具有较好的处理效果,且在实验室条件下实现了高效低成本地采用重金属修饰焦粉三维电极电化学氧化处理焦化废水,并初步探讨了重金属修饰焦粉三维电极电化学氧化去除COD和NH4--N的机制。
High activity, stability, efficient electrodes was prepared by foundation electrodes screening, surface pretreatment, rare-earth metal addition and oxygen evolution materialscoating for the electrochemical oxidation of coking wastewater using three-dimensional electrode system. In order to optimize the electrochemical performance of the three-dimensional electrode process, the electrolysis tests of the coking wastewater using Ti/RuO2-IrO2anodes and the coke with or without modified were carried out, which included the optimizing of the structural and operating parameters. And the mechanism of COD and NH4+-N degradation was also studied. On that basis, the effect of supported components on COD and NH4+-N removal was investigated to optimize the electrochemical treatment of coking wastewater using three-dimensional electrode process combined with modified coke. Studies have demonstrated that the particle electrode with supported components improved the electrolysis efficiency, which could generate additional free hydroxyl radicals and greatly improve the removal rate. In addition,The results showed that the coke modified with Fe(NO3)2has the lowest energy consumption and higher COD removal rate on the same condition, and the modified coke have good surface characteristics for the purpose of this study. In addition, the kinetic constant was also calculated. Results showed that the three-dimensional electrode system with Fe (N03)2-modified coke gave a satisfied solution in biologically pretreated coking wastewater.
引文
1. 王黎明.高浓度苯酚焦化废水生物强化处理技术研究.武汉大学博士论文,2011.
    2. Zhu X P, Ni J, Lai P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes, Water Research,2009,43 (17):4347-4355.
    3. Zhao W T, Huang X, Lee D J. Enhanced treatment of coke plant wastewater using an anaerobic-anoxic-oxic membrane bioreactor system. Separation and Purification Technology,2009,66 (2):279-286.
    4. Wang J L, Quan X C, Wu L B, et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochem,2002,38 (5):777-781.
    5. Zhang M, Tay J H. Qian Y, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal. Water Research,1998,32 (2):519-527.
    6. 单明军,吕艳丽,丛蕾.焦化废水处理技术.北京,化学工业出版社,2007.
    7. 蔺起梅,杨小红.焦化废水处理技术的应用与研究进展.环境研究与监测,2006.19(4):40-43.
    8. Kim K W, Kim Y J. Kim I T, et al. Electrochemical conversion characteristics of ammonia to nitrogen, Water Research,2006,40:1431-1441.
    9. 张劲勇,左玉宏,杜庆海.熄焦粉取代活性炭综合处理焦化废水的研究.洁净煤技术,2006,12(1):73-75.
    10. Minhalma M, De Pinho M N. Development of nanofiltra-tion/steam stripping sequence for coke plant wastewater treatment. Desalination,2002,149(1-3):95-100.
    11. Li Y M, Gu G W. Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen. Chemosphere,2003,52(6):997-1005.
    12. Vazquez 1, Rodriguez-Iglesias J, Maranon E, et al. Removal of residual phenols from coke wastewater by adsorption. Journal of Hazardous Material,2007,147(1-2):395-400.
    13. 任源,韦朝海,吴超飞.等.焦化废水水质组成及其环境学与生物学特性分析.环境科学学报,27(7):1094-1100.
    14. Lim B R, Hu H Y, Fujie K. Biological degradation and chemical oxidation characteristics of coke-oven wastewater. Water Air Soil Pollut,2003,146(1-4):23-33.
    15. 韦朝海,贺明和,任源,等.焦化废水污染特征及其控制过程与策略分析.环境科学学报,2007,27(7):1083-1093.
    16. Maranon E, Vazquez I. Rodriguez J, et al. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale, Bioresour. Technol,2008,99(10):4192-4198.
    17. Kim Y. M, Park D, Jeon C O, et al. Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater. Bioresource Technology,2008,99 (18): 8824-8832.
    18. Vazquez I, Rodriguez J, Maranon E, et al. Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process. Journal of Hazardous Materials,2006,137 (3):1681-1688.
    19. Lai P, Zhao H. Ye Z, et al. Assessing the effectiveness of treating coking effluents using anaerobic and aerobic biofilms. Process Biochem,2008,43 (3):229-237.
    20. 史晓燕,肖波,杨家宽.等.焦化废水处理技术的发展.环境技术,2003,6:44-48.
    21. 方芳,刘京,熊勤.焦化废水处理工艺与零排放等若干环评问题的探讨.能源与环境,2011,1:63-65.
    22. 刘学洪.从煤转化工艺冷凝液中去除有机污染物.环境保护科学,1985,42(1):57-62.
    23. 张成光,缪娟.符德学,等.电化学技术降解有机废水研究进展.应用化工,2006,35(10):793-798.
    24. 景长勇,张新生,霍保全,等.电催化氧化技术进展.工业安全与环保.2008,34(3):1-3.
    25. 矫彩山.孙艳,门雪燕,等.电催化氧化技术处理难生化有机废水的研究现状及进展.环境科学与管理,2007.32(1):107-111.
    26. 张垒,薛改凤,段爱民,等.电催化氧化处理焦化废水技术浅析,2012,50(1):52-54.
    27. Hu X, Lei L, Chen G, et al. On the degradeability of printing and dyeing wastewater by wet air oxidation. Water Research,2001,35(8):2078-2080.
    28. Li L X, Chen P S. Gloyna E F. Generalized kinetie model for wet oxidation of orgnic compounds, AlChE Journal, 1991,37(11):1678-1686.
    29. 杨琦,单立志,钱易.国外对污水湿式催化氧化处理的研究进展.环境科学研究,1998,11(4):62-64.
    30. Mario S. Photocatalysis and environment trends and applications. U. S. A, Kluwer Aeademie Publishers, 1998.
    31. Bauer R, Waldner G The Photo-fenton reaction and TiO2/UV Proeess for wastewater treatment-novel development. Catalysis Today,1999,53:131-134.
    32. Lei L C, Hu X J, Po L Y, et al. Oxidative degradation of polyvinyl-aleohol by the photoehemieally enhanced fenton reaetion. Joumal of Photoehemist and Photobiology A:Chemistry,1998,116:159-166.
    33. 杨涛.好氧固定床-混凝-Fenton氧化工艺处理焦化废水的研究.天津大学硕士学位论文.2009.
    34. 隋文.浅谈碱式氯化法处理含氰废水.辽宁化工,2001,30(5):214-215.
    35. 张敬东.污水处理技术的新发展.环境技术,1997,(6):28-33.
    36. 陈新.臧传斌.膜法处理工艺在焦化废水深度处理中的应用.燃料与化工,2011,41(1):60-62.
    37. Magne P, Walker P L. Phenoladsorptionon GAC:application to the regeneration of GACs polluted with phenol carbon,1986,24(2):101-107.
    38. 滕济林,张萌,李若征,等.褐煤活性炭吸附处理焦化废水.环境工程学报,2011,5(1):117-120.
    39. 刘尚超,薛改凤.张垒.等.采用改性焦炭脱除焦化废水中COD的研究.武钢技术,2011,49(1):15-17.
    40. 刘宇.王松.利用化学沉淀法降低焦化废水氨氮浓度的预处理工艺研究.环境科学与管理,2008,33(6):90-94.
    41. 郝瑞刚.化学沉淀法处理焦化废水氨氮研究.运城学院学报,2005,23(5):42-43.
    42. 徐金球超声空化及其组合技术降解焦化废水的研究.昆明理工大学博士学位论文.2002.
    43. 初本广,冯二平.肖明.等.利用高温废气治理焦化酚氰污水项目实践.工业安全与环保,2005,31(12):1-4.
    44. 邓斌.利用烟道气处理焦化剩余氨水技术环境工程,2000,18(3):17-18.
    45. 吴克明.潘留明,陈新丽,等.电凝聚处理高浓度焦化废水的研究.西南给排水,2006,28(2):23-26.
    46. 张春晖.何绪文,王皓.等.UBAF-复极性三维电极法深度处理焦化废水.煤炭学报,2010,35(3):820-824.
    47.王万鹏,张劲松,周集体,等.三维流化床电极法深度处理焦化废水的研究.工业水处理,2009,29(6):24-27.
    48. Bux F. Akkinson B. Kasan K. Zinc biosorption by waste activated and digested sludges. Water Science and Technology.1999,39(10-11):127-130.
    49. Zumriye A, Derya A, Elif R, et al. Simultaneous biosorption of Phenol and nickel from binary mixtures onto dried aerobic activated sludge. Proeess Bioehemistry,1999,35:301-308.
    50. 陈风岗,刘俊新,金承基,等.薛城焦化废水的A/O处理工艺.给水排水,1994,1:27-30.
    51. 毛云海,曹吉良.A-O法焦化废水处理装置的开工与调试.燃料与化工,2003,34(1):29-33.
    52. Lee M W, Park J M. Biological nitrogen removal from coke plant wastewater with external carbon addition. Water Environ Research,1998,70:1090-1095.
    53. 雷晓玲,张晓健.焦化废水中有机物的生物处理特性及处理工艺改进对策.环境科学学报,1995, 15(4):385-391.
    54. 姚若,何苗,张晓健,焦化废水中有机污染物好氧生物降解特性的研究.中国环境科学,1996, 16(6):447-450.
    55. 李咏梅,顾国维.赵建夫.厌氧酸化一缺氧一好氧生物膜法处理焦化废水的研究.上海环境科学,2000,19(增刊):63-66.
    56. 李咏梅,彭永臻.顾国维,等.焦化废水中有机物在A1-A2-0生物膜系统中的降解机理研究.环境科学学报,2004,24(2):242-248.
    57. 朱文亭.污水的水解(酸化)-好氧生物处理工艺.城市环境与城市生态,2000,13(5):43-48.
    58. 郭金华.A2/O法处理焦化废水.工业水处理,2004,24(9):65-67.
    59. Zhang M, Tay J H, Qian Y, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH4-N removal. Water Res.,1998,32(2):519-527.
    60. Li Y M, Gu G W, Zhao J F, et al. Treatment of coke plant wastewater by bio film systems for removal of organic compounds and nitrogen. Chemosphere,2003,52(6):997-1005.
    61. 张光吉.焦化废水处理工艺浅析.科技情报开发与经济.2005,15:184-185.
    62. 尹军,韩相奎,周春生,等.流化式生物膜法处理含酚废水的效能,环境科学,1996,17(1):60-62.
    63. Margaret M T, Xu X Y, Feng X S. Sequential biological removal of COD and ammonia-nitrogen from coke plant wastewater. Journal of Zhejiang University,2000,26(3):241-246.
    64. 许初胜.用高浓度活性污泥法处理焦化废水.燃料与化工.1995,150-152.
    65. Ehlers G A, Rose P D. Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling Packed-bed reactors by employing sequencing batch operation. Bioresource Technology,2005,96: 1264-1275.
    66. 安林坤,马林,全军民,等.固定化酪氨酸酶去除水中酚及胺类物质的研究.中山大学学报.2000,39(5):63-67.
    67. 叶鹏,张剑波,陈篙,等.固定化辣根过氧化物酶催化去除五氯酚.中山大学学报,2005,41(6):918-925.
    68. Yavuz Y, Koparal A S. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode, Journal of Hazardous Materials.2006,136 (2):296-302.
    69. Abdelwahab O, Amin N K. El-Ashtoukhy E-S Z. Electrochemical removal of phenol from oil refinery wastewater. Journal of Hazardous Materials.2009.163:711-716.
    70. Chuan P F. Norrio S. Satoru S. Development of high performance electrochemical wastewater treatment system. Journal of Hazardous Materials,2003, B103:65-78.
    71. Pablo C, Jesus G, Justo L. Modeling of wastewater electro-oxidation process part Ⅱ. Application to active electrodes. Industrial & Engineering Chemistry Research,2004,43 (9):1923-1931.
    72. Chiang L C, Chiang J E, Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research,1995,29(2):671-678.
    73. Comninellis C. Electro-catalysis in the electrochemical conversion/ combustion of organic pollutants for waste water treatment.Electro-chem Acta,1994,39 (11/12):1857-1862.
    74. Vlyssides A G, Loizidou M, karlis P K. et al. Electrochemical oxidation of a textile dye wasterwater using a Pt/Ti electrode. Journal of Hazardous Materials,1999.70(12):41-52.
    75. Lin S H, Wu C L. Electrochemical nitrite and ammonia oxidation in sea water. Journal of Environ-mental Science and Health,1997,32(a):2125-2138.
    76. Rao N N, Somasekhar K M, Kaul S N, et al. Eletrochemical oxidation of tannery wastewater. Journal of chemical technology and biotechnology,2001.76:1124-1131.
    77. Kim S Y, Kim T H, Park C, et al. Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode. Desalination,2003,155:49-57.
    78. 田禹,王强,李捍东,等.电化学降解焦化废水的研究.能源环境保护,2005,19(2):34-36.
    79. 时义中,华杰,朱国才,等电化学法处理高盐苯酚废水的研究.化工环保,2003,23(3):129-131.
    80. 周珊,陈传文.电芬顿法处理4-氯酚废水.环境污染治理技术与设备,2004,5(10):56-59.
    81. Chen G H. Electrochemical technologies in wastewater treatment. Separation Purification Technology,2004, 38:11-41.
    82. Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP'S:anodic oxidation, photocatalysis, electro-Fenton and photoeletro-Fenton processes. Applied Catalysis,1998,16:31-42.
    83. 张招贤,赵国鹏,罗小军,等.钛电极学导论.北京,冶金工业出版社.2008.
    84. 曲敬绪.电渗析钛涂钌电极的制作和应用水处理技术.1994,20(1):22-26.
    85. Bockris J O M, Kim J. Effect of contact resistance between particles on the current distribution in a packed bed electrode. Journal of Applied Electrochemistry,1997,27:890-901.
    86. Ma H Z. Wang B. Electrochemical pilot-scale plant for oil field produced wastewater by M/C/Fe electrodes for injection. Journal of Hazardous Materials,2006,132:237-243.
    87. Kong W P, Wang B, Ma H Z, et al. Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes. Journal of Hazardous Materials,2006,137:1532-1537
    88. Wang B, Kong W P, Ma H Z. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode. Journal of Hazardous Materials,2007,146:295-301.
    89. 石玲.三维电极降解印染废水的实验研究及数学模型的建立.天津大学环境科学与工程学院博士论文,2006.
    90. Szpyrkowicz L, Juzzolino C, Kaul N S, et al. Electrochemical oxidation of dyeing baths bearing disperse dyes, Ind. Eng. Chem. Res.2000,39:3241-3248.
    91. 辛岳红.难降解有机废水处理用新型粒子催化电极材料的制备及其电催化活性研究.北京化工大学硕士学位论文,2009.
    92. D. Jingshan. Insist oxidation degradation of form aldehyde with electrogenerated hydrogen peroxide. Journal of Electrochemical society,1993,140(6):1632-1637.
    93. Gallone P. Achievements and tasks of electrochemical engineering. Electrochemical Acta,1977, (22): 913-920.
    94. Xiong Y, He C, Karlsson H T. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol. Chemosphere,2003,1:131-136.
    95. Tennakoon C L K. Electro-chemical treatment of human waste in a packed-bed reactor. Appl Electrochem, 1996,26:18-29.
    96. 崔艳萍,杨昌柱,濮文虹.三维三相电极处理焦化废水的试验研究.中国给水排水.2006,22(13):56-58.
    97. 何春等.三维电极电化学反应器对有机废水的降解研究.电化学.2002,8(3):327-332.
    98. Jiang Y, Zhu X P, Li H N, et al. Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes. Chemosphere.2010,78,1093-1099.
    99. Kristof J, Mihaly J, Daolio S, et al. Hydrolytic reactions in hydrated iridium chloride coatings. Journal of Electroanalytical Chemistry,1997,434:99-104.
    100. Costa C R, Botta C M R. Espindola E L G et al. Electrochemical treatment of tannery wastewater using DSA electrodes, Journal of Hazardous Materials,2008,153(1-2):616-627.
    101. Li X Y, Cui Y H, Feng Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research,2005,39 (10):1972-1981.
    102. Kapalka A, Foti G, Comninellis C. Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications,2008,10(4):607-610.
    103. Szpyrkowicz L, Kaul S N, Neti R N, et al. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater, Water Research,2005,39:1601-1613.
    104.张继光.催化剂制备过程技术.北京,中国石化出版社,2011,210-225.
    105.甄开吉,工国甲,毕颖丽,等.催化作用基础,北京科学出版社,2005,244-245.
    106. Ferreira N G, Silva L L G Coral E J, et al. Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems. Diamond and Related Materials,2002,11:1523-1531.
    107.陈金銮.氨氮的电化学氧化技术及其应用研究.北京:清华大学博士学位论文.2008.
    108. Malpass G R P, Miwa D W, Mortari D A, et al. Declolrisation of real textile waste using electrochemical techniques:Effect of the chloride concentration. Water Research,2007,41:2969-2977.
    109. Xiong Y, Karlsson H T. An experimental investiga-tion of chemical oxygen demand removal from the wastewater containing oxalic acid using the three-phasethree-dimensional electrode reactor. Advances in Environmental Research,2002,7(1):139-145.
    110. Zhou M H, Wang W, Chi M L. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor. Bioresource Technology,2009,100: 4662-4668.
    111. Gattrell M, Kikr D W. A study of the oxidation of Phenol at Platinumnad Peroxidiezd Platinum surfaces. Journal of the Electrochemical Society,1993,140(6):1534-1540.
    112.孙慧芳,和彬彬,郭栋生.焦炭及其改性吸附预处理焦化废水的试验研究.水处理技术,35(10):55-58.
    113.雒和明,俞树荣,冯辉霞,等.改性焦粉对亚甲基蓝吸附特性及其机理,煤炭学报,2009,34(7):971-976.
    114.张劲勇,王环宇,徐大东.焦粉活化、酸化后处理焦化厂生化废水的试验研究.煤炭科学技术.2002.30(12):35-37.
    115.司银平,张震.电化学催化氧化降解含酚废水的研究进展.化学研究,2009.20(4):98-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700