用户名: 密码: 验证码:
吉林临江羚羊铁矿石分选基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1996年以来,我国钢铁产量一直居世界首位。钢铁工业生产的飞速发展,导致铁矿石需求和生产的迅猛增长,铁矿石生产呈现供不应求的局面。我国从2003年起,成为世界进口铁矿石最多的国家,2007年铁矿石进口量高达3.83亿吨,2008年进口量达4.33亿吨。尽管由于全球经济危机的影响,使我国的钢铁生产有所减缓,但是随着我国居民消费结构的升级、工业化和城镇化步伐的加快,对钢铁产品的需求还将继续增加,钢铁工业还将继续发展,铁矿石大量依赖进口的局面难以在短期内得到扭转。
     我国高品位的优质铁矿资源逐渐枯竭,随之而来的国际铁矿石价格的大幅提高,迫使我们必须以战略性的眼光,有预见性地开发潜在的铁矿资源。我国铁矿石的主要特点是“贫”、“细”、“杂”,平均铁品位32%,比世界平均品位低11个百分点。我国97.5%的铁矿石需要选矿处理,并且复杂难选的红铁矿所占比例较大(约占铁矿石储量的20.8%)。在这种情况下,开展难选低品位铁矿石的选矿关键技术研究就显得尤为重要。
     本论文以吉林临江羚羊铁矿石为研究对象,在系统工艺矿物学研究的基础上,系统研究了采用磁选—浮选、焙烧磁选、深度还原—磁选等多种工艺时各种试验条件对该难选铁矿石分选效果的影响。
     研究结果表明,临江羚羊铁矿石采用常规磁选和浮选工艺,铁矿物均不能得到有效分离,矿石,有用铁矿物嵌布粒度过细以及与脉石矿物的包裹是导致该铁矿石难选的主要原因。
     用焙烧磁选方法处理羚羊铁矿石可得到符合要求的铁精矿,即焙烧—磁选足处理临江羚羊铁矿石最有效的分选工艺,当磁化焙烧温度为750~800℃,焙烧时间为40~120min,实验室获得了铁精矿品位最高达到67%的产品;以河北丰宁丰东煤矿次烟煤为还原剂时,煤的适宜填加量为8%,可以获得铁精矿品位58%以上,回收率60%左右的较好指标;分级焙烧产品特性研究农明,粗、中粒级铁矿石的焙烧程度不完全,细粒级焙烧还原较为完全,在铁矿石焙烧前应尽量将矿石破碎成粒度均匀的细粒级矿石。
     采用实验室箱式电炉、单向加热炉进行深度还原试验,确定了深度还原过程的基础工艺条件,并研究了煤的质量对深度还原过程的影响,在适宜的深度还原条件下,深度还原铁粉产品的金属化率达到86.81%,还原后产品在适宜的选别流程和工艺条件下,获得了全铁品位为88.09%和铁回收率为88.32%的深度还原铁粉产品。以洗精煤为还原剂的深度还原铁粉中钙、镁的含量相对较低,硅和铝含量符合直接还原铁产品的要求。深度还原时铁颗粒的生长过程可分为还原成核、深度还原、颗粒长大三个阶段。
     上述研究成果为吉林临江难选羚羊铁矿石的高效合理利用与开发找到了可行的利用方案,并对类似复杂铁矿石的处理具有良好的借鉴意义。
Since1996, the Chinese steel output has kept the first in the world. With the rapid development of steel industrial production, it is caused that swift increase of demand and production of iron ores, and demand of iron ores exceeds supply. Since2003, China has become the largest importer of iron ore in the world. Furthermore, iron ores of383millions tons were imported in2007and the imports of iron ores was up to433millions tons in2008. Authough, the internal output steel has declined due to the effect of global economic crisis, with upgrading of consumed structure of resident and development of industrialization and urbanization, the demand for steel product will increase continuously and steel industry will continue to develop. Thus, the situation that the most iron ores relies on importing from other countries is hard to get torsion in short period.
     The resource of high grade iron ores is gradually exhausted in China, and then in addition of the price of iron ores rise substantially, so potential iron ores resource have to be developed with strategic and foresighted vision. The major characteristic of the Chinese iron ores is "poor","fine" and "miscellaneous", and average grade of iron in China is32%and lower11percents than that in the world. Not only that, but iron ores of97.5%in China need to conduct mineral processing, and the proportion of complex refractory hematite is greater (20.8%of iron ores reserves). Therefore, it is particularly important to develop the crucial technology of mineral processing for low grade refractory iron ores.
     In this paper, Lingyang iron ore from Linjiang Jilin (namely Jilin antelope iron ore) was chosen as research object. On the foundation of technology mineralogy research, the effect of various testing conditions on separation results of the iron ore were studied systematacially with different technology, such as magnetic separation flotation, roast-magnetic separation,deep reduction-selection, etc.
     The study results showed that iron minerals were not separated effectively by the means of conventional magnetic separaton and flotation due to superfine useful minerals in the iron ore and ternary association between useful and gangue minerals.
     The iron concentrate according with quality requirement could be gotten by roast-magnetic separation technology, that is said, roast-magnetic separation technology was most effective process for Lingyang iron ore. When roast temperature was750℃~800℃and roast time was40-120min, the grade of iron concentrate was up to67%; With secondly bituminite of Hebei Fongning coal as reductant and suitable proportion of coal to iron ore was8%, the grade and recovery of iron concentrate was over58%and about60%respectively. The classification results of roasted products showed that in the reduction clinker, the coarse and medium grain size products were green roasting, however, the fines were complete roasting. Thus, before roasting, it had better crush iron ore to be fine grain size equably.
     The deep reduction tests were conducted in the box resistance furnace and one-way heating furnace, technique conditions in reduction process were determined. Rduction iron powders with mllization ratio of86.91%, iron grade of88.09%and iron recovery of88.32%were produced in suitable reduction condition and feasible processing flowsheets and technics. The contents of magnesium and calcium in the deep reduction iron powders used washery coal as reduction reagent were low comparatively and contents of silicon and aluminum met demand of direct reduced iron. Furthermore, the growing process of iron particle could be divided into three stages including nucleation, deep reduction and particle growth.
     Above-mentioned research results provided feasible program and theoretical basis how to use and develop Lingyang iron ore efficiently and reasonably and offer reference for another kinds of complex refractory iron ore.
引文
[1]陈古金,李维兵,孙胜义,周凌嘉.鞍山地区难选铁矿石选矿技术研究[J].金属矿山,2007,(1):30-34.
    [2]甘建华.铁坑选厂扩产流程改造实践[J].矿业快报,2004,(4):37-38.
    [3]R.L.R.Reis, A.E.C.Peres and A.C.Araujo, Corn grits:a new depressant agent for the flotation of iron and phosphate rocks, Proceedings II International Mineral Processing Symposium, Izmir, (1989)73-89.
    [4]刘保平.铁古坑低品位难选磁铁矿高效节能选矿技术[J].金属矿山,2006,(10):23-27.
    [5]胡义明,张永.袁家村铁矿石选矿技术研究进展[J].金属矿山,2007,(6):25-29.
    [6]靳建平.河南舞阳赤铁矿的浮选试验研究[D].东北大学学士学位论文,2007.6.
    [7]S.Pavlovic, P.R.G.Brandao. Adsorption of starch, amylase, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz, Minerals Engineering,16 (2003) 1117-1122
    [8]张军,张宗华.云南细粒红铁矿的选别工艺研究[J].金属矿山,2007,(7):33-35.
    [9]刘保平,李维兵.舞阳矿业公司铁山庙贫赤铁矿石选矿试验研究[J].金属矿山,2003.8(增刊):131-134.
    [10]Santana, A.N. Reverse magnetite flotation. Minerals Engineering, vl4, n1, Jan,2001:107-111
    [11]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006,(3):11-13
    [12]Deshpande, R. J.; Natarajan, K. A.; Kittur, S. Cz; Rao,T. R. R. Reverse Flotation of Silica from Kudremukh Iron Ore Part 2:Optimization of Flotation Process Transactions of the Indian Institute of Metals,v50,n5,1997:397-398
    [13]罗立群,张泾生,高远扬,等.菱铁矿干式冷却磁化焙烧技术研究[J].金属矿山,2004,(10):28-31.
    [14]盛忠义.菱铁矿综合回收试验研究[J].金属矿山,1999,(1):42-44
    [15]谢富良.铁坑褐铁矿选矿新工艺研究[J].冶金矿山设计与建设,1996,(5):19-25
    [16]周岳远,李小静,余兆禄,等CRIMM稀土永磁辊式强磁选机分选褐铁矿的生产实践[J].矿冶工程,2002,22(2):62-64
    [17]宫磊.徐晓军,梁忠荣.细粒褐铁矿干式磁选抛尾技术在化念铁矿的应用研究[J].金属矿山,2005.8(增刊):151-152.2005年全国选矿高效节能技术及设备学术研讨会与成果推广交流会.
    [18]王毓华,陈兴华,黄传兵.褐铁矿反浮选脱硅新工艺试验研究[J].金属矿山,2005,(7):37-39
    [19]袁启东,翁金红.云南东川包子铺高磷褐铁矿石选矿工艺研究[J].金属矿山,2007,(4):30-33
    [20]肖军辉,张宗华,张昱.西南地区难选细粒高磷赤褐铁矿的选矿工艺研究[J].金属矿山,2006.8(增刊):192-196.2006年全国金属矿节约资源及高效选矿加工利用学术研讨与技术成果交流会.
    [21]纪军.高磷铁矿石脱磷技术研究[J].矿冶,2003,(2):33-37
    [22]张芹,张一敏,胡定国,等.湖北巴东鲫状赤铁矿选矿试验研究[J].金属矿山,2006.8(增 刊):186-188.2006年全国金属矿节约资源及高效选矿加工利用学术研讨与技术成果交流会.
    [23]卢尚文,张邦家,熊道仁,等.宁乡式胶磷铁矿用解胶浸矿法降磷的研究[J].金属矿山,1994,(8):30-33.
    [24]张惠丽中国铁矿石需求预测与开发战略研究[D],西安建筑科技大学.2005.04.
    [25]陈甲斌中国铁矿资源未来供需态势与国外供矿前景矿产保护与利用[J]2005.4.
    [26]焦玉书,世界铁矿资源开发利用和我国进口铁矿石的发展态势,2004年全国炼铁生产技术暨炼铁年会文集.
    [27]王泅代,世界铁矿工业的发展动态[J],有色金属设计,No.1,2003.
    [28]张蓓世界铁矿石供需现状[J],冶金信息导刊No.2.2000.
    [29]李新创,对利用两种铁矿资源的思考[J],冶金经济与管理,No.3,P11-15,2003.
    [30]司晓悦,我国铁矿石进口的战略和对策[J],东北大学学报(社会科学版)No.5,P355-357,2003.
    [31]侯宗林,中国铁矿资源现状与潜力[J],地质找矿论丛Vol.20 No.4.Dec.2005.
    [32]陈甲斌,崔建国.我国铁矿资源形势分析与其保护策略[J],矿产保护与利用,No.6,2003.12
    [33]中国矿情通报,WTO专辑:[Z].
    [34]2001年钢铁工业统计年报摘要[Z].
    [35]牛京考,蔡美峰,铁矿供需态势与持续发展[J],金属矿山,2005.12.
    [36]张蓓,石洪卫世界铁矿石供需现状[J],冶金管理,No.5.2000
    [37]余永富,国内外铁矿选矿技术进展[J],矿业工程Vol2.No.5.2004.10.
    [38]余永福,段其福.降硅提铁对我国钢铁工业发展的重要意义[J],矿冶工程Vo1.22.No3.2002.9.
    [39]韩跃新,等.国内外铁精矿提质降杂现状及发展趋势.2002年全国铁精矿提质降杂学术研讨及技术交流会,珠海,2000.
    [40]刘动.反浮选心用于铁精矿提铁降硅的现状及展望[J].金属矿山.2003(2)
    [41]余永富,我国铁矿山发展动向、选矿技术发展现状及存在的问题[J],矿冶工程.Vol.26№1.2006.02.
    [42]全文欣,张彬,庞玉荣等.我国铁矿选矿设备和工艺的进展[J].国外金属 矿选矿.2006.2.
    [43]胡义明,等.尖山铁矿铁精矿提质降硅的研究[J].金属矿山,增刊,2002,(9):166-171.
    [44]张泾生,等.磁选-阴离子反浮选工艺应用现状及展望[J].金属矿山,2004,(5):24-28.
    [45]钢铁常识.金属世界,2005.01.
    [46]钢铁篇.中国金属通报,2004,(44).
    [47]毛益平,黄礼富,赵福刚.我国铁矿山选矿技术成就与发展展望[J],金属矿山 2005.2.
    [48]王秋林,等.綦江铁矿焙烧—磁选—阴离子反浮选试验研究[J],矿冶工程,2006,26(6):32-34.
    [49]刘卫强,张宗华.云南某褐铁矿的选矿工艺研究[J],云南冶金,2006,35(3):18-20.
    [50]张汉泉、任亚望 管俊芳.难选赤褐铁矿焙烧-磁选试验研究[J],中国矿山,2006,15(5):44-48.
    [51]孙炳泉褐铁矿选矿技术进展[J],金属矿山(增),2006:27-29.
    [52]韩跃新,印万忠,等。国内外难选铁矿资源利用的现状及发展方向[J],金属矿山(增),2006:14-26.
    [53]冯其明,等.我国几种难处理矿石的加工利用现状[J],金属矿山(增),2006:5-13.
    [54]魏德洲.固体物料分选学[M],冶金工业山版社,2000年8月.
    [55]《选矿手册》编辑委员会.选矿手册第八卷第五分册、第二分册[M].冶金工业出版社.
    [56]冯守本,等。选矿厂设计[M],北京:冶金工业出版社。
    [57]蒋文利,铁矿资源合理利用研究与实践[J],金属矿山(增),2006:47-51;
    [58]宋守志,钟勇,等。矿产资源综合利用现状与发展的研究[J],金属矿山(增),2006:79-84:
    [59]田嘉印,刘保平,等。我国红铁矿高效节能技术研究与实践[J],金属矿山(增),2005:16-24:
    [60]韩跃新,杨小生,等,东北地区贫杂铁矿资源的开发与利用研究[J],金属矿山(增),2005:35-37:
    [61]王海军,徐鹏。铁矿资源综合利用现状及对策建议[J],金属矿山(增),2005:83-88;
    [62]沈慧庭,黄晓燕。2000-2004年铁矿选矿技术进展评述[J],矿冶工程,第25卷第6期,2005年12月;
    [63]袁致涛,高太,印万忠,韩跃新.我国难选铁矿石资源利用的现状及发展方向[J],金属矿山,2007年第1期;
    [64]程坤,张宗华,杨琳琳。微细粒嵌布难选赤褐铁矿尾矿的选矿试验研究[J],有色金属,2006年2月。
    [65]魏德洲主编.固体物料分选学[M],北京:冶金工业出版社,2000.
    [66]史古彪等编著.非高炉炼铁学[M],沈阳:东北工学院出版社,1991.
    [67]卢宇飞主编.炼铁工艺[M],北京:冶金工业出版社,2006.
    [68]黄希祐编.钢铁冶金过程理论[M],北京:冶金工业出版社,1993
    [69]邓永瑞,许洋,赵青编著.固态相变[M],北京:冶金工业出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700