用户名: 密码: 验证码:
镍基高温合金整体叶轮高效加工应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体叶轮作为发动机透平机械核心部件,工作温度高,承受交变、冲击载荷,苛刻的工作条件对整体叶轮材料性能提出高要求。镍基高温合金在高温下具有良好的抗氧化、抗腐蚀、抗蠕变性能以及优异的疲劳寿命,适合作为整体叶轮材料。然而,良好的物理、机械性能意味着较差的切削加工性能,镍基高温合金切削过程中切削力大、切削温度高、刀具磨损快、加工硬化与残余应力显著,给切削刀具与切削参数的选择带来极大挑战。除了材料难加工之外,由于发动机大推升比与高效率的要求,整体叶轮结构趋于复杂化,本文所研究的整体叶轮属于半开式–长短叶片离心整体叶轮。这一类整体叶轮流道窄而深、开敞性差,叶片薄、曲面扭曲大,叶片长厚比大,易发生切削变形和振动,对切削过程稳定性要求高。
     镍基高温合金切削过程中随着切削速度增大会先后出现切屑自由表面的周期性裂纹扩展与剪切带局部热塑性失稳而生成锯齿形切屑。低速时切屑自由表面材料的应变硬化效应远超过剪切带内部材料的热软化效应,从而切屑自由表面材料脆性增大,切屑在弯曲过程中容易产生微裂纹;高速时剪切带内部材料的热软化效应远远大于切屑自由表面的应变硬化效应,从而出现局部热塑性失稳,材料沿剪切面滑移而形成锯齿形切屑。锯齿生成过程中切削力产生周期性锯齿类波动,使得切削刃承受周期性冲击载荷,易加剧切削刀具磨损。
     开展叶片侧铣力学建模与表面完整性研究。建立变切削厚度的三维力–热耦合的微单元有限元模型,对参与切削的微元切削力积分得到仿真切削力,进而获得切削力导致的叶片变形。建立连续进刀的变切削厚度的力–热耦合等效二维铣削残余应力模型,获得残余应力释放导致的叶片变形,研究切削刃钝圆半径对残余应力再分布的影响规律。针对叶片半精铣削工艺特征,开展加工硬化试验研究。通过对不同切削参数的切削力、残余应力与加工硬化及对叶片半精侧铣影响的试验或仿真研究,获得优化切削参数。
     针对叶轮流道插铣过程刀具弱刚性特点,建立大圆角插铣刀非对称插铣切削力模型与切削动力学方程,结合插铣模态试验获得基于振动微位移与“让刀”位移的插铣切削力,对插铣切削参数进行优化。针对精加工侧铣叶片刚性差且刚度变化特点,建立了基于再生切削颤振的稳定性模型,获得临界切深与机床转速的稳定性方程,结合模态试验得到不同厚度叶片的模态参数,获得叶片刚度动态变化下的稳定性条件。
     在本文基础理论与试验研究基础上,形成镍基高温合金整体叶轮成套工艺技术,成功应用于国家863项目某航空公司某型号航空整体叶轮单件试制,并成功投入台架试验。
As the key component of turbine machinery of aero-engine, integrated impellerhas an extremely severe working environment with high temperature and alternatingshock load, which requires the high performance of impeller materials. Nickel basedsuperalloy is considered as a suitable materials for integrated impeller for its goodoxidation resistance as well as corrosion resistance and creep resistance and excellentfatigue life at high temperature. However, good physical and mechanical propertyoften means poor machinability. Especially, great challenge is encountered inmachining of nickel based superalloy because of big cutting force, high cuttingtemperature, severe tool wear as well as notable machining hardening and residualstresses. Except for difficult-to-cut material, the structure of integrated impeller ismore complicate than before due to the requirement of big thrust-weight ratio andhigh efficiency of aero-engine. This research focuses on the semi-open centrifugalnickel-based superalloy (GH4169) impeller with long-short blade. This kind ofimpeller often has narrow flow passage, thin and twist blade. Machining of this kindof impeller becomes very difficult for cutting deformation and cutting vibration wouldbe often happened, which requires high stability for machining process.
     Saw tooth chip formation due to the local thermal-plastic instability in the shearzone and the periodically brittle break in the chip free surface appears in the millingprocess of GH4169when the cutting speed increases. It is because the strainhardening effect in the chip free surface far exceeds the thermal softening effect in theshear zone under low cutting speed. Thus material brittleness near the chip freesurface increases and micro-crack propagation happens. In contrast, the thermalsoftening effect in the shear zone far exceeds the strain hardening effect in the chip free surface under high cutting speed. Then the local thermal-plastic instability causesmaterials sliding along the shear surface and saw tooth chip formation. Furthermore, itis also found that the cutting force fluctuates at almost the same frequency of thesaw-tooth, which makes the cutting tool enduring periodic shock load and fast wear.
     A three-dimensional thermal-mechanical finite element model based on variableundeformed chip is established to predict cutting force. Then the deformation of bladeduring milling process could be obtained. An effective two-dimensional finite elementmodel considering the continuous feed effect is established to predict residual stressand the effect of cutting edge radius on residual stress is also evaluated, and then thedeformation of blade after milling process could be obtained. An experiment is carriedout to validate the finite element model and study the working hardening underdifferent cutting conditions. At last, optimal parameters could be obtained.
     Because of the weak rigid of plunge milling tool, the cutting force model as wellas the kinetic equation is established for the plunge milling tool with big corner radius.With the help of modal test, cutting force based on tool chatter displacement anddeformation could be obtained so the stable cutting condition could be determined. Aresearch on stability of the dynamic weak rigid blade flank milling is also carried out.A stability model based on regeneration chatter is established to obtain therelationship between critical dept of cut and spindle speed. A modal test is carried outto acquire modal parameter at different blade thickness. At last, stable cuttingconditions could be obtained for flank milling of the dynamic weak rigid blade.
     Based on the fundamental theory and experiment researches, a complete set ofmachining process for nickel based superalloy has been successfully applied in themanufacturing process of a certain type of integrated impeller, which comes from anational “863” High-Tech Program. The integrated impeller has been applied in benchtest.
引文
[1]王远达.航空工业在世界主要国家中的战略地位.知识战略与防务研究所,2007.
    [2]方昌德.瞄准前沿技术领先世界水平—谈美国航空推进系统的关键技术.国际航空,2002,5.
    [3]丁立铭.21世纪航空制造技术将发生质的飞跃—谈高推重比发动机的关键制造技术.国际航空,2002,1:53-57.
    [4]刘大响,程荣辉.世界航空动力技术的现状和发展.北京航空航天大学学报.2002,28(5):490-496.
    [5]陈光.新型发动机的一些新颖结构.航空发动机.2001(3):3-10.
    [6]胡晓煜.波音7E7的发动机将采用已验证的先进技术.航空周刊.2003(36):13-14.
    [7]方昌德.瞄准前沿技术领先世界水平–谈美国航空推进系统的关键技术.国际航空.2002(5).
    [8] Achermann H., Kosseva G. T., Lucka K., Koehne H. Oxidation Behaviour ofSelected Wrought Ni-Based High Temperature Alloys When Used as Flame TubeMaterial in Modern Blue Flame Oil Burners.Corrosion Science.2007,49:3866-3879.
    [9]《工程材料实用手册》编辑委员会.工程材料实用手册—第2卷变形高温合金铸造高温合金.北京:中国标准出版社,2002.
    [10]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2002.
    [11] Chen M., Li X. T., Sun F. H., Xiang Y. H., and Xue B. Y. Studies on the grindingcharacteristics of directionally solidified nickel-based superalloy. Journal of MaterialsProcessing Technology,2001,116:165-169.
    [12] Chen M., Sun F.H. and Xue B.Y. Grinding burn mechanism of directionally solidifiedsuperalloy. Key Engineering Materials,2001,196:61-68.
    [13] Liu G., He N., Li L.and Man Z. L. Cutting forces during the high speed machining ofInconel718. Key Engineering Materials,2004,259-260:824-828.
    [14] Choudhury I.A. and El-Baradie. M.A. Machinability assessment of inconel718byfactorial design of experiment coupled with response surface methodology. Journal ofMaterials Processing Technology,1999,95:30-39.
    [15] Li L., He N., Wang M. and Wang Z.G. High speed cutting of Inconel718with coatedcarbide and ceramic inserts. Journal of Materials Processing Technology,2002,129:127-130.
    [16] Jawaid A., Koksal S. and Sharif S. Cutting performance and wear characteristics of PVDcoated and uncoated carbide tools in face milling Inconel718aerospace alloy. Journal ofMaterials Processing Technology,2001,116:2-9.
    [17] Ezugwu E.O., Bonney J., Fadare D.A. and Sales W.F. Machining of nickel-base Inconel718alloy with ceramic tools under finishing conditions with various coolant supplypressures. Journal of Materials Processing Technology,2005,162–163:609–614.
    [18] Wang Z.Y., Rajurkar K.P., Fan J., Lei S., Shin Y.C., Petrescu G. Hybrid machining ofInconel718. International Journal of Machining Tools&Manufacture,2003,43:1391-1396.
    [19] Costes J.P., Guillet Y., Poulachon G., Dessoly M. Tool-life and wear mechanisms of CBNtools in machining of Inconel718. International Journal of Machining Tools&Manufacture,2007,47:1081-1087.
    [20] Erdogan Kose, Abdullah Kurt, Ulvi Seker. The effects of the feed rate on the cutting toolstresses in machining of Inconel718. Journal of Materials Processing Technology,2008,196:165-173.
    [21] Kitagawa T., Kubo A., Maekawa K. Temperature and wear of cutting tools in high-speedmachining of Inconel718and Ti-6Al-6V-2Sn. wear,1997,202:142-148.
    [22] Arunachalam R.M., Mannan M.A., Spowage A.C. Surface integrity when machining agehardened Inconel718with coated carbide cutting tools. International Journal ofMachining Tools&Manufacture,2004,44:1481-1491.
    [23] Pawade R.S., Suhas S. Joshi, Brahmankar P.K., Rahman M. An investigation of cuttingforces and surface damage in high-speed turning of Inconel718. Journal of MaterialsProcessing Technology,2007,192-193:139-146.
    [24] Liu G., Chen M. and Shen Z. Experimental Studies on Machinability of Six Kinds ofNickel-based Superalloys. Machining and Machinability of Materials,2006,3:287–300.
    [25] Dudzinski D., Devillez A., Moufki A., Larrouquere D., Zerrouki V., Vigneau J. A reviewof development towards dry and high speed machining of Inconel718alloy.
    [26] Lorentzon J., Jarvstrat N. Modelling tool wear in cemented-carbide machining alloy718.International Journal of Machine Tools&Manufacture,2008,10:1072-1080.
    [27] Abdullah Kurt. Modelling of the cutting tool stresses in machining of inconel718usingartificial neural networks. Expert Systems with Applications,200936:9645-9657.
    [28] Mitrofanov A.V., Babitsky V.I., Silberschmidt V.V. Finite element analysis ofultrasonically assisted turning of inconel718. Journal of Materials Processing Technology,2004,153-154:233-239.
    [29] Christian H. and Svendsen B. Simulation of chip formation during high-speed cutting.Journal of Materials Processing Technology,2008,186:66-76.
    [30] Soo S.L., Aspinwall D.K., Dewes R.C.3D FE modeling of the cutting of Inconel718.Journal of Materials Processing Technology,2004,150:116-123.
    [31] Uhlmann E. and Zettier R. Finite element modeling and cutting simulation of Inconel718.Annals of the CIRP,2007,56:61-64.
    [32] Zhang D.J., Liu G., Sun X. and Chen M. On saw-tooth chip formation in high speedcutting GH4169. Applied Mechanics and Materials,2008,10:359–363.
    [33]黄春峰.现代特种加工技术.机械工人.2003(1):1-4.
    [34]张辽远.现代加工技术[M].北京:机械工业出版社.2002.
    [35]郭紫贵,云乃彰等.带冠整体叶轮加工现状及新方法探索.中国制造业信息化:学术版,2004,33(6):102-104.
    [36]汤鑫,曹腊梅,盖其,李爱兰,张勇,刘发信.高温合金双性能整体叶轮铸造技术.航空材料学报,2006,26(3):93-98.
    [37]汤鑫,于保正,刘发信,韩梅,盖其东.高温合金整体叶轮控晶铸造工艺研究.机械工程材料,2004,28(1):17-19.
    [38]汤鑫,曹腊梅,盖其东,李爱兰,刘发信.高温合金整体叶轮铸造技术的研究发展.航空材料学报,2005,25(3):57-62.
    [39]孟庆通,庞克昌,王晓英.钛合金整体叶盘等温锻造技术.上海钢研,2006,(2):16-18.
    [40] Shan D.B., Xu W.C., Lu Y. Study on precision forging technology for acomplex-shaped light alloy forging. Journal of Materials Processing Technology,2004,151:289-293.
    [41] Shi K., Shan D.B., Xu W.C. et al. Near the shape forming process of a titaniumalloy impeller. Journal of Materials Processsing Technology,2007,187-188:582-585.
    [42]刘芳,林忠钦,单德彬等.2A70铝合金转子等温闭塞式锻造工艺研究.机械工程学报,2005,41(9):161-165.
    [43]贾时君.电子束焊深熔及缺陷产生机理的研究.[博士论文],2000,(6):86~100.
    [44]徐家文,云乃彰,严德荣.数控电解加工整体叶轮的研究、应用和发展.航空制造技术,2003,(6):31-35.
    [45]黄春峰.现代航空发动机整体叶轮及其制造技术.航空制造技术,2006(4):94-100.
    [46]王军.闭式整体叶轮数控电解加工工艺试验研究[D].[硕士论文],南京:南京航空航天大学,2010.
    [47]胡平旺,徐家文等.带冠整体叶轮通道间数控电解加工方法研究.电加工与模具,2003,(1):31-33.
    [48]徐家文,朱永伟等.整体叶轮的数控电解加工及其在航天制造中的应用前景.宇航材料工艺,2003,(1):13-17.
    [49]朱永伟,胡平旺,徐家文.整体叶轮数控展成电解加工阴极的设计.航空精密制造技术,2000,36(3):25-27.
    [50]徐家文,朱永伟等.数控电解加工整体叶轮的关键技术.宇航材料工艺,2003,(2):48-52.
    [51]唐敏,徐家文.精密展成电解加工整体叶轮的数控编程.机械科学与技术,2002,21(5):748-750.
    [52]干为民,徐家文.五轴联动数控展成电解磨削整体叶轮的控制方法.东南大学学报:自然科学版,2002,32(2):151-154.
    [53]赵万生,吴湘,詹涵菁,田继安,孟凡新.带冠整体式涡轮盘的CAD/CAM.推进技术,2003,24(4):380-383.
    [54]赵万生.先进电火花加工技术[M].2003.
    [55]刘雄伟,张定华等.数控加工理论与编程技术[M].北京:机械工业出版社,2000.
    [56] Kim D.S., Jun C.S., Park S. Tool path generation for clean-up machining by acurve-based approach. Computer-Aided Design,2005,37(9):967-973.
    [57] Feng H.Y., Li H.W. Constant scallop-height tool path generation for three-axis sculpturedsurface machining. Computer-Aided Design,2002,34:647-654.
    [58] Christophe T., Emmanuel D. Iso-scallop tool path generation in5-axis milling.International Journal of Advanced Manufacture Technology,2005,25:867-875.
    [59] Hsueh Y.W., Hsueh M.H. Automatic selection of cutter orientation for preventing thecollision problem on a five-axis machining. International Journal of AdvancedManufacture Technology,2007,32:66-77.
    [60]杨长祺.复杂曲面多轴加工的高精度、高效率数控编程系统研究.[博士论文],重庆:重庆大学机械工程学院,2004.
    [61]杨长祺,秦大同,石万凯.自由曲面五轴等残留高度高精度加工的路径规划.计算机辅助设计与图形学学报,2003,15(5):621-630.
    [62]杨长祺,刘海江,贾维.多轴机床加工自由曲面的干涉避免与刀轴优化.同济大学学报,2007,35(11):1530-1534.
    [63]孙全平,廖文和,盛亮.复杂多曲面高速铣三轴精加工刀轨优化算法.计算机辅助设计与图形学报,2005,17(03):486-490.
    [64]孙全平.高速铣削数控编程基础算1法的研究与实现.[博士论文],南京:南京航空航天大学机电学院,2005.
    [65]孙全平,廖文和.叶轮曲面五轴高速铣削加工导轨生成算法.东南大学学报,2005,35(3):386-390.
    [66]孙全平,聊文和.自识别加工残区的高速铣削导轨算法研究.南京航空航天大学学报,2004,36(1):72-76.
    [67]孙全平,聊文和.高速铣削导轨优化技术的研究.机械科学与技术.2004,23(8):922-926.
    [68]单晨伟.叶片类零件螺旋铣削切触点轨迹规划问题研究[硕士论文].西安:西北工业大学.2004.
    [69]单晨伟,张定华,刘雄伟.组合曲面叶片的螺旋加工刀位轨迹生成.计算机集成制造系统.2008,14(11):2243-2247.
    [70]张学超.闭式整体叶轮切触点规划及刀轴矢量控制[硕士论文].西北工业大学.2006.
    [71] Wakaoka S., Yamane Y, Sekiya K., Narutaki N. High-speed and high-accuracy plungecutting force for vertical walls. International Journal of Materials Processing&Technology,2002,127:246-250.
    [72] Li Y., Liang S.Y., Petrof R.C., Seth B.B. Force modelling for cylindrical plunge cutting.International Journal of Advanced Manufacture Technology,2004,16:863-870.
    [73] Jeong H.K., Altintas Y. Time domain model of plunge milling operation. InternationalJournal of Machine Tools&Manufacture,2007,47:1351-1361.
    [74] Jeong H.K., Altintas Y. Dynamics and stability of plunge milling operations. Transactionof ASME, Journal of Manufacture Science and Engineering,2007,129:32-40.
    [75] Chiou J.C.J. Accurate tool position for5-axis rule surface machining by swept envelopeapproach. Computer Aided Design,2004,36(10):976-974.
    [76] Chiou J.C.J., Lee Y.S. Swept surface determination for5-aixs numerical controlmachining. International Journal of Machine Tools&Manufacture,2002,42:1497-1507.
    [77] Lartigue C., Duc E., Affouard A. Tool path deformation in5-axis flank milling usingenvelope surface. Computer Aided Design,2003,35(4):375-382.
    [78] Tonshoff H. Optimal tool positioning for5-axis milling of arbitrary shaped surface.Production Engineering,2000,7(1).
    [79] Monies F., Redonnet J.M., Rubio W., Lagarrigue P. Improved positioning of a conicalmill for machining ruled surfaces. Journal of Engineering Manufacture,2000,214(7):625-634.
    [80] Larue A., Altintas Y. Simulation of flank milling process. International Journal ofMachine Tools&Manufacture,2005,45:549-559.
    [81] Kim D.W., Heo E.Y., Lee C.G. and Lee H.L. Machining and measurement plans forimpeller manufacturing. Computer-Aided Design and Applications,2009,6(4):563-573.
    [82] Feng J.R., Dai X., Cheng Y.Z., Xiong C.H. Efficient tool path planning for machining animpeller with a5-axis NC machine. Advanced Materials Research,2011,156-157:570-574.
    [83] Huang J.C., Liu X.L., Jia D.K., Li W.D., Guo K. The impeller five-axis NC machiningsimulation based on UG NX7.5. Advanced Materials Research,2011,188:689-692.
    [84] Zhang L.Q. Virtual simulation and optimization for5-axis milling process, AdvancedMaterials Research.2010,102-104:754-757.
    [85]陈皓晖,刘华明,孙春华.发动机叶轮侧铣数控加工方法及误差计算.机械工程学报.2003(7):143-145.
    [86]孙春华.分片侧铣加工整体叶轮刀位轨迹的生成.河海大学学报:自然科学版.2004(4):459-462.
    [87]彭芳瑜,邹孝明,丁继东,李斌.面向特征的整体叶轮五轴数控加工技术.中国制造业信息化.2007,36(1):51-56.
    [88]陈良骥,王永章.整体叶轮五轴侧铣数控加工方法的研究.计算机集成制造系统.2007,13(1):141-146.
    [89]任学军,张定华等.整体叶轮数控加工技术研究.航空学报.2004,25(2):205-208.
    [90] Gao H., Zhao Z., Sun Y.W. Recent development of the aero-engine impeller and bladesurface polishing technology. Advanced Materials Research,2010,135:7-12.
    [91] Schulz H., and Abele E. et al. CIRP,2001,50:45-48.
    [92] Fontaine M., Devillez A., Moufki A., Dudzinski D. Predictive force model for ball-endmilling and experimental validation with a wavelike form machining test. InternationalJournal of Machine Tools&Manufacture,2006,46:367-380.
    [93] Kim G.M., Chu C.N. Mean cutting force prediction in ball-end milling using force mapmethod. Journal of Materials Processing Technology,2003,146(3):303-310.
    [94] Imani B.M., Elbestawi M.A. Geometric simulation of ball-end milling operations.Journal of Manufacturing Science and Engineering,2001,123:177-184.
    [95] Zhu R., Kapoor S.G., DeVor R.E. Mechanistic modeling of the ballendmilling process formulti-axis machining of free form surfaces. Journal of Manufacturing Science andEngineering,2001,123:369-379.
    [96] Ikua B.W., Tanaka H., Obata F., Sakamoto S. Prediction of cutting forces and machiningerror in ball end milling of curvedsurfaces-I: Theoretical analysis. Precision Engineering,2001,25:266-273.
    [97] Ikua B.W., Tanaka H., Obata F., Sakamoto S., Kishi T., Ishii T. Prediction of cuttingforces and machining error in ball end milling of curved surfaces-II Experimentalverification. Precision Engineering,2002,26(1):69-82.
    [98] Lazoglu I., Liang S.Y. Modeling of ball-end milling forces with cutter axis inclination.Journal of Manufacturing Science and Engineering, Transaction of ASME,2000,122:3-11.
    [99] Li G.H., Wang M.J., Duan C.Z. Adiabatic shear critical condition in the high-speedcutting. Journal of Materials Processing Technology,2009,209:1362-1367.
    [100] Guo Y.B., Yen D.W. A FEM study on mechanisms of discontinuous chip formation inhard machining. Journal of Materials Processing Technology,2004,155-156:1350-1356.
    [101] Barge M., Hamdi H., Rech J., Bergheau J.M. Numerical modelling of orthogonal cutting:influence of numerical parameters. Journal of Materials Processing Technology,2005,164-165:1148-1153.
    [102] Ken L. and Saunders L.B. A finite element model of exit burrs for drilling of metals.Finite Elements in Analysis and Design,2003,40:139-158.
    [103] Woona K.S., Rahmana M., Fangb F.Z., Neoa K.S., Liub K. Investigations of tool edgeradius effect in micromachining: A FEM simulation approach. Journal of MaterialsProcessing Technology,2008,195:204-211.
    [104] Soo S.L., Aspinwall D.K., Dewes R.C.3D FE modelling of the cutting of Inconel718.Journal of Materials Processing Technology,2004,150:116-123.
    [105] Guo Y.B. and Liu C.R.3D FEA modeling of hard turning. Journal of ManufacturingScience and Engineering, ASME,2002,124(2):189-199.
    [106] Park I.W. and Dornfeld D.A. A study of burr formation processes using the finite elementmethod Part Ⅱ: The influences of exit angle, rake angle, and backup material on burrformation processes. Journal of Engineering Materials and Technology, ASME,2000,122(2):229-237.
    [107] B ker M., R sler J., Siemers C. Finite element simulation of segmented chip formationof Ti-6Al-4V. Journal of Manufacturing Science and Engineering, ASME2002,124(2):485-488.
    [108] Belhadi S., Mabrouki T., Rigal J.F., Boulanouar L. Experimental and numerical study ofchip formation during a straight turning of hardened AISI4340steel. Journal ofEngineering Manufacturing and Mechanics,2005,219:515-524.
    [109] Guo Y.B. and Yen D.W. A FEM study on mechanisms of discontinuous chipformation inhard machining. Journal of Materials Processing Technology,2004,155-56:1350-1356.
    [110] Calamaz M., Coupard D. and Girot F. A new material model for2D numerical simulationof serrated chip formation when machining titanium alloy Ti-6Al-4V. InternationalJournal of Machine Tools&Manufacture,2008,48:275-288.
    [111]成群林,柯映林,董辉跃.航空铝合金高速铣削加工的有限元模拟.浙江大学学报(工学版).2006,(40):114-117.
    [112] Shaw M.C. Metal cutting principles-second edition. Oxford: Oxford University Press Inc.2005.
    [113]刘旭红,黄西成,陈裕泽,苏先樾,朱建士.强动载荷下金属材料塑性变形本构模型评述.力学进展.2007(3):361-374.
    [114] Marc Andre Meyers.材料的动力学行为.北京:国防工业出版社.2006.
    [115] Johnson G.R. and Cook W.H. A constitutive model and data for metals subjected to largestrains, high rates and high temperature. Proceedings of the Seventh InternationalSymposium on Ballistics,1983:541-547.
    [116] Johnson G.R. and Holmquist T.J. Evaluation of cylinder-impact test data for constitutivemodel constants. Journal of Applied Physics,1988,64(8):3901-3910.
    [117] Johnson G.R. and Cook W.H. Fracture characteristics of three metals subjected to variousstrains, strain rates, temperatures and pressures. Engineering Fracture and Mechanics,1985,21(1):31-48.
    [118]张东进.切削加工热力耦合建模及其试验研究[硕士论文].上海:上海交通大学.2008
    [119] Zerilli F.J. and Armstrong R.W. Dislocation-mechanics-based constitutive relations formaterial dynamics calculations. Journal of Applied Physics,1987,61(5):1816-1825.
    [120] Zerilli F.J. and Armstrong R.W. Description of tantalum deformation behavior bydislocation mechanics based constitutive equations. Journal of Applied Physics,1990,68(4):1580-1591.
    [121] Zerilli F.J. and Armstrong R.W. The effect of dislocation drag on the stress-strainbehavior of FCC metals. Acta. Metall. Materials,1992,40(8):1803-1808.
    [122] Zerilli F.J. and Armstrong R.W. Dislocation-mechanics-based constitutive relations formaterial dynamics calculations. Journal of Applied Physics,1987,61(5):1816-1825.
    [123]彭建祥.钽的本构关系研究[硕士论文].北京:中国工程物理研究院.2001.
    [124] Bodner S.R. Constitutive equations for dynamic material behavior in mechanicalbehavior of materials under dynamic loads [M]. Springer-Verlag, New York,1968.176-190.
    [125] Bodner S.R. and Partom Y. A large deformation elastic-visco-plastic analysis ofthick-walled spherical shell. Journal of Applied Mechanics, ASME,1972,39:751-757.
    [126] Bodner S.R. and Partom Y. Constitutive equations for elastic-visco-plastic strain-hardingmaterials. Journal of Applied Mechanics, ASME,1975,42:385-389.
    [127] Bodner S.R. Constitutive equations for dynamic material behavior, in: MechanicalBehavior of Materials under Dynamic Loads, edited by US Lindholm, Symposium heldin San Antonio, Sept,1968.
    [128] Follansbee P.S. and Kocks U.F. A constitutive description of the deformation of copperbased on the use of the mechanical threshold stress as an internal state variable. Acta.Metall.,1988,36:81-93.
    [129] Haglund A.J., Kishawy H.A., Rogers R.J. An exploration of friction models for thechip-tool interface using an Arbitrary Lagrangian-Eulerian finite element model. Wear,2008,265:452-460.
    [130] Sievert R., Noack P et al. Simulation of thermal softening, damage and chip segmentationin a nickel super-alloy. in: H.K. Tonshoff, F. Hollmann (Eds.),Hochgeschwindigkeitsspa-nen, Wiley-vch,2005, ISBN3-527-31256-0:446–469(inGerman).
    [131] Zhang L.C. On the separation criteria in the simulation of orthogonal metal cutting usingthe finite element method. Journal of Materials Processing Technology,1999,186:273-276.
    [132] Karlsson H. and Sorensen. ABAQUS/ExplicitTMtheory and user’s manuals[M],Version6.8,2008.
    [133] Third Wave System. Thirdvave AdvantageTMTheoretical Manual [M]. Version5.4,2010.
    [134]胡创国,张定华,任军学,杨蕾.切削力建模方法综述.力学进展.2006,36(4):564-570.
    [135] Shin Y.C. and Waters A. J. A new procedure to determine instantaneous cutting forcecoefficients for machining force prediction. International Journal of Machine Tools&Manufacture,1997,37:1337-1351.
    [136] Chiang S.T., Tsai C.M., Lee A.C. Analysis of cutting force in ball-end milling. Journal ofMaterials Processing Technology,1995,47:231-249.
    [137] Shatla M., Altan T. Analytical modeling in drilling and ball-end milling. Journal ofMaterials Processing Technology,2000,39:125-133.
    [138] Shatla M., Kerk C. and T.Altan. Process modeling in machining Part II: validation andapplications of the determined flow stress data. International Journal of Machine Tools&Manufacture,2001,41:1659-1680.
    [139] NG E.G., Aspinwall D.K., Brazil D. and Monaghan J. Modeling of temperature andforces when orthogonally machining hardened steel. International Journal of MachineTools&Manufacture,1999,39:885-903.
    [140]阮景奎,柯映林,杨勇.高速铣削合金铸铁时锯齿状切屑形成的有限元模拟.工具技术.2004(40):40-43.
    [141]黄志刚,柯映林,董辉跃.基于正交切削模拟的直齿圆柱铣刀前角优化.浙江大学学报(工学版).200539(6):780-794.
    [142]胡映宁,王成勇,张华伟,刘会宁.小直径铣刀铣削淬硬钢切入过程的动力学仿真研究.机械强度.200527(6):782-789.
    [143] Pantale O., Bacaria J.L., Dalverny O., Rakotomalala R. and Caperaa S.2D and3Dnumerical models of metal cutting with damage effects. Computer Methods and AppliedMechanic Engineering,2004,193:4383-439.
    [144] Ayaram S., Kapoor S.G., Devor R.E. Estimation of the specific cutting pressure formechanistic cutting force models. International Journal of MachineTools&Manufacture,2001,41(1):265-281.
    [145] Zhu R., Kapoor S.G., Devor R.E. Mechanistic modeling of the ball end milling processfor multi-axis machining of free-form surfaces. Journal of Manufacture ScienceEngineering, ASME,2001,123(3):369-379.
    [146] Bailey T., Elbestawi M.A., EI-Wardany, T.I., Fitzpatrick P. Generic simulation approachfor multi-axis machining PartsⅠandⅡ. Journal of Manufacture Science and Engineering,ASME2002,124(3):624-642.
    [147] Zuperl U., Cus F. Tool cutting force modeling in ball-end milling using multileverperceptron. Journal of Materials Processing Technology,2004,153-154:268-275.
    [148] Zuperl U., Cus F., Mursec B, et al. A generalized neural network medel of ball-endmilling force system. Journal of Materials Processing Technology,2006,175:98-108.
    [149] Ratchev S., Govender E., Nikov S., et al. Force and deflection modeling in milling oflow-rigidity complex parts. Journal of Materials Processing Technology,2003,143-144:796-801.
    [150] Chen S.H., Chou J.H., Li J.J. Optimal grey-fuzzy controller design for a constant turningforce system. International Journal of Machine Tools&Manufacture,2002,42:343-335.
    [151] Hsieh C.H., Chou J.H., Wu Y.J. Optimal predicted fuzzy controller of a constant turningforce system with fixed metal removal rate. Journal of Materials Processing Technology,2002,123:22-30.
    [152] Wang W.P., Peng Y.H. Li X.Y. Fuzzy-grey prediction of cutting force uncertainty inturning. Journal of Materials Processing Technology,2002,129:663-666.
    [153]陈日曜.金属切削原理[M].北京:机械工业出版社.2002.
    [154]刘海涛,卢泽生,孙雅洲.切削加工表面残余应力研究的现状与进展.航空精密制造技术.2008,44(1):17-19.
    [155]袁哲俊.金属切削试验技术[M].北京:机械工业出版社.1988.
    [156]景璐璐.难加工材料高效铣削机理及应用基础研究[博士论文].上海:上海交通大学.2012.
    [157] Matsumoto Y., Barash M.M. and Liu C.R. Effects of hardness on the surface integrity ofAISI4340steel. Journal of Engineering for Industry, Transactions of the ASME,1986,108:169-175.
    [158] Tonshoff H.K., Wobker H.G. and Brandt D. Tribological aspects of hard turning withceramic tools. Journal of the Society of Tribologists and Lubrication Engineers,1995,512:163-168.
    [159] Okushima K., Kakino Y. The residual stresses produced by metal cutting. Annals of theCIRP,1971,10(1):13-14.
    [160] Shih J.H., Yang T.Y. Experimental and finite element predictions of the residual stressesdue to orthogonal metal cutting. International Journal for Numerical Methods inEngineering,1996,36:1487-1507.
    [161] Shet C., Deng X. Residual stresses and strains in orthogonal metal cutting.International Journal of Machine Tools&Manufacture,2003,43:573-587.
    [162] Outeiro J.C., Umbrello D., M’Saoubi R. Experimental and numerical modelling ofthe residual stresses induced in orthogonal cutting of AISI316L steel. InternationalJournal of Machine Tools&Manufacture,2006,46:1786-1794.
    [163] Mohamed N.A., Ng E.-G., Elbestawi M.A. Modelling the effects of tool-edge radiuson residual stresses when orthogonal cutting AISI316L. International Journal ofMachine Tools&Manufacture,2007,47:401-411.
    [164] Yang X.P., Liu C.R. A new stress-based model of friction behavior in machiningand its significant impact on residual stresses computed by finite element method.International Journal of Mechanical Sciences,2002,44:703-723.
    [165] Sasahara H., Obikawa T., Shirakashi T. Prediction model of surface residual stresswithin a machined surface by combining two orthogonal plane models.International Journal of Machine Tools&Manufacture,2004,44:815-822.
    [166]李湉,陈五一,陈彩红.整体叶轮插铣粗加工算法计算机集成制造系统.201016(8):1696-1701.
    [167]任军学,田卫军,姚倡锋,姜振南.钛合金整体结构件高效插铣工艺实验研究.中国机械工程.200819(22):2758-2761.
    [168]任军学,姜振南,姚倡锋,田荣鑫,田卫军.开式整体叶盘四坐标高效开槽插铣工艺方法,航空学报.200829(6):1692-1698.
    [169]赵伟.钛合金高速插铣动力学研究及铣削参数优化[硕士论文].天津:天津大学.2007.
    [170]刘伟成.基于有限元的钛合金插铣过程温度场研究[硕士论文].天津:天津大学.2009.
    [171] T nshoff, H. K. Flank milling optimization-the flamingo project, Air&SpaceEurope.2001.
    [172] Altintas Y., Budak E. Analytical Prediction of Stability Lobes in Milling. Annals ofthe CIRP.1995,44(1):357-362.
    [173] Altintas Y. Manufacturing Automation-Metal Cutting Mechanics, Machine ToolVibrations and CNC Design. Cambridge: Cambridge University Press.2002.
    [174] Budak E. and Altintas Y. Analytical Prediction of Chatter Stability in Milling-Part IGeneral Formulation. Transaction of ASME, Journal of Dynamics System,Measurement and Control,1998,120:22-30.
    [175] Budak E. and Altintas Y. Analytical Prediction of Chatter Stability in Milling-Part IIApplication of the General Formulation to Common Milling Systems. Transactionof ASME, Journal of Dynamics System, Measurement and Control,1998,120:31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700