用户名: 密码: 验证码:
大锻件在线检测系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大锻件是多种重大装备的核心部件,具有尺寸大、技术含量高、生产难度大、制造周期长、制造成本高、单件生产、服役寿命长等特点,一般在万吨压力机上采用自由锻成形。锻压时,现场人员通常希望能够在线地检测热态大锻件的尺寸,以便控制产品尺寸,减小材料浪费,降低能源消耗,提高生产效率。而当今的检测手段主要是手工测量,精度低,数据少,速度慢,无法满足工业界的需求。因此研究大锻件的在线检测技术具有重大的理论与实际意义。
     为了解决当前大锻件在线检测技术的不足,在国家973项目的支持下,本文研究了大锻件在线检测技术的原理和各项关键技术,提出了一种图像导引式激光扫描技术方案,采用并联扫描装置带动脉冲式飞行时间激光测距传感器,并配合相应的数据处理方法,实现了热态大锻件关键尺寸和形状的检测。为此,本文主要开展了以下几个方面的工作
     1.研究了热态大锻件对检测技术的限制、要求和所需的技术指标,在此基础上,提出了一种图像导引的激光扫描技术方案。该系统选择脉冲式飞行时间激光测距传感器作为核心传感器,可以远距离、大范围的测量高温物体,解决了高温、发光、大尺寸等不利因素;设计了二维并联球面扫描系统,该系统的两个驱动电机都在机架上,具有刚度大、惯量低、精度高等优点;根据相机成像原理和激光扫描模型,建立了图像导引模型,避免了激光扫描的盲目性,提高了检测的速度和精度。
     2.由拉格朗日法推导了该检测系统的输入力矩公式,得到了输入力矩中造成力矩波动的因素。根据机械设计中的震动力平衡原理,得出了该机构的震动力平衡条件,并根据该条件指导扫描装置的设计,减小或消除了扫描系统的震动力,减小了力矩最大值,并使输入力矩更平稳,最终提高扫描装置的动力学性能,并进行了实验验证。
     3.分析了锻件温度对尺寸测量的影响途径;根据锻压车间的环境因素对空气折射率的影响,得到了锻压车间环境下的空气折射率公式。根据该空气折射率公式,提出了热态大锻件对脉冲式激光测距法的影响方程。在此基础上,建立了不同形状的热态锻件的测量误差模型;仿真了不同温度、不同测量条件下的热态锻件的尺寸测量误差。该仿真结果可以指导后续的检测方式和数据处理方法。
     4.分析了检测系统误差来源和传递过程,利用回差消除装置消除了电机减速器的回差,提高了检测精度。根据图像导引模块与扫描系统坐标系的对应关系,建立了图像导引系统的误差和标定模型;根据该模型,标定了图像导引系统;分析了该检测技术激光扫描部分的标定方式,建立了考虑机构参数偏差的系统误差分析模型,根据误差分析模型建立了扫描系统不依赖于其他测量工具的标定模型,并进行了仿真和实验验证。
     5.根据大锻件的形状,将其分为块类零件、轴类零件和球类零件分别加以处理,建立了各自的数据处理模型。针对大锻件检测对数据处理的时间要求较高,这些计算模型主要采用最小二乘拟合的方式,尽量避免迭代计算,具有较好的实时性,以达到快速的尺寸提取。针对轴类锻件,在截面投影法的基础上提出了二次截面投影法;仿真和实验表明,二次截面投影法具有更高的计算精度,计算量增加也不大;后续的现场试验采用二次截面投影法得到了锻件的各项关键尺寸。
     6.将前述的研究成果集成到一个系统中,设计开发了一套大锻件检测系统样机,并进行了锻压现场试验,获得了很好的效果。这表明本文研究的技术解决了大锻件检测系统的关键技术问题,经过一定的产业化开发,可以应用到锻造工业中。
Large forgings are the key components of various heavy equipments and productions, which have the characteristics of large dimensions, high technology, single-piece production etc. When forging, the operators usually need to online measure their dimensions so that they can control the forging dimensions. This may reduce material waste and energy consumption, and improve the productivity. But current measurement techniques can not satisfy the requirement of the industry since they have manual operation, low precision, less data and slow speed. So it has a great scientific and practical significance to research the online measurement technology of large forgings.
     To solve the inadequacy of measurement technology for large forgings, this dissertation was supported by the national973program, the principle of online measurement for large forgings was researched, and a technological solution based on laser radar was presented. In this technology, a parallel scanning system was used to carry a pulsed time-of-flight (TOF) laser distance measurement sensor, and this can obtain key dimensions of large forgings. To this end, the detailed research was developed as following:
     1. The technology limits and qualifications were researched and a scanning technique based on laser radar was selected as the technology solution for large forgings. The pulsed TOF laser distance measurement sensor is the core one which can obtain the distance of a red-hot large forging at a long range and a large scope. It dispels the influences of high temperature, radiant light, large dimensions and so on. A2-degree-of-freedom (2-dof) parallel spherical scanning device was designed and the two motors were both at the base, which had many advantages such as high stiffness, low inertia, high presion.
     2. Input torque of the scanning system was derived and the sources that give the torque fluctuation were obtained. The balancing conditions were achieved by shaking force balancing and could be used to guide the design of the scanning system. Then dynamical performance increased, e. g., shaking forces were eliminated, maximum torque was reduced, and input torque curve became smoothing. These were proved by the simulations and experimentations.
     3. The influence approaches of the temperature on the dimension measurement were analyzed and the index of refraction of the air in the forging field was obtained. According to the index of refraction, influence equations of large hot forging to the distance measurement of the TOF were proposed. Then a model of measurement errors was presented and the errors of dimensions measurement were simulated by it. The simulation can guide the subsequent measurement and data processing.
     4. A calibration of image navigation system was modeled and performed according to the corresponding relationship of the image navigation and scanning system. Then a calibration model of the scanning system was presented, which didn't depend on other measurement tools. The simulation and experiments confirmed the model.
     5. The large forgings were classified to the classes of cuboids, circular cylinder and sphere and the data processing models were built respectively. The least-square methods were designed and the iterative computations were avoid during data processing for online measurement. The subsequent experiments confirmed the motheds.
     6. A prototype of the dimension measurement system of large forgings was developed by means of the foregoing results. The experimentations in laboratory and forging plant confirmed the technology. It shows that the technology can apply into the forging industry successfully.
引文
[1]中华人民共和国国民经济和社会发展第十一个五年规划纲要,第三篇第十一章:振兴装备制造业
    [2]中华人民共和国国民经济和社会发展第十一个五年规划纲要,专栏6:装备制造业振兴的重占
    [3]核电中长期发展规划(2005-2020).国家发展和改革委员会,2007,10
    [4]郭会光,曲宗实.我国大锻件制造业的发展[J].大型铸锻件,2003,(1):42-45
    [5]Okamoto Akira, Wasa Yasuhiro, Kagawa Yasunori. Development of shape measurement system for hot large forgings [J]. Kobe Steel Engineering Reports,2007,57(3):29-33
    [6]Takatsuji T, Kirita A, Kurosawa T. Simple instrument for measuring edge angles using a light sectioning method [J]. Measurement Science&Technology.1997,8(7):782-786
    [7]Meng L, Qiang F. Three-dimensional profilometry based on coded linear-structure light with isosceles triangle teeth [J]. Appl Opt,1999,38(31):6528-6531
    [8]Xi F, Liu Y, Feng HY Error compensation for three-dimensional line laser scanning data [J]. Int J Adv Manuf Technol,2001,18:211-216
    [9]Lerons P M, Fernandez J L, Garcia-Bermejo J G et al. Total quality control for automotive raw foundry brake disks [J]. Int J Adv Manuf Technol,2005,27:359-371
    [10]Yachide Y, Oike Y, Ikeda M et al. Real-time3-D measurement system based on light-section method using smart image sensor [C]. Proc IEEE Int Conf Image Process,2005,3:1008-1011
    [11]Senoh M, Kozawa F, Yamada M. Development of shape measurement system using an omnidirectional sensor and light sectioning method with laser beam scanning for Hume pipes [J]. Opt Eng,2006,45(6):064301
    [12]Cheng J T, Wang C J, Zhao C et al. Design of a servo motion system and an image sampling and processing system on a3D laser scanner [J]. Int J Adv Manuf Technol,2007,33:1143-1148
    [13]Pernkopf F.3D surface acquisition and reconstruction for inspection of raw steel products [J]. Computers in Industry,2005,56(8):876-885
    [14]Kai W, Dieter R, Schafer. An approach to computer-aided quality control based on3D coordinate metrology [J]. Journal of Materials Processing Technology,2000,107:96-110
    [15]Tsai R.Y A versatile camera calibration technique for high-accuracy3D machine vision metrology using off-the-shelf TV camera and lens [J]. IEEE Journal of Robotics and Automation,1987,3(4):323-344.
    [16]Esteban CH, Schmitt F Silhouette and stereo fusion for3D object modeling [J]. Comput Vis Image Underst,2004,96(3):367-392
    [17]Kim G B, Chung S C. An accurate and robust stereo matching algorithm with variable windows for3D measurements [J]. Mechatronics,2004,14(6):715-735
    [18]Kim G B. Stereo vision system on machine tool for automated reconstruction of surface morphology with depth discontinuity [J]. Int J Adv Manuf Technol,2004,24:433-439
    [19]Kim H, Sohn K.3D reconstruction from stereo images for interactions between real and virtual objects [J]. Signal Process:Image Commun,2005,20(1):61-75
    [20]Yuan M L, Ong S K, Nee A Y C. Registration based on projective reconstruction technique for augmented reality systems [J]. IEEE Trans Vis Comput Graph,2005,11(3):254-264
    [21]Zhang K, Xu B, Tang L et al. Modeling of binocular vision system for3D reconstruction with improved genetic algorithms [J]. Int J Adv Manuf Technol,2006,29:722-728
    [22]Chen C L, Tai C L, Lio Y F. Virtual binocular vision systems to solid model reconstruction [J]. Int J Adv Manuf Technol,2007,35:379-384
    [23]Huang P S, Zhang C P, Chiang F P. High-speed3-D shape measurement based on digital fringe projection [J]. Opt. Eng.,2003,42(1):163-168.
    [24]Zhang S, Yau S T. High-resolution, real-time3D absolute coordinate measurement based on a phase-shifting method [J]. Opt Express,2006,14(7):2644-2649
    [25]Magdeev V S. Error in the measurement of the coordinates of surface points of large components with two theodolites [J]. Meas Tech,1991,34(5):438-440
    [26]Suresha K H N, Nataraju B S, Gerard J P et al. Theodolite based hardware and software interface for noncontact3-D measurements [J]. J Spacecr Technol,2002,12(2):35-48
    [27]Li Y, Liu Z. A new high-precision measurement system used in the image calibration of large-sized photographic instrument [C]. Proc SPIE,2005,5638:404-411
    [28]Xiong C, Liu Z, Pan Y High-accuracy coordinates measurement by electronic theodolites. Proc SPIE,2006,6344:63442W
    [29]Tong Z, Tang W. The application of data fusion in optical theodolite coordinate measurement system. Proc SPIE,2007,6595:659510
    [30]Maatta K, Kostamovaara J, Myllyla R (1993) Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques. Appl Opt32(27):5334-5347
    [31]Andersson P. Long-range three-dimensional imaging using range-gated laser radar images. Opt Eng (2006)45(3):034301
    [32]Rivas M B, Maslanik J A, Sonntag J G et al. Sea ice roughness from airborne LIDAR profiles. IEEE Trans Geosci Remote Sens (2006)44(11):3032-3037
    [33]Guidi G, Frischer B, Russo M, et al. Three-dimensional acquisition of large and detailed cultural heritage objects. Mach Vis Appl (2006)17(6):349-360
    [34]Kilpela A. Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications [Dissertation]. Oulu:University of Oulu, Finland,2004
    [38]Forging Industry Technology Plan. Forging Industry Association&Forging Industry Educational and Research Foundation [R], October2003.
    [39]Forging Industry Technology Plan CY2005-2006. Forging Industry Association&Forging Industry Educational and Research Foundation [R], November2005.
    [40]Inventions and Innovation:A HotEye(TM) Based Coordinate Measuring Machine for the Forging Industry. Office of Industrial Technologies Energy Efficiency and Renewable Energy. U.S. Department of Energy,2004. Chang T Z, Barnett L. A HotEye(TM)-Based Coordinate Measuring Machine for the Forging Industry [R]. Advanced Technology Program, I-MC-809. Washington:U. S. Department of Energy,2001.1-2
    [41]Jin N, Zhou S, Chang T S. Identification of impacting factors of surface defects in hot rolling processes using multi-level regression analysis [J]. Transactions of the North American Manufacturing Research Institute of SME,(2004).32,557-564.
    [42]Dworkin S B, Nye T J. Image processing for machine vision measurement of hot formed parts. Journal of Materials Processing Technology,(2006).174(1-3),1-6.
    [43]聂绍珉,唐景林,郭宝峰等.基于CCD的大型锻件尺寸测量研究,塑性工程学报[J],2005,12(7):85-88
    [44]聂绍珉,张庆,李树奎等.大型锻件尺寸CCD测量的数学模型研究[J],塑形工程学报,2006,13(6):110-113
    [45]Rech R, Muller N, Lamm R et al. Laser messungen an groBen Freiformschmieden [J]. Stahl und Eisen,2006,126(2):53-57
    [46]FERROTRON Technologies GmbH. LaCam-Forge [R]. Moers, Germany2008:1-4
    [47]Bokhabrine Y, Lew F C, Lew Y V et al.3D laser system for shell dimension measurement during forging[C]. International Forgemasters Meeting (IFM), Santander, Spain,2008, pp.345-348
    [48]Bokhabrine Y, Lew F C, Lew Y V et al.3D reconstruction of hot metallic surfaces for industrial part characterization[C]. Proceedings of SPIE,2009,7215:345-348
    [49]Blais F. Review of20years of range sensor development [J]. Journal of Electronic Imaging,2004,13(1),231-243
    [50]Maatta K, Kostamovaara J, Myllyla R.. Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques [J]. Applied Optics,1993,32(27),5334-5347.
    [51]Lamm R, Wintjens P, Kyewski N. Process control by use of3D laserscanning technology [J]. World of Metallurgy-ERZMETLL,2005,58(1):28-32
    [52]ELDP Laser Distance Meter:Operation Instructions. LASE GmbH Industrielle Lasertechnik, Am schornacker59, D-46485Wesel,2005
    [53]Gronwall C, Steinvall O, Gustafsson F et al. Influence of laser radar sensor parameters on range-measurement and shape-fitting uncertainties [J]. Optical Engineering,2007,46(10):106201(1-11).
    [54]HALCON Solution Guide Ⅲ-C,3D Vision:Machine Vision in World Coordinates. MVTec Software GmbH, Munich, Germany,2009
    [55]Schmitt F, Funck M, Boglea A et al. Development and application of miniaturized scanners for laser beam micro-welding [J]. Microsyst Technol,2008,14:1861-1869
    [56]Samson E, Laurendeau D, Parizeau M et al. The Agile Stereo Pair for active vision [J]. MachineVision and Applications,2006,17(1):32-50
    [57] Gao Jian, Webb Phil, Gindy Nabil. Investigation of an inertial-sensor-based dynamic positionmeasurement system for a parallel kinematic machine [J]. Transactions of the Institute ofMeasurement and Control,2004,26:293-310
    [58] Gao F. Complete shaking force and shaking moment balancing of26types of four-, five-andsix-bar linkages with prismatic pairs [J]. Mechanism and Machine Theory,1990,25(2):183-192
    [59] Gao F. Complete shaking force and shaking moment balancing of17types of8-bar linkages onlywith revolute pairs [J]. Mechanism and Machine Theory,1991,26(2):197-206
    [60] Gao F. Complete shaking force and shaking moment balancing of4types of6-bar linkages [J].Mechanism and Machine Theory,1989,24(4):275-287
    [61] Takahashi Y, Ogawa S, Machida S. Mechanical design and control system of robotic wheelchairwith inverse pendulum control [J]. Transactions of the Institute of Measurement and Control2002,24,355-368
    [62] Khorsandi A, Willer U, Wondraczek L et al. In situ and on-line monitoring of CO in an industrialglass furnace by mid-infrared difference-frequency generation laser spectroscopy [J]. AppliedOptics,2004,43(35),6481-6486
    [63] Edlén B. The refractive index of air [J]. Metrologia,1966,2(2),71-80
    [64] Owens J C. Optical refractive index of air: dependence on pressure, temperature and composition[J]. Applied Optics,1967,6(1),51-59
    [65] Birch K P, Downs M J. An updated Edlén equation for the refractive index of air [J]. Metrologia,1993,30(3),155-162
    [66] Birch K P, Downs M J. Correction to the updated Edlén equation for the refractive index of air[J]. Metrologia,1994,31(4),315-316
    [67] B nsch G, Potulski E. Measurement of the refractive index of air and comparison with modifiedEdlén's formulae [J]. Metrologia,1998,35(2),133-139
    [68] Ciddor P E. Refractive index of air: new equations for the visible and near infrared [J]. AppliedOptics,1996,35(9),1566-1573
    [69] Zhang J, Lu Z H, Wang L J. Precision measurement of the refractive index of air with frequencycombs [J]. Optics Letters,2005,30(24),3314-3316
    [70] Incropera F P, DeWitt D P, Bergman T L et al. Fundamentals of heat and mass transfer (6thEdition)[M]. Hoboken, NJ: John Wiley&Sons,2007
    [71] Eckert E R G, Drake R M. Analysis of heat and mass transfer (1stEdition)[M]. New York:McGraw-Hill,1972
    [72] Diez R, Dolz M, Belda R et al. Free convection around a horizontal circular cylinder.Adimensional empirical equations [J]. Applied Scientific Research,1989,46(4),365-378
    [73] Gander W, Golub G H, Strebel R. Least-squares fitting of circles and ellipses [J]. BIT,1994,34(4),558-578
    [74] Rorres C, Romano D G. Finding the center of a circular starting line in an ancient Greek stadium[J]. SIAM Review,1997,39(4),745-754
    [75] Sato O, Shimojima K, Furutani R et al. Artefact calibration of parallel mechanism, kinematiccalibration with a priori knowledge [J]. Measurement Science and Technology,2004,15:1158-1165
    [76] Li M. Kinematic calibration of an active head-eye system [J]. IEEE Transaction on RobotAutomat,1998,14(1):153-158
    [77] DeSouza G N, Jones A H, Kak A C. A world-independent approach for the calibration of mobilerobotics active stereo heads [C]. Proceedings of the IEEE International Conference on Roboticsand Automation, Washington, DC,2002:3336-3341
    [78] Shih S W, Hung Y P, Lin W S. Calibration of an active binocular head [J]. IEEE Trans Syst ManCybern A,1998,28(4):426-442
    [79] Samson E, Laurenduau D, Parizeau M et al. The Agile Stereo Pair for active vision. MachineVision and Applications,2006,17(1):32-50
    [80] Shakarji C M. Least-square fitting algorithms of the NIST algorithm testing system. Journal ofResearch of the National Institute of Standards and Technology,1998,103(6):633-641
    [81]李立声.运用改进的Gauss-Newton优化算法拟合圆柱和空间直线[J].现代计量测试1999,(2):26-29
    [82] Zhang G, Wei Z. Ellipse fitting of short light script for structured light based3D vision inspection.Proceedings of SPIE,2003,5253:46-51
    [83] Fitzgibbon A, Pilu M, Fisher R B. Direct Least Square Fitting of Ellipses [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence1999, Vol.21(5), pp:476-480
    [84] Forbes A B. Robust circle and sphere fitting by least squares. NPL, DITC153/89,1989
    [85] Forbes A B. Least squares best-fit geometric elements. NPL, DITC140/89,1989
    [86] Sun W, Hill M, McBride. An investigation of the robustness of the nonlinear least-squares spherefitting method to small segment angle surfaces. Precision Engineering,2008, Vol.32, pp:55-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700