用户名: 密码: 验证码:
含氮杂环类化合物及其自组装膜对铜在海水中缓蚀机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缓蚀剂在金属防腐蚀保护工作中占有重要的地位,在国民经济建设中发挥着越来越重要的作用。从目前热力设备防腐、石油开采及其他领域防腐情况来看,缓蚀剂的使用是阻止或延缓金属发生锈蚀一种行之有效、经济效益显著的技术手段。虽然目前缓蚀剂从分子设计、合成路线与工艺、复配协同性、应用性能等方面都取得了较大的发展,但是其理论进展仍远滞后于实践,对于不少缓蚀剂的缓蚀机理尚存争议,因此运用各种方法、手段研究缓蚀剂的缓蚀机理,发展和完善缓蚀剂理论,成为目前缓蚀剂研究领域的热门课题。
     本文筛选、合成了两大类共6种新型含氮杂环化合物作为缓蚀剂,运用失重实验、电化学实验、量子化学计算、分子动力学模拟及扫描电镜等实验多种手段和方法测试了所选化合物在海水溶液中对铜的缓蚀性能,分析了它们对铜的缓蚀机理,从理论上探讨了缓蚀剂分子与金属表面的作用方式,归纳总结了分子结构、腐蚀粒子与缓蚀剂吸附膜相互作用与缓蚀效果之间的关系。为了拓展缓蚀剂的应用范围,利用缓蚀剂的吸附成膜特性,将缓蚀剂作为成膜分子,开发自组装体系,将缓蚀剂分子自组装到铜基材的表面,形成一层牢固、致密、排列有序的自组装膜,并通过电化学方法、原子力显微镜、拉曼光谱以及接触角测定仪对自组装膜的疏水性能及防蚀性能进行表征。
     本文中涉及的两类新型杂环化合物为:噻二唑类化合物和三氮唑类化合物,研究的主要结果如下:
     失重、电化学及扫描电镜实验结果表明,噻二唑类化合物和三氮唑类化合物对铜有较好的缓蚀效果和较高的缓蚀效率。实验结果表明三氮唑化合物和噻二唑化合物在100mg/L时对铜的缓蚀效率达到95%以上。结合实验现象及量子化学计算结果,推断了其吸附特点,证明噻二唑类缓蚀剂与三氮唑类缓蚀剂均符合Langmuir吸附等温模型,缓蚀剂分子的吸附机理为物理吸附和化学吸附共同作用,且化学吸附占主导。
     通过分子动力学模拟三种腐蚀性粒子在缓蚀剂吸附膜间的扩散迁移作用研究缓蚀剂的缓蚀机理发现,自由体积、腐蚀性粒子与缓蚀剂分子的相互作用以及缓蚀剂分子的自扩散系数是影响离子扩散的主要因素;同种缓蚀剂膜对正负离子(H_3O~+、Cl~-)的迁移比对H_2O分子具有更强的抑制能力。
     将铜基材表面用合成的2-巯基-5-苯基-1,3,4-噻二唑(MPT)、2-巯基-5-苯甲基-1,2,4-三氮唑(MBT)进行修饰,考察了组装时间,化合物浓度,超声波振荡、取代基官能团亲水性对修饰后铜的抗腐蚀性能的影响。在此基础上,研究了MPT和MBT在铜表面的成膜机理。结果表明,MPT和MBT在铜表面形成针状和球状自组装膜,使铜表面的接触角由72°上升到100°左右,达到了疏水性的要求。通过电化学测试发现,当成膜分子浓度大于3×10~(-3)M或组装时间大于2h,自组装膜将变得更加致密,粒子在缓蚀剂吸附膜间的相互扩散迁移效应逐渐消失;在组装过程中外加超声波能够在保持自组装膜足够的缓蚀性能的前提下,大大缩短组装时间。
     为了提高自组装膜层的质量和稳定性,将硅烷偶联剂与MPT、MBT对铜进行复合成膜。利用电化学阻抗谱和极化曲线研究了丙基三甲氧基硅烷(PTMS)的水解溶剂,水解时间,溶液浓度,水解pH等对硅烷膜的防蚀性能,并将PTMS分别与MPT、MBT在铜表面形成复合组装膜,实验结果表明,PTMS在铜表面可能形成了三维网状结构,氮杂环化合物添加在其中,使复合组装膜的致密性提高,质量更稳定,可以起到优异的抑制腐蚀进程的作用。
Corrosion inhibitors hold the important status in the metal protection project, and they are playing more and more important role in the national economy construction. According to the present anti-corrosion of thermal energy equipments and anti-corrosion situation in other industry domain, it is an effective and economic method to use corrosion inhibitor. So, it becomes an interesting subject for chemists to study the corrosion inhibiting mechanism and develop or perfect the theory through various means and techniques.
     In this paper, two series including six kinds of newly heterocyclic compounds were synthesized to be studied as corrosion inhibitors of copper in seawater using weight loss experiment, electrochemical test, scanning electron micrographs (SEM), quantum chemical calculations and molecular dynamics. And then, we studied their corrosion inhibiting mechanism on copper, discussed theoretically the function way between the corrosion inhibitors and the metal surface and summarized the relationship between the molecular structure and their inhibiting efficiency. In order to extend the usage of inhibitor, the compounds employed to assemble on the copper, forming a solid, dense self-assembled film. Then the anticorrosion property and hydrophobic were detected. The results were drawn as follows:
     The triazole derivatives and thiadazole derivatives were proved to have positive inhibiting effect through weight loss experiment, electrochemical test and scanning electron micrographs. According to the experiments, the inhibit effective were more than90%when the concentration was100mg/L. Thermodynamic calculation suggests that the adsorption of the inhibitors was found to follow the Langmuir adsorption isotherm, and the adsorption of the inhibitors on copper surface involve physical as well as chemical adsorption.
     Free volume, interaction between particles and membrane, and self-diffusion performance of inhibitors are the three critical factors influencing the performance for prevention of corrosion particles diffusion by inhibitor membrane. Identical inhibitor membrane has more prevention ability for cations and anions (H3O+and Cl-) than that for H2O molecules.
     The MPT and MBT synthesized were assembled onto copper surface, and the effects of immersing time, concentration of inhibitors, ultrasonic irradiation and hydrophilic of the function groups are studied. The SEM shown that the morphology of the film is needle-like and globular, the contact angle is increased from72°to100°. The electrochemical tests shown that the layer become more solid after2hours treating or the concentration more than3×10-3M. Employing ultrasonic could reach the same inhibit effective in less treating time.
     In order to improve the quality of the self-assembled film, PTMS silane hybrid film was successfully prepared. Using electrochemical methods studied the inhibitive effect of PTMS film with different hydrolysis solvent, hydrolysis time, solution concentration and pH value. The results shown that the PTMS form a three-dimensional structure on copper surface, and then we got a density hybrid film with MPT and MBT, which can inhibit the corrosion process and improve the adsorption of the film.
引文
[1]侯保荣.海洋腐蚀与防护[M].北京:科学出版社,1997:1.
    [2]侯保荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1999:1-17.
    [3]M. Metikos-Hukovic, I. Skugor, Z. Grubac, R. Babic. Complexities of corrosion behaviour of copper-nickel alloys under liquidimpingement conditions in saline water[J]. Electrochimica Acta,2010,55:3123-3129.
    [4]M.A. Amin. Role of dissolved oxygen reduction in improvement inhibition performance of ascorbic acid during copper corrosion in0.50mol/L sulphuric acid[J]. Chinese Chemical Letters,2010,21:341-345.
    [5]E.M. Sherif. Effects of2-amino-5-(ethylthio)-l,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in3%NaCl solutions[J]. Applied Surface Science,2006,252:8615-8623.
    [6]H. Otmacic, E. Stupnisek-Lisac. Copper corrosion inhibitors in near neutral media[J]. Electrochimica Acta,2003,48:985-991.
    [7]E.M. Sherif, R.M. Erasmus, J.D. Comins. Corrosion of copper in aerated synthetic sea water solutions and its inhibition by3-amino-1,2,4-triazole[J]. Journal of Colloid and Interface Science,2007,309:470-477.
    [8]M. Scendo. Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors[J]. Corrosion Science,2008,50:1584-1592.
    [9]C.M. Chu, C. Lee, Y.Y. Wang, C.C. Wan, C.J. Chen. The role of cuprous ion as corrosion inhibitor for copper in a chloride medium[J]. Journal of the Chinese Institute of Chemical Engineers,2007,38:361-364.
    [10]夏兰廷,黄桂桥,张三平.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社,2003,207-221.
    [11]G. Kear, B.D. Barker, F.C. Walsh. Electrochemical corrosion of unalloyed copper in chloride media-a critical review[J]. Corrosion Science,2004,46:109-135.
    [12]刘琼,王庆娟,杜忠泽.铜在自然环境中的腐蚀研究[J].新技术新工艺.2008,(8):80-82.
    [13]鲍时付,张灯贵.储油罐海水试压可行性技术研究[J].油气储运,2006,9:55-57.
    [14]朱丽琴.席夫碱基咪唑啉和噻二唑衍生物对钢在盐酸介质中和铜在碳酸氢钠介质中缓蚀性能的研究:[硕士学术论文].乌鲁木齐:新疆大学,2006.
    [15]黄丽娟.海水介质绿色铜缓蚀剂性能与机理的研究:[硕士学位论文].青岛:中国海洋 大学,2008.
    [16]黄丽娟,杨朝晖,王佳.含盐体系中有机铜缓蚀剂的研究进展[J].材料开发与应用,2008.3:36-39.
    [17]J.H. Chen, Z.C. Lin, S. Chen, L.H. Nie, S.Z. Yao. An XPS and BAW sensor study of the structure and real-time growth behaviour of a complex surface film on copper in sodium chloride solutions (pH=9), containing a low concentration of benzotriazole[J]. Electrochimica Acta,1998,43:265-274.
    [18]G.A. Hope, D.P. Schweinsberg, P.M. Fredericks. Application of FT-Raman spectroscopy to the study of the benzotriazole inhibition of acid copper corrosion[J]. Spectrochimica Acta Part A:Molecular Spectroscopy,1994,50:2019-2026.
    [19]A.M. Abdullah, F.M. Al-Kharafi, B.G. Ateya. Intergranular corrosion of copper in the presence of benzotriazole [J]. Scripta Materialia,2006,54:1673-1677.
    [20]E.M.M. Sutter, C. Fiaud, D. Lincot. Electrochemical and photoelectrochemical characterization of naturally grown oxide layers on copper in sodium acetate solutions with and without benzotriazole [J]. Electrochimica Acta,1993,38:1471-1479.
    [21]董泉玉,张强,李自托,杨从贵,程怡,王学涛,王巍,孙桐檀.羧酸类铜缓蚀剂与苯并三氮唑在海水中协同效应的研究[J].腐蚀与防护,2004,25:426-428.
    [22]张大全,高立新,周国定,陆柱.苯并三唑和8-羟基喹啉对铜的缓蚀协同作用[J].物理化学学报,2002,18:74-78.
    [23]张景玲,张新玲,周海晖,刘高琴,旷亚非.苯并三氮唑及其衍生物对铜的协同缓蚀效应[J].电镀与涂饰,2011,30(11):46-49.
    [24]A.D. Modestov, Z.G. Ding, G.H. Hua. A study of copper electrode behavior in alkaline solutions containing benzotriazole-type inhibitors by the photocurrent response method and intensity modulated photocurrent spectroscopy [J]. Journal of Electroanalytical Chemistry,1994,375:293-299.
    [25]K.F. Khaled, Sahar A. Fadl-Allah, B. Hammouti. Some benzotriazole derivatives as corrosion inhibitors for copper in acidic medium:Experimental and quantum chemical molecular dynamics approach[J]. Materials Chemistry and Physics,2009,117:148-155
    [26]G. Laguzzi, L. Luvidi. Evaluation of the anticorrosive properties of benzotriazole alkyl derivatives on6%Sn bronze alloy[J]. Surface and Coatings Technology,2010,204: 2442-2446.
    [27]M. Pahler, J.J. Santana, W. Schuhmann, R.M. Souto. Application of AC-SECM in Corrosion Science:Local Visualisation of Inhibitor Films on Active Metals for Corrosion Protection [J]. Chemistry-A European Journal,2011,17:905-911.
    [28]Z. Khiati, A.A. Othman c, M. Sanchez-Moreno, M.C. Bernard, S. Joiret, E.M.M. Sutter, V. Vivier. Corrosion inhibition of copper in neutral chloride media by a novel derivative of1,2,4-triazole[J]. Corrosion Science,2011,53:3092-3099.
    [29]H. Tian, W. Li, B. Hou. Novel application of a hormone biosynthetic inhibitor for the corrosion resistance enhancement of copper in synthetic seawater[J]. Corrosion Science,2011,53:3435-3445.
    [30]M.K. Hsieh, D.A. Dzombak, R.D. Vidic. Effect of Tolyltriazole on the Corrosion Protection of Copper against Ammonia and Disinfectants in Cooling Systems[J].Industrial&engineering chemistry research,2010,49:7313-7322.
    [31]S. John, J. Joy, M. Prajila, A. Joseph. Electrochemical, quantum chemical, and molecular dynamics studies on the interaction of4-amino-4H,3,5-di(methoxy)-1,2,4-triazole (ATD), BATD, and DBATD on copper metal in IN H2SO4[J]. Materials and Corrosion,2011,62:1031-1042.
    [32]M.K. Awad, M.R. Mustafa, M.M. AboElnga. Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface [J]. Journal of Molecular Structure:THEOCHEM,2010,959:66-74.
    [33]D.Q. Zhang, Q.R. Cai, X.M. He, L.X. Gao, G.S. Kim. The corrosion inhibition of copper in hydrochloric acid solutions by a tripeptide compound[J]. Corrosion Science,2009,51:2349-2354.
    [34]E.A. Noor. Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al-Cu alloy in hydrochloric acid[J]. Materials Chemistry and Physics,2009,114:533-541.
    [35]H.O. Curkovic, E.S. Lisac, H. Takenouti. The influence of pH value on the efficiency of imidazole based corrosion inhibitors of copper[J]. Corrosion Science,2010,52:398-405.
    [36]W.J. Lee. Inhibiting effects of imidazole on copper corrosion in1M HNO3solution[J]. Materials Science and Engineering A,2003,348:217-226.
    [37]B. Hammouti, A. Dafali, R. Touzani, M. Bouachrine. Inhibition of copper corrosion by bipyrazole compound in aerated3%NaCl[J]. Journal of Saudi Chemical Society,2011, article in press.
    [38]S. Hong, W. Chen, H.Q. Luo, N.B. Li. Inhibition effect of4-amino-antipyrine on the corrosion of copper in3wt.%NaCl solution[J]. Corrosion Science,2012,57:270-278.
    [39]O. Benali, L. Larabi, Y. Harek. Inhibiting effects of2-mercapto-l-methylimidazole on copper corrosion in0.5M sulfuric acid[J]. Journal of Saudi Chemical Society,2010,14:231-235.
    [40]张启波,华一新.咪唑离子液体对铜在硫酸溶液中的缓蚀作用[J].物理化学学报,2011,27:655-663.
    [41]全贞兰,张冬梅,侯万国.天冬氨酸插层ZnAl双金属氢氧化物的制备及其对铜的缓蚀性能的研究[J].腐蚀科学与防护技术,2011,23:151-154.
    [42]E.S. Lisac, H.O. Curkovic, H. Takenouti. Electrochemical quartz crystal microbalance and electrochemical impedance spectroscopy study of copper corrosion inhibition by imidazoles[J]. Corrosion Science,2009,51:2342-2348.
    [43]M. Cubillos, M. Sancy, J. Pavez, E. Vargas, R. Urzua, J.H. Roman, B. Tribollet, J.H. Zagal, M.A. Paez. Influence of8-aminoquinoline on the corrosion behaviour of copper in0.1M NaCl[J]. Electrochimica Acta,2010,55:2782-2792.
    [44]R. Solmaz, E.A. Sahin, A. Doner, G. Kardas. The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution[J]. Corrosion Science,2011,53:3231-3240.
    [45]E. Hamed. Studies of the corrosion inhibition of copper in Na2SO4solution using polarization and electrochemical impedance spectroscopy [J]. Materials Chemistry and Physics,2010,121:70-76.
    [46]M. Baghalha, M.K. Ahmadi. Copper corrosion in sodium dodecyl sulphate solutions and carbon nanotube nanofluids:A modified Koutecky-Levich equation to model the agitation effect[J]. Corrosion Science,2011,53:4241-4247.
    [47]A. Yurt, G. Bereket. Combined Electrochemical and Quantum Chemical Study of Some Diamine Derivatives as Corrosion Inhibitors for Copper[J]. Industrial&engineering chemistry research,2011,50:8073-8079.
    [48]王春涛.铜表面组装缓蚀功能有序分子膜的研究:[博士学位论文].济南:山东大 学,2003.
    [49]J.D. Swalen, D.L. Allara, J.D. Andrade, E.A. Chandross, S. Garoff, J. Israelachvili, T.J. McCarthy, R. Murray, R.F. Pease, J.F. Rabolt, K.J. Wynne, H. Yu. Molecular monolayers and films-A panel report for the Materials Sciences Division of the Department of Energy [J]. Langmuir,1987,3:932-950.
    [50]D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides. Forming electrical networks in three dimensions by self-assembly [J]. Science,2000,289:1170-1172.
    [51]G.C.L. Wong, J.X. Tang, A. Lin, Y. Li, P.A. Janmey, C.R. Safinya. Hierarchical self-assembly of F-actin and cationic lipid complexes:Stacked three-layer tubule networks[J]. Science,2000,288:2035-2039.
    [52]A. Ulman. An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self Assembly. New York, NY:Academic Press,1991.
    [53]I. Langmuir. THE Constitution and Fundamental Prorerties of Solids and Liquids. II. Liquids[J]. Journal of American Chemical Society,1917,39:1848-1906.
    [54]K.B. Blodgett. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface [J]. Journal of American Chemical Society,1935,57:1007-1022.
    [55]K.B. Blodgett, I. Langmuir. Built-Up Films of Barium Stearate and Their Optical Properties [J]. Physical Review,1937,51:964.
    [56]J. Sagiv. Organized monolayers by adsorption.1. Formation and structure of oleophobic mixed monolayers on solid surfaces[J]. Journal of American Chemical Society,1980,102:92-98.
    [57]王春涛.金属铜腐蚀的防护——分子自组装膜的缓蚀作用[M].北京:中国石化出版社,2006:3.
    [58]A.J. Bard, H.D. Abruna, C.E. Chidsey, L.R. Faulkner, S.W. Feldberg, K. Itaya, M. Majda, O. Melroy, R.W. Murray. The electrode/electrolyte interface-a status report[J]. Journal of Physical Chemistry,1993,97:7147-7173.
    [59]A.C. Fou, M.F. Rubner. Molecular-Level Processing of Conjugated Polymers.2. Layer-by-Layer Manipulation of In-Situ Polymerized p-Type Doped Conducting Polymers [J]. Macromoleculars,1995,28:7115-7120.
    [60]U.B. Sterbner, W.R. Caseri, U.W. Suter. Ultrathin Layers of Substituted Poly(styrene)s on Gold and Copper[J]. Langmuir,1998,14:347-351.
    [61]Y.J. Lee, I.C. Jeon, W.K. Paik, K. Kim. Self-Assembly of1,2-Benzenedithiol on Gold and Silver:Fourier Transform Infrared Spectroscopy and Quartz Crystal Microbalance Study [J]. Langmuir,1996,12:5830-5837.
    [62]X.D. Xiao, J. Hu, D.H. Charych, M. Salmeron. Chain Length Dependence of the Frictional Properties of Alkylsilane Molecules Self-Assembled on Mica Studied by Atomic Force Microscopy [J]. Langmuir,1996,12:235-237.
    [63]A. Lio, D.H. Charych, M. Salmeron. Comparative Atomic Force Microscopy Study of the Chain Length Dependence of Frictional Properties of Alkanethiols on Gold and Alkylsilanes on Mica[J]. Journal of Physical Chemistry B,1997,101:3800-3805.
    [64]A.F. Wang, H.Y. Tang, T. Cao, S.O. Salley, K.Y. Simon. In vitro stability study of organosilane self-assemble monolayers and multilayers [J]. Journal of Colloid and Interface Science,2005,291:438-447.
    [65]Y.Q. Feng, W.K. Teo, K.S. Siow, Z.Q. Gao, K.L. Tan, A.K. Hsieh. Corrosion protect ion of copper by a self assembled monolayer of alkanethiol[J]. Journal of Electrochemcal Society,1997,144,55-64.
    [66]P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh, R.G. Nuzzo. Journal of America Chemical Society,1991,113:7152.
    [67]翟宏艳.铜表面自组装单分子膜的分子模拟研究:[硕士学位论文].济南:山东大学,2006.
    [68]D.L. Allara, R.G. Nuzzo. Spontaneously Organized Molecular Assemblies.1. Formation, Dynamics, and Physical Properties of Normal Alkanoic Acids Adsorbed From Solution on an Oxidized Aluminum Surface[J]. Langmuir,1985,1:45-52.
    [69]D.L. Allara, R.G. Nuzzo. Spontaneously Organized Molecular Assemblies.2. Quantitative Infrared Spectroscopic Determination of Equilibrium Structures of Solution Adsorbed Normal Alkanoic Acids on an Oxidized Aluminum Surface [J]. Langmuir,1985,1:52-66.
    [70]H. Ogawa, T. Chihera, K. Taya. Selective monomethyl esterification of dicarboxylic acids by use of monocarboxylate chemisorption on alumina [J]. Journal of America Chemical Society,1985,107:1365-1369.
    [71]N.E. Schlotter, M.D. Porter, T.B. Bright, D.L. Allara. Formation and structure of a spontaneously adsorbed monolayer of arachidic on silver[J]. Chemical Physics Letters,1986,132:93-98.
    [72]D.Y. Huang, Y. T. Tao, Bull. Inst. Chem., Acad. Sin.1986,33,73.
    [73]E.B. Troughton, C.D. Bain, G.M. Whitesides, D.L. Allara, M.D. Porter. Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates:structure, properties, and reactivity of constituent functional groups[J]. Langmuir,1988,4:365-385.
    [74]E. Katz, N. Itzhak, I. Willner. Effects of monolayer packing on the electrochemical activity of chemisorbed thioderivatized N,N'-dialkyl-4,4'-bipyridinium[J]. Journal of Electroanalytical Chemistry,1992,336:357-362.
    [75]R.G. Nuzzo, D.L. Allara. Adsorption of bifunctional organic disulfides on gold surfaces[J]. Journal of America Chemical Society,1983,105:4481-4483.
    [76]W. Hill, B. Wehling. Potential-and pH-dependent surface-enhanced Raman scattering of p-mercapto aniline on silver and gold substrates[J]. Journal of Physical Chemistry,1993,97:9451-9455.
    [77]T.T.T. Li, H.Y. Liu, M.J. Weaver. Intramolecular electron transfer at metal surfaces. III. Influence of bond conjugation on reduction kinetics of cobalt(III) anchored to metal surfaces via thiophenecarboxylate ligands[J]. Journal of America Chemical Society,1984,106:1233-1239.
    [78]J.M. Cooper, K.R. Greenough, C.J. McNeil. Direct electron transfer reactions between immobilized cytochrome c and modified gold electrodes [J]. Journal of Electroanalytical Chemistry,1993,347:267-275.
    [79]K. Uvdal, P. Bodo, B. Liedberg.1-cysteine adsorbed on gold and copper:An X-ray photoelectron spectroscopy study[J]. Journal of Colloid and Interface Science,1992,149:162-173.
    [80]T.R.G. Edwards, V.J. Cunnane, R. Parsons, D. Gani. Construction of a stable flavin-gold electrode displaying very fast electron transfer kinetics [J]. Journal of the Chemical Society, Chemical Communications,1989,15:1041-1043.
    [81]A. Ulman. J. Mater. Educ.1989,11:205-208.
    [82]RE. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh, R.G. Nuzzo. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold[J]. Journal of America Chemical Society,1991,113:7152-7167.
    [83]M.W. Walczak, C. Chung, S.M. Stole, C.A. Widrig, M.D. Porter. Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces[J]. Journal of America Chemical Society,1991,113:2370-2378.
    [84]P.E. Laibinis, G.M. Whitesides. omega.-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities[J]. Journal of America Chemical Society,1992,114:1990-1995.
    [85]A. Ihs, B. Liedberg. Infrared Study of Ethyl and Octyl Xanthate Ions Adsorbed on Metallic and Sulfidized Copper and Silver Surfaces[J]. Langmuir,1994,10:734-740.
    [86]P.E. Laibinis, G.M. Whitesides. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air[J]. Journal of America Chemical Society,1992,114:9022-9028.
    [87]K. Shimazu, Y. Sato, I. Yagi, K. Uosaki. Packing State and Stability of Self-Assembled Monolayers of11-Ferrocenyl-l-undecanethiol on Platinum Electrodes[J]. Bulletin of the Chemical Society of Japan,1994,67:863-865.
    [88]M. Stratmann. Chemically modified metal surfaces-a new class of composite materials [J]. Advanced Materials,1990,2:191-195.
    [89]M. Volmer, M. Stratmann, H. Viefhaus. Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols[J]. Surface and Interface Analysis,1990,16:278-282.
    [90]Q. Liu, Z. Xu. Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using16-Mercaptohexadecanoic Acid[J]. Langmuir,1995,11:4617-4622.
    [91]M.R. Linford, C.E.D. Chidsey. Alkyl monolayers covalently bonded to silicon surfaces[J]. Journal of America Chemical Society,1993,115:12631-12632.
    [92]M.R. Linford, P. Fenter, P.M. Eisenberger, C.E.D. Chidsey. Alkyl Monolayers on Silicon Prepared from1-Alkenes and Hydrogen-Terminated Silicon [J]. Journal of America Chemical Society,1995,117:3145-3155.
    [93]R. Bhure, T.M. Abdel-Fattah, C. Bonner, F. Hall, A. Mahapatro. Stability of phosphonic self assembled monolayers (SAMs) on cobalt chromium (Co-Cr) alloy under oxidative conditions[J]. Applied Surface Science,2011,257:5605-5612.
    [94]S.M. Shah, C. Martini, J. Ackermann, F. Fages. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide:Nanodots vs nanorods[J]. Journal of Colloid and Interface Science,2012,367:109-114.
    [95]K.J. Huang, Y.S. Hsiao, W.T. Whang. Low-temperature formation of self-assembled1,5-diaminoanthraquinone nanofibers:Substrate effects and field emission characteristics[J]. Organic Electronics,2011,12:686-693.
    [96]崔晓莉,江志裕.自组装膜技术在金属防腐蚀中的应用研究[J].腐蚀与防护,2001,22:335-338.
    [97]R. Tremont, H.D. Jesus-cardona, J. Garcia-orozco, R.J. Castro, C.R. Cabrera.3-Mercaptopropyltrimethoxysilane as a Cu corrosion inhibitor in KCl solution[J]. Journal of Applied Electrochemistry,2000,30:737-743.
    [98]王雪明,硅烷偶联剂在金属预处理及有机涂层中的应用研究:[硕士学位论文].济南:山东大学,2005.
    [99]黄世强,孙争光等.新型有机硅高分子材料[M],北京:化学工业出版社,2004:183-184
    [100]朱海英.铜和碳钢的表面修饰及其在海水中缓蚀性能的研究:[硕士学位论文].青岛:中国海洋大学,2009.
    [101]B. Arkles. Taliloring Surafce with silnaes[J]. Chemtech,1977,7:766-778.
    [102]R.C. Hooper. Proc. SPIConf. Reinforced Plast., Div.11th Sect8-B1956.
    [103]W.A. Zisman. Surface chemistry of plastics reinforced by strong fibers[J]. Product Research and Development,1963,8(2):98-111
    [104]E.P. Plueddeman. Interface on polymer Matrix Composites [J]. Acadmemic Press,1974:1-10.
    [105]万宗跃,张利,印仁和,徐群杰,陈浩,朱律均,周国定.3-氨基-1,2,4-三氮唑自组装膜对Cu-Ni合金缓蚀作用及吸附机理研究[J].金属学报,2008,44(2):203-208.
    [106]M.A. Amin, K.F. Khaled. Copper corrosion inhibition in O2-saturated H2SO4solutions[J]. Corrosion Science,2010,52:1194-1204.
    [107]Chin-Ming Chu, Ching Lee, Yung-Yun Wang, Chi-Chao Wan, Chun-Jie Chen. The role of cuprous ion as corrosion inhibitor for copper in a chloride medium [J]. Journal of the Chinese Institute of Chemical Engineers,2007,38:361-364.
    [108]Y. Yan, W.H. Li, L.K. Cai, B.R. Hou. Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in1M HCl solution[J]. Electrochimica Acta,2008,53:5953-5960.
    [109]S.J. Yuan, S.O. Pehkonen. Surface characterization and corrosion behaviour of70/30Cu-Ni alloy in pristine and sulfide-containing simulated seawater[J]. Corrosion Science,2007,49:1276-1304.
    [110]S.T. Zhang, Z.H. Tao, W.H. Li, B.R. Hou. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in1M hydrochloric acid[J]. Applied Surface Science,2009,255:6757-6763.
    [111]E.E. Mola. Electrosorption bond theory in the Hartree-Fock approximation[J]. Electrochimica Acta,1981,26:1209-1217.
    [112]N.M. Guan, X.M. Li, F. Li. Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid[J]. Materials Chemistry and Physics,2004,86:59-68.
    [113]X.H. Li, S.D. Deng, H. Fu. Benzyltrimethylammonium iodide as a corrosion inhibitor for steel in phosphoric acid produced by dihydrate wet method process [J]. Corrosion Science,2011,53:664-670.
    [114]M. Sahin, S. Bilgic, H. Yilmaz. The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl medium[J]. Applied Surface Science,2002,195:1-7.
    [115]J.M. Cases, F. Villieras. Thermodynamic model of ionic and nonionic surfactants adsorption-abstraction on heterogeneous surfaces[J]. Langmuir,1992,8:1251-1264.
    [116]A.Yurt, S. Ulutas, H. Dal. Electrochemical and theoretical investigation on the corrosion of aluminium in acidic solution containing some Schiff bases [J]. Applied Surface Science,2006,253:919-925.
    [117]W. Li, Q. He, S. Zhang, C. Pei, B. Hou. Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium[J]. Journal of Applied Electrochemistry,2008,38:289-295.
    [118]I. Ahamad, R. Prasad, M.A. Quraishi. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions[J]. Corrosion Science,2010,52:933-942.
    [119]D.P. Yadav, B. Maiti, M.A. Quraishi. Electrochemical and quantum chemical studies of3,4-dihydropyrimidin-2(1H)-ones as corrosion inhibitors for mild steel in hydrochloric acid solution[J]. Corrosion Science,2010,52:3586-3598.
    [120]K.F. Khaled. Guanidine derivative as a new corrosion inhibitor for copper in3%NaCl solution[J]. Materials Chemistry and Physics,2008,112:104-111.
    [121]I. Lukovits, E. Kalman, F. Zucchi. Corrosion Inhibitors-Correlation between Electronic Structure and Efficiency [J]. Corrosion,2001,57:3-8.
    [122]V.S. Sastri, J.R. Perumareddi. Molecular Orbital Theoretical Studies of Some Organic Corrosion Inhibitors [J]. Corrosion,1997,53:617-622.
    [123]R. Valdez, L.M. Martinez-Villafane, D. Glossman-Mitnik. CHIH-DFT theoretical study of isomeric thiatriazoles and their potential activity as corrosion inhibitors [J]. Journal of Molecular Structure:Theochem,2005,716:61-65.
    [124]G. Gece, S, Bilgic. A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel[J]. Corrosion Science,2010,52:3304-3308.
    [125]D.S. Kong, S.L. Yuan, Y.X. Sun. Self-assembled monolayer of o-aminothiophenol on Fe(110) surface:a combined study by electrochemistry, in situ STM, and molecular simulations [J]. Surface Science,2004,573(2):272-283.
    [126]M.A. San-Miguel, P.M. Rodger. The effect of corrosion inhibitor films on deposition of wax to metal oxide surfaces [J]. Journal of Molecular Structure:THEOCHEM,2000,506(1-3):263-272.
    [127]J. Banas, U. Lelek-Borkowska, B. Mazurkiewicz. Effect of CO2and H2S on the composition and stability of passive film on iron alloys in geothermal water[J]. Electrochimica Acta,2007,52(18):5704-5714.
    [128]张曙光,陈瑜,王风云.苯并三氮唑及其羧酸脂衍生物对铜缓蚀机理的分子动力学模拟研究[J].化学学报,2007,65(20):2235-2242.
    [129]刘丹,张晓彤,桂建舟等.分子模拟分子筛催化研究中的应用[J].石油化工高等学校学报,2004,17(3):9-13.
    [130]J.Z. Yang, Y. Chen, A.M. Zhu, Q.L. Liu, J.Y. Wu. Analyzing diffusion behaviors of methanol/water through MFI membranes by molecular simulation[J]. Journal of Membrane Science,2008,318:327-333.
    [131]H.J.C. Berendsen, J.P.M. Postma, W.F. Funsteren. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics,1984,81(4):3684-3690.
    [132]M. Fleys, R.W. Thompson. Monte carlo simulations of water adsorption isotherms in silicalite and dealuminated zeolite Y[J]. Journal of Chemical Theory Computation,2005,1:453-458.
    [133]L. Garrido, J. Pozuelo, M. Lopez-Gonzalez. Simulation and experimental studies on proton diffusion in polyelectrolytes based on sulfonated naphthalenic copolyimides[J]. Macromolecules,2009,42:6572-6580.
    [134]R. Babarao, J.W. Jiang. Diffusion and separation of CO2and CH4in Silicalite, C168schwarzite, and IRMOF-1:A comparative study from molecular dynamics simulation [J]. Langmuir,2008,24(10):5474-5484.
    [135]D. Hofmann, L. Fritz, J. Ulbrich. Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides[J]. Computational and Theoretical Polymer Science,2000,10:419-436.
    [136]P.A. Johnson, A.L. BABB. Liquid Diffusion of Non-Electrolytes. Department of Chemical Engineering. Washington:University of Washington,1956.
    [137]K. Choi, W.H. Jo. Effect of chain flexibility on selectivity in the gas separation process: Molecular dynamics simulation [J]. Macromolecules,1995,28:8598-8603.
    [138]K.L. Tung, K.T. Lu. Effect of tacticity of PMMA on gas transport through membranes:MD and MC simulation studies[J]. Journal of Membrane Science,2006,272:37-49.
    [139]H. Yang, Y. Liu, H. Zhang. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation [J]. Polymer,2006,47(21):7607-7610.
    [140]J.H. Zhou, R.X. Zhu, J.M. Zhou. Molecular dynamics simulation of diffusion of gases in pure and silica-filled poly(1-trimethylsilyl-l-propyne)[PTMSP][J]. Polymer,2006,47:5206-5212.
    [141]H. Yang, Y. Liu, H. Zhang. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation [J]. Polymer,2006,47:7607-7610.
    [142]J.H. Zhou, R.X. Zhu, J.M. Zhou. Molecular dynamics simulation of diffusion of gases in pure and silica-filled poly(1-trimethylsilyl-l-propyne)[PTMSP][J]. Polymer,2006,47:5206-5212.
    [143]A. Lehmann, G. Konig, K.H. Rieder. Water absorption on perfect CaF2(111) studied with He scattering:Experimental evidence for ordering of nanoclusters[J]. Physical Review Letter,1994,73:3725-3128.
    [144]L. Pauling. General Chemistry[M]. Third ed. San Francisco:Freeman W. H. And Company Press,1970:197.
    [145]M.C. Bernard, S. Duval, S. Joiret. Analysis of corrosion products beneath an epoxy-amine varnish film[J]. Progress in Organic Coatings,2002,45:399-404.
    [146]F. Pan, F. Peng, L. Lu. Molecular simulation on penetrants diffusion at the interface region of organic-inorganic hybrid membranes[J]. Chemical Engineering Science,2008,63:1072-1080.
    [147]Y. Feng, S. Chen, H. Zhang. Characterization of iron surface modified by2-mercaptobenzothiazole self-assembled monolayers[J]. Applied Surface Science2006,253:2812-2819.
    [148]W.C. Bigelow, D.L. Pickett,W.A. Zisman. Oleophobic monolayers:1. Films adsorbed from solution in non-polar liquids[J]. Journal of Colloid and Interface Science,1946,1:513-538.
    [149]Y. Yamamoto, H. Nishihara, H. Aramakik. Journal of Electrochemical Society,1993,140:436-443.
    [150]Y. Yuichi, N. Hiroshi, A. Kunitsugu. Self-assembled layers of alkanethiols on copper for protection against corrosion[J]. Journal of Electrochemical Society,1993,140:436-443.
    [151]I. Miki, N. Hiroshi, A. Kunitsugu. The protection ability of11-mercapto-l-undecanol self-assembled monolayer modified with alkyltrichlorosilanes against corrosion of copper[J]. Journal of Electrochemical Society,1995,142,1839-1846.
    [152]Z. Yong, Y. Liu, Z. Li.咪唑琳自组装单分子膜在镁合金AZ91D表面的防腐蚀研究[J].腐蚀科学与防护技术,2006,18:79-82.
    [153]P.E. Libinis, G.M. Whitesides. Self-assembled Monolayer of n-Alkanethiols on Copper are Barrier Films that Protect the Metal against oxidation by Air[J]. Journal of the American Chemical Society,1992,114:9022-9028.
    [154]S. Clouser, J. Centanni. Protective coatings for improved tarnish resistance in metal foils[P]. United States,6805964.2004,10,19.
    [155]N. Katsuhisa, A. Kuniitsugu. Two Dimensional Polymer Films of Modified Alkanethiol Monolayer for Preventing Iron from Corrosion[J]. Corrosion Science,1999,41:57-73.
    [156]M. Ehteshamzade, T. Shahrabi, M.G. Hosseini. Inhibition of copper corrosion by self-assembled film of new schiff bases and their modification with alkanethiols in aqueous medium[J]. Applied Surface Science,2006,252:2949-2959.
    [157]L.B. Orlin, B. Tom, P. Rik. Potentiodynamic EIS investigation of the2-methyl-5-mercapto-1,3,4-thiadiazole adsorption on copper[J]. Electrochimica Acta,2008,53:7451-7459.
    [158]C. Deslouis, B. Tribollet. Electrochemical Behaviour of Copper in Neutral Aerated Chloride Solution.1. Steady-State Investigation[J]. Journal of Applied Electrochemistry,1988,16:374.
    [159]E.M. sheriff, R.M. Erasmus, J.D. Comins. Inhibition of copper corrosion in acidic chloride pickling solutions by5-(3-aminophenyl)-tetrazole as a corrosion inhibitor[J]. Corrosion Science,2008,50:3439-3445.
    [160]C.S. Allen, R.P. Van Duyne. Orientational specificity of Raman scattering from molecules adsorbed on silver electrodes [J]. Chemical Physics Letter,1979,63:455-459.
    [161]X. Gao, J.P. Davis, M.J. Weaver. Test of surface selection rules for surface-enhanced Raman scattering:the orientation of adsorbed benzene and monosubstituted benzenes on gold[J]. Journal of Physical Chemistry,1990,94:6858-6864.
    [162]M. Moskovitz, J.S. Suh. Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver[J]. Journal of Physical Chemistry,1984,88:5526-5530.
    [163]S. Ramesh, S. Rajeswari. Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives[J]. Electrochimica Acta,2004,49:811-820.
    [164]H. Ma, S. Chen, L. Niu. Inhibition of copper corrosion by several Schiff bases in aerated halide solutions[J]. Journal of Applied Electrochemistry,2002,32:65-72.
    [165]M.E. Folquer, S.B. Ribotta, S.G. Real. Study of copper dissolution and passivation processes by electrochemical impedance spectroscopy [J]. Corrosion,2002,88:240-247.
    [166]Z. Quan, S. Chen, S. Li. Protection of copper corrosion by modification of self-assembled films of schiff bases with alkanethiol[J]. Corrosion Science,2001,43:1071-1080.
    [167]郭文娟.铜、铁表面组装磷酸酯类缓蚀功能分子膜实验技术的研究:[博士学位论文].济南:山东大学,2007
    [168]王鹏.铜质币腐蚀变色机理及抗变色工艺研究:[博士学位论文].大连:大连理工大学,2009
    [169]O.Y. Nikitin, B.K. Novosadov. Construction of basis sets of hybrid atomic orbitals for describing the nonequivalent bonds of an atom with three neighboring atoms (sp2and sp3hybridization)[J]. Journal of Structural Chemistry,1995,36:881-885.
    [170]M. Randic, J.W.J. Sutherland. Construction of Nonequivalent Hybrids in Hydrocarbon Polymers:Polybutadiene, Polyisoprene, and Related Systems[J]. Macromolecules,1974,7:559-564.
    [171]M. Orchin, R.S. Macomeber, A. Pinhas, R.M. Wilson. The Vocabulary and Concepts of Organic Chemistry. New Jersey:John Wiley&Sons, Inc.,2005.23.
    [172]L. Liu, J.M. Hu. Progress in Anti-corrosive Treatment of Metals by Silanization[J]. Journal of Chinese Society for Corrosion and Protection,2006,26:59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700