用户名: 密码: 验证码:
低活化钢中析出型相变及其对力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低活化钢作为未来聚变堆包层结构材料长期在高温强磁场下服役。高温强磁场下材料组织的稳定性影响聚变堆的服役安全。本论文以低活化钢为原型进行合金设计和组织调控,首先研究低活化实验钢的析出相变行为,掌握低活化钢中析出演化过程对力学性能的影响规律,然后通过控制析出行为来改善低活化钢的力学性能,最后研究高温强磁场下析出相变行为及其力学性能的影响。
     本论文首先研究了奥氏体化条件、微合金元素对未溶碳化物溶解过程的影响,利用扩散动力学模型模合理解释了奥氏体化过程中TaC颗粒溶解过程与原奥氏体晶粒长大之间的关系。然后系统研究了低活化实验钢中碳化物析出、粗化、演变规律。利用Langer-Schwartz等理论构建TaC的形核、长大和粗化的动力学演化过程的理论模型,揭示了界面能、扩散系数、平衡浓度等参数对析出长大过程的影响规律。
     研究了冶炼工艺和高温时效对低活化钢析出行为及力学性能的影响。真空感应熔炼+电渣自耗重熔工艺使低活化钢的冲击韧性和蠕变韧性显著改善。随着碳化物的尺寸和形态比减小,冲击韧性和高温蠕变性能显著提高。提出一种新型中间热处理工艺和适量增加Ta含量的方法来细化低活化钢中的M_(23)C_6,使M_(23)C_6的平均尺寸由常规热处理工艺的150nm减小到70nm。低活化钢中Ta含量的增加也使得M_(23)C_6平均尺寸减小,甚至抑制M_(23)C_6析出。
     最后,研究650℃高温下10T强磁场对析出相的稳定性、相界面特征、析出长大过程的影响。使用Weiss分子场模型计算650℃、10T强磁场下碳化物/铁素体的界面能增加值为0.03J/m~2。外加强磁场导致低活化钢中长杆状的M_(23)C_6出现明显球化,析出相的颗粒密度降低,平均尺寸增大。利用Langer-Schwartz理论构建物理模型定量地描述磁场强度对形核、长大的动力学过程的影响,对比实验观察研究强磁场对析出相变行为的影响,合理预测了强磁场对低活化钢的析出长大行为及力学性能的影响。
Reduced activation ferritic steels are selected as the most promising structuralmaterial for fusion reactors. Long-term exposures of these steels under serviceconditions of high temperatures and strong magnetic fields lead to microstructuralchanges. The microstructure evolution can severely influence the mechanicalproperties of the steels and hence the safety of the fusion reactors. The aim of thiswork is to systematically and quantitatively investigate the influence of such serviceconditions on the precipitation behavior of carbides in reduced activation steels andhow the size and distribution of these carbides influence the steels mechanicalproperties, in order to further understand the service behaviors of the steels and toimprove the safety of fusion reactors.
     This work first focuses on adjusting the austenitizing processes based on a betterunderstanding of the dissolution mechanism of TaC. When the austenitizingtemperature is raised above1150℃, TaC particles disappear in the matrix, and thesize of homogenous grains abruptly increases. A thermodynamic model for thedissolution of TaC particles during austenitizing is applied to interpret these results.Subsequently, the precipitation behavior of these carbides in the steels is investigatedby means of experimental investigations and theoretical modeling. A continuousmodel based on the Langer-Schwartz theory for nucleation, growth and coarsening isdeveloped for both homogeneous and heterogeneous precipitation. The effects ofdifferent thermodynamic parameters on the evolution of the precipitates in the steelsare discussed.
     Mechanical properties of the steels melted by vacuum induction melting (VIM)and vacuum induction melting followed by consumable electrode remelting(VIM+ESR) are studied. The impact and creep properties of the steels are noticeablyimproved by the VIM+ESR process. In addition, thermal ageing treatments arecarried out at550℃to simulate in-service condition and at600℃toprovide heavyover-ageing up to5000h. The relationship between precipitation behavior and fracture is thus evaluated. From these results, some processing procedures areproposed that can improve the steels mechanical properties by controlling itsprecipitation behavior. In particular, a special intermediate heat treatment is exploredin order to obtain a dispersed distribution of fine M_(23)C_6carbides in the steels. Resultsindicate that TaC rather than M_(23)C_6precipitates first formed with an intermediate heattreatment at850℃, which lead to a reduced mean size of M_(23)C_6from150nm to70nm. Increasing the Ta content in the steels can also result in the formation of TaC anda decreased M_(23)C_6mean size; in that case, most of the carbon in the steels are presentin TaC, so the carbon concentration decreases in the carbon-supersaturatedmartensitic matrix, resulting in the decrease of the M_(23)C_6mean size. The purpose ofthese studies is to master the precipitation behavior in the steels in order to improveits mechanical properties, and eventually provide a theoretical foundation for theoptimization of the mechanical properties and lifetime of the reduced activationsteels.
     Lastly, the influence of high temperature along with a high magnetic field on theprecipitation behavior of carbides and the subsequent mechanical properties of thesteels is studied. As-quenched steels are tempered at650℃for3h with and withouta10T magnetic field. Applications of the Weiss molecular field theory to calculatethe difference in interfacial energy caused by the high magnetic field, and of theLanger-Schwartz theory to model the metal carbide (TaC) precipitation behaviorunder the magnetic field are described. Results indicate that the density of TaC isdecreased by nearly an order of magnitude and its mean size increased by40%owing to an increase of0.03J/m~2of the carbide/ferrite interfacial energy. Moreover,an improvement of the formula that describes the relationship between the yieldstrength of the steels and the mean size of the precipitates is made. The newlydeveloped model is able to predict the effect of precipitate coarsening on the yieldstrength of reduced activation steels.
引文
[1]郑文元.加大铀资源勘查力度提高核电发展保障程度.资源与产业,2009,11(6):21-24.
    [2]张金带.中国铀资源的潜力与前景.中国核工业,2008,2:18-21.
    [3]屈伟平.核废料处置关系人类安全.安全,2008,29(2):24-26.
    [4]邱励俭.聚变能及其应用.北京:科学出版社,2008.
    [5] International fusion research council. Status report on fusion research. Nuclear fusion,2005,45: A1-A28.
    [6] Seki M. ITER activities and fusion technology. Nuclear Fusion,2007,47: S489–S500.
    [7] Aymar R, International Team. ITER status, design and material objectives. Journal ofNuclear Materials,2002,307:1-9.
    [8]黄群英,陈明亮,彭蕾等.聚变驱动次临界堆双冷嬗变包层材料活化计算与分析.核科学与工程,2004,24(3):269-276.
    [9]黄群英.聚变堆结构材料—中国低活化马氏体钢设计与性能研究[博士学位论文].安徽合肥:中国科学院等离子体物理研究所,2006.
    [10] Shiro Jitsukawaa, Kazuhiko Suzuki, Nariaki Okubo, Masami Ando, Kiyoyuki Shiba.Irradiation effects on reduced activation ferritic/martensitic steels—tensile, impact, fatigueproperties and modelling. Nuclear Fusion,2009,49, doi:10.1088/0029-5515/49/11/115006.
    [11] Akihiko Kimura, Ryuta Kasada, et al. Recent progress in US–Japan collaborative researchon ferritic steels R&D. Journal of Nuclear Materials,2007,367:60–67.
    [12] Yu Jinnan, Huang Qunying, Wan Farong. Research and development on the China lowactivation martensitic steel (CLAM). Journal of Nuclear Materials,2007,367:97–101.
    [13]黄群英,郁金南,万发荣等.核聚变堆低活化马氏体钢的发展.核科学与工程,2004,24(1):56-64.
    [14] Tamura M, Sakasegawa H, Kohyama A, et al. Effect of MX type particles on creepstrength of ferritic steel. Journal of Nuclear Materials,2003,321:288-293.
    [15] Tanigawa H, Sakasegawa H, Hashimoto N, et al. Irradiation effects on precipitation and itsimpact on the mechanical properties of reduced-activation ferritic/martensitic steels.Journal of Nuclear Materials,2007,367:42-47.
    [16]王晖,任忠鸣,徐匡迪等.纯物质凝固的磁场热力学分析.中国有色金属学报,2004,6:945-948.
    [17] Jones R H, Heinisch H L, McCarthy K. A Low Activation Materials. Journal of NuclearMaterials,1999,271-272:518-525.
    [18] Schaaf B van der, Gelles D S, Jitsukawa S, et al. Progress and Critical Issues of ReducedActivation Ferritic/martensitic Steel Development, Journal of Nuclear Materials,2000,283-287:52-59.
    [19]雷永泉.新能源材料.北京:化学工业出版社,2006.
    [20] Hasegawa T, Tomita Y, Kohyama A. Influence of Tantalum and NitrogenContents,Nowmalizing Condition and TMCP Process on the Mechanical Properties of Lowactivation9Cr2W-0.2V-Ta Steels for Fusion Application. Journal of Nuclear Materials,1998,258-263:1153-1157.
    [21] Tsuzuki K, Sato M, Kawashima H, et al. Recent Activities on the Compatibility oftheFerritic Steel Wall with the Plasma in the JFT-2M Tokamak. Journal of NuclearMaterials,2002,307-311:1386-1390.
    [22] Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels-overview of recentresults. Journal of Nuclear Materials,2002,307-311:455-465.
    [23] Rosenwasser S N, Miller P, et al. The application of martensitic stainless steels in long lifetime fusion first wall/blankets, Journal of Nuclear Materials,1979,85-86:177-182..
    [24] Klueh R L, Ehrlich K, Abe F. Ferritic/martensitic steels: promises and problems. Journal ofNuclear Materials,1992,191-194:116-124.
    [25] Anderko K, Schafer L, Materna-Morris E. Effect of the δ-ferrite phase on the impactproperties of martensitic chromium steels. Journal of Nuclear Materials,1991,179-181:492-495.
    [26] Fujimitsu Masuyama. History of Power Plants and Progress in Heat Resistant Steels, ISIJInternational,2001,41(6):612-625.
    [27] Fujio Abe. Precipitate design for creep strengthening of9%Cr tempered martensitic steelfor ultra-supercritical power plants, Science and Technology of Advanced Materials,2008,9,013002(15pp), doi:10.1088/1468-6996/9/1/013002.
    [28] Jitsukawa S, Tamura, Bvander Schaaf. Development of an extensive database ofmechanical and physical properties for reduced-activation martensitic steel F82H. Journalof Nuclear Materials,2002,307-311:179-186.
    [29]黄群英,李春京,李艳芬等.中国低活化马氏体钢CLAM研究进展.核科学与工程,2007,27(1):41-50.
    [30]王平怀,许增裕,谌继明等.聚变堆用结构材料CLF-1研究进展.核工业西南物理研究院院报,2006,1:88-91.
    [31] Klueh R L, Nelson A T. Ferritic martensitic steels for next generation reactors. Journal ofNuclear Materials,2007,371:37-52.
    [32] Sencer B H, Garner F A. Compositional and temperature dependence of void swelling inmodel Fe-Cr base alloys irradiated in the EBR-II fast reactor. Journal of Nuclear Materials,2000,283-287:164-168.
    [33]吴承建,陈国良,强文江.金属材料学.北京:冶金工业出版社,2000.
    [34]黎兴刚.先进核反应堆关键部件用钢的制备与性能研究[硕士学位论文].北京:北京科技大学,2009.
    [35] Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferrite and martensitic steelsfor fusion application. Journal of Nuclear Materials,1996,233:138-147.
    [36] Kimura A, Kayano H, Misawa T. Designation of alloy composition of reduced-activationmartensitic steel. Journal of Nuclear Materials,1994,212:690-694.
    [37] Abe F, Noda T, Okada M. Optimum alloy composition in reduced-activation martensitic9Cr steels for fusion reactor. Journal of Nuclear Materials,1992,195:51-67.
    [38] Riet h M, Schirra M, Falkenstein A, et al. Eurofer97Tensile, Charpy, Creep andStructural Test. FZ-KA6911,2003.
    [39] Kimura A, Kayano H, Misawa T. Designation of alloy composition of reduced-activationmartensitic steel. Journal of Nuclear Materials,1994,212-215:690-694.
    [40] Baluc N, Gelles D S, Jitsukawa S, et al. Status of reduced activation ferritic martensiticsteel development. Journal of Nuclear Materials,2007,367-370:33-41.
    [41]赵振业.合金钢设计.北京:国防工业出版社,1999.
    [42] Lindau R, Schirra M. Erste Ergebnisse zur Charakterisierung Einer GroβCharge desNiedrigaktivierbaren Ferritisch Martensitischen Stahls EUROFER97[C]//KerntechnischeGesellschaft eds. Annual Meeting on Nuclear Technology2000, Berlin,2000. Berlin:INFORUM Verlags-und Verwaltungsgesellschaft mbH,2000:613-620.
    [43] Danón A, Alamo A. Behavior of Eurofer97reduced activation martensitic steel uponheating and continuous cooling. Journal of Nuclear Materials,2002,307-311:479-483.
    [44] Rieth M, Schirra M, Falkenstein A, et al. Eurofer97Tensile, Charpy, Creep and StructuralTest. Karlsruhe, Germany: Forschungszentrum Karlsruhe GmbH,2003.
    [45] Klueh R L, Alexander D J, Rieth M. The effect of tantalum on the mechanical properties ofa9Cr2W0.25V0.07Ta0.1C steel. Journal of Nuclear Materials,1999,273:146-154.
    [46] Huang Q, Li J, Chen Y. Study of Irradiation Effect s in China Low Activation Martensiticsteel CLAM. Journal of Nuclear Materials,2004,329-333:268-272.
    [47] Huang Q, Zheng S, Chen Y, et al. Activation Characteristics of Fuel Breeding BlanketModule in Fusion Driven Subcritical System. Journal of Nuclear Materials,2002,307-311:2384-2387.
    [48] Kouichi M, Kota S, Jun-ichi K. Strengthening Mechanisms of Creep Resistant TemperedMartensitic Stee. ISIJ International,2001,41(6):641–653.
    [49] Tavassoli A-A F, Alamo A, Bedel L, et al. Materials design data for reduced activationmartensitic steel type EUROFER. Journal of Nuclear Materials,2004,329-333:257-262.
    [50] Rensman J, Hofmans HE, E. W. Schuring, et al. Characteristics of unirradiated and60℃,2.7dpa irradiated EUROFER97. Journal of Nuclear Materials,2002,307-311:250-255.
    [51] Muroga T, Gasparotto M, Zinkle S J. Overview of Materials Research for Fusion Reactors.Fusion Engineering and Design,2002,61-62:13-25.
    [52] Schafer L. Tensile and impact behavior of the reduced-activation steels OPTFER and F82Hmod. Journal of Nuclear Materials.2000,283-287:707-710.
    [53] Belyaeva L A, Zisman A A, C. Petersen, et al. Thermal Fatigue Crack Nucleation inFerriticmartensitic Steels before and after Neutron Irradiation. Journal of Nuclear Materials,2000,283-287:461-464.
    [54]彭志方,蔡黎胜,彭芳芳等. P92钢625℃持久性能分段特征与各段中M23C6及laves相相参数的定量变化研究,金属学报,2010,46(4):429-434
    [55] Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic9Cr–W steels. Materials Science and Engineering A,2004,387:565-569.
    [56] Hofer P, Cerjak H. Materials for Advanced Power Engineering1998, ed. by J.Lecomte-Beckers et al., Forschungszentrum Julich GmbH, Julich,1998,549.
    [57] Klueh R L. Reduced-activation steels: Future development for improved creep strength.Journal of Nuclear Materials378(2008)159-166.
    [58] Jia X, Dai Y. Microstructure in martensitic steels T91and F82H after irradiation in SINQTarget-3. Journal of Nuclear Materials,2003,318:207–214.
    [59] Tamura M, Sakasegawa H, et al. Creep deformation of iron strengthened by MX typeparticles. Journal of Nuclear Materials,2004,329:328–332.
    [60] Tamura M, Sakasegawa H, et al. Long-term stability of TaC particles during tempering of8%Cr–2%W steel. Journal of Nuclear Materials,2007,367:137-141.
    [61]潘金生,范毓殿.核材料物理基础.北京:化学工业出版社,2007,第一版.
    [62] Kimura A, Kasada R, Sugano R, et al. Annealing behavior of irradiation hardening andmicrostructure in helium-implanted reduced activation martensitic steel. Journal of NuclearMaterials,2000,283:827-831.
    [63] Klueh R L, Alexander D J, Rieth M. The effect of tantalum on the mechanical properties ofa9Cr-2W-0.25V-0.07Ta-0.1C steel. Journal of Nuclear Materials,1999,273:146-154.
    [64] Klueh R L, Shiba K, Sokolov M A.. Embrittlement of irradiated ferritic/martensitic steelsin the absence of irradiation hardening. Journal of Nuclear Materials,2008,377:427-437.
    [65] Sokolov M A, Klueh R L, Odette G R, et al. in: M.L. Grossbeck, T. R. Allen, R. G. Lott, A.S. Kumar (Eds.), Effects of Radiation on Materials:18th International Symposium, ASTMSTP1447, vol.1, ASTM International, West Conshohocken, PA,2004,408.
    [66] Sokolov M A, Tanigawa H, Odette G R, et al. Fracture toughness and Charpy impactproperties of several RAFMS before and after irradiation in HFIR. Journal of NuclearMaterials,367-370(2007)68-73.
    [67] Maziasz P J, Klueh R L, Vitek J M. Helium effects on void formation in9Cr-1MoVNb and12Cr-1MoVW irradiated in HFIR. Journal of Nuclear Materials,1986,141-143:929-937.
    [68] Gelles D S. Microstructure development in reduced activation ferritic alloys irradiated to200dpa at420℃[J]. J. Nucl. Mater.,1994,212-215:714-719.
    [69] Little E A, Mazey D J, Hanks W. Effects of Ion Irradiation on the Microstructure of anOxide Dispersion Strengthened Ferritic Steel. Scripta Metallurgica et Materialia,1991,25(5):1115-1118.
    [70]郁金南.材料辐照效应.北京:化学工业出版社,2007.
    [71]余永宁,毛为民.材料的结构.北京:冶金工业出版社,2001.
    [72] Yutani K, Kishimoto H, Kasada R, et al. Evaluation of Helium effects on swelling behaviorof oxide dispersion strengthened ferritic steels under ion irradiation. Journal of NuclearMaterials,2007,367-370:423-427.
    [73] Garner F A, Toloczko M B, Sencer B H. Comparison of swelling and irradiation creepbehavior of fcc austenitic and bcc ferritic/martensitic alloys at high neutron exposure.Journal of Nuclear Materials,2000,276:123-142.
    [74] Gelles D S, Thomas L E. Effects of Neutron Irradiation on Microstructure in Experimentaland Commercial Ferritic Alloys//Davis J W, Michel D J, eds. Proceedings of TopicalConference on Ferritic Alloys for Use in Nuclear Energy Technologies, Snowbird, Utah,June19-23,1983. Warrendale, Pa.: Metallurgical Soc of AIME,1984:559-568.
    [75] Klueh R L, Nelson A T. Ferritic martensitic steels for next generation reactors. Journal ofNuclear Materials,2007,371:37-52.
    [76]王振东.感应炉冶炼.北京:化学工业出版社,2007.
    [77]李正邦.真空冶金新进展.特殊钢,1999,20(4):1-6.
    [78]刘少军.中国低活化钢(CLAM)制备及微结构与性能研究[博士学位论文].合肥:中国科学院等离子体物理研究所,2010.
    [79]李正邦.钢铁冶金前沿技术.北京:冶金工业出版社,1997.
    [80]李正邦.电渣冶金原理及应用.北京:冶金工业出版社,1996.
    [81]王洪锋.电渣熔铸小型导叶用铝结晶器的研制[硕士学位论文].沈阳:机械科学研究院沈阳铸造研究所,2006.
    [82]潘秀兰,王艳红,梁慧智.国内外电渣重熔技术的发展与展望.鞍钢技术,2005,332(2)5-10.
    [83]李正邦.电渣炉原理与工艺.北京:高新技术应用出版社,1996.
    [84]夏志新. G50超高强度钢强韧化机理研究[硕士学位论文].太原:中北大学,2008.
    [85]李正邦.电渣冶金的理论与实践.北京:冶金工业出版社,2010.
    [86] Sawahata A, Tanigawa H, Enomoto M. Effects of Electro-Slag Remelting on InclusionFormation and Impact Property of Reduced Activation Ferritic/Martensitic Steels. Journalof the Japan Institute of Metals, Vol.72, No.3(2008),176-180.
    [87] Li Y, Nagasaka T, Muroga T, Huang Q, Wu Y. Effect of thermal ageing on tensile andcreep properties of JLF-1and CLAM steels, Journal of Nuclear Materials,386(2009)495-498.
    [88] M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. Kempe, et al. Eurofer97-Tensile,Charpy, Creep and Structural Tests, FZKA6911,2003.
    [89] Sadovskii V D, Rodigin N M, Smirnov L V, Filonchik G M, Fakidov I G. The question ofthe influence of magnetic field on martensitic transformation in steel, Physics MetalsMetallogr.1961,12(2):131-133.
    [90] Krivoglaz M A, Sadovskiy V D. Efect of strong magnetic fields on phase transformations,Physics Metals Metallogr.1964,18(4):502-506.
    [91] Fokina Ye A, Sminrov L V, Sadovskiy V D, Peikul A F. Effect of apermanent magneticfield on the martensitic transformation in steel, Physics Metals Metallogr,1965,19(6):121-122
    [92] Malinen P A and Sadovskiy V D. Effect of a magnetic field on the α→γ transformation iniron-nickel alloys, Physics Metals Metallogr,1966,21(5):139-140.
    [93] Bernshteyn M L, Granik G I and Dolzhanskiy P R. Efect of magnetic field on the phasetransformations in nickel steels, Physics Metals Metallogr,1965,19(6):77-83.
    [94] Estrin E I. Efect of a magnetic field on the martensitic transformation, Physics MetalsMetallogr,1965,19(6):117-120.
    [95] Voronchikhin L V, Fakidov I. Determining the latent heat of the martensitic transformationinduced by a magnetic field in steel, Physics Metals Metallogr,1966,21(3):119-124.
    [96]张宇东.强磁场下钢的扩散型相变的理论与实验研究[博士学位论文],沈阳:东北大学,2005.
    [97] Seki M, ITER activities and fusion technology. Nuclear Fusion,2007,47(9): S489–S500.
    [98] Malinen P A, Sadovskii. V D. Effect of magnetic fields on the epsiv→α transformation inFe-Mn alloys. Fizika Metallov i Metallovedenie,1969,28(6):1012-1017.
    [99] Malinen P A, Sadovskii. V D. Effect of strong magnetic fields on the martensitictransformation in an iron-nickel alloy. Fizika Metallov i Metallovedenie,1968,25(6):1128-1130.
    [100] Kakeshita T, Kuroiwa K, Shimizu K, et al. Effects of magnetic fields on athermal andisothermal martensitis actions. Materials Transactions,1993,34(5):415-422.
    [101] Kakeshita T, Ohtsuka H. Special issue on structural and functional control of materialsthrough solid-solid phase transformations in high magnetic fields-Preface. MaterialsTransactions,2007,48(11):2799-2799.
    [102] Kakeshita T, Kim J H, Fukuda T. Microstructure and transformation temperature in alloyswith a large magnetocrystalline anisotropy under external fields. Materials Science andEngineering A,2008,481(5):40-48.
    [103] Ono T, Sassa K, Iwai K, et al. Quantification of Isothermal Phase Transformation in SolidMetals Based on Measurement of Magnetic Susceptibility. ISIJ International,2007,47(4):608-611.
    [104] Ohtsuka H. Structural control of Fe-based alloys through diffusional solid/solid phasetransformations in a high magnetic field. Science and Technology of Advanced Materials.doi:10.1088/1468-6996/9/1/013004.
    [105] Nakamichi S, Tsurekawa S, Morizono Y, et al. Diffusion of carbon and titanium in γ-ironin a magnetic field and a magnetic field gradient. Journal of Materials Science,2005,40(12):3191-3198.
    [106] Ohtsuka H. Effects of a High Magnetic Field on Bainitic and Martensitic Transformationsin Steels. JIM,2007,48(11):2851-2854.
    [107] Zhang Y, Gey N, He C, et al. High temperature tempering behaviors in a structural steelunder high magnetic field. Acta Materialia,2004,52(12)3467-3747.
    [108] Xu Y, Ohtsuka H, Wada H. Effects of a strong magnetic field on diffusionaltransformations in Fe-based alloys Journal of the Magnetics Society of Japan,2000,24(4):655-658.
    [109] Ohtsuka H, Ghosh G, Wada H. Size and aspect ratio of martensite in Fe-Ni-C alloys formedunder applied magnetic field and tensile elastic stress at4.2K. Materials Science andEngineering A,1999,273:342-346.
    [110] Zolotarevskii I V, Loskutov S V, Manko V K, et al. Effect of a magnetic field on the reverseand forward martensitic transformations in the Fe-33%Ni alloy. The Physics of Metals andMetallography,2009,108(2):139-146.
    [111] Song J Y, Zhang Y D, Zhao X, et al. Effects of high magnetic field strength and directionon pearlite formation in Fe–0.12%C steel. Journal of Materials Science,2008,43:6105–6108.
    [112] Zhang Y D, Zhao X, Bozzolo N, et al. Low temperature tempering of a medium carbonsteel in high magnetic field. ISIJ International,2005,45:913-917.
    [113] Kubaschewski O. Iron-Binary phase diagrams, Springer-Verlag, Berlin,1982,143-146
    [114]王春芳.低合金马氏体钢强韧化单元的研究[博士学位论文],北京:钢铁研究总院,2008.
    [115] Jitsukawa S, Suzuki K, Okubo N, et al. Irradiation Effects on Reduced ActivationFerritic/Martensitic Steels. Nuclear Fusion,2009,49(11):115006.
    [116] Lnoue K, lshikawa N. Calculation of Phase Equilibria between Austenite and(Nb,Ti,V)(C,N) in Microalloyed Steels. ISIJ international,2001, l41(2):175-182.
    [117] Mishra S K, Das S, Ranganathan S. Precipitation in High Strength Low Alloy(HSLA) Steel:a TEM Study. Materials Science and Engineering A,2002,323:285-292.
    [118]崔忠圻.金属学与热处理.北京:机械工业出版社,2003.
    [119] Danon A, Servant C, Alamo A, et al. Heterogeneous austenite grain growth in9Crmartensitic steels: influence of the heating rate and the austenitization temperature.Materials Science and Engineering A,2003,348(5):122-132.
    [120] Tamura M, Shinozuka K, Masamura K, et al. Solubility product and precipitation of TaC inFe–8Cr–2W steel. Journal of Nuclear Materials,1998,258(10)1158-1162.
    [121] Narita K, Koyama S. The physical chemistry of steels containing vanadium, niobium, andtantalum. Tetsu to Hagane,1966,52(4)788-791.
    [122] Zhao L, Vermolen F J, Sietsma J, et al. Cementite dissolution at860°C in an Fe-Cr-C steel.Metallurgical and Materials Transactions A,2006,37(6):1841-1850.
    [123] Zhang C, Enomoto M, Yamashita T, et al. Cu Precipitation in a Prestrained Fe-1.5Wt PctCu Alloy during Isothermal Aging. Metallurgical and Materials Transactions A,2004,35(4):1263-1272.
    [124] Raghavan V, Ghosh G. The Carbon-Iron-Tantalum System. Journal of Alloy PhaseDiagrams,1985,1(9):13-18.
    [125] Narita K, Koyama S. Kobe Steel Engineering Reports1966,16:179-190.
    [126]王宝森.超高硬度耐磨抗裂堆焊材料的强韧化研究[博士学位论文].天津:天津大学,2003.
    [127]中国机械工程学会热处理学会.晶体缺陷与金属热处理.北京:机械工业出版社,1988.
    [128] Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions.Journal of Physics and Chemistry of Solids,1961,9:35-50.
    [129] Kreye H, Hornbogen E. Recrystallisation of supersaturated copper-cobalt solid solutions.Journal of Materials Science,1970,5(2):89-95.
    [130] Kadoya Y, Dyson B F, McLean M. Microstructural stability during creep of Mo-orW-bearing12Cr steels. Metallurgical and Materials Transactions A,2002,33(8):2549-2557.
    [131] Baker R G, Nutting J. The Tempering of2.25%Cr-1%Mo Steel for Quenching andNormalizing. Journal of the Iron and Steel Institute,1959;192:257-268.
    [132]陶鹏,张弛,杨志刚等.2.25Cr-1Mo-0.25V钢焊缝中第二相高温回火转变.金属学报,2009,45(1):51-57.
    [133] Vyrostkova A, Kroupa A, Janovec J, et al. Carbide reactions and phase equilibria inlow-alloy Cr-Mo-V steels tempered at773-993K, Part I. Acta Materialia,1998;46:31-38.
    [134] Kroupa A, Vyrostkova A, Svoboda M, et al. Carbide reactions and phase equilibria inlow-alloy Cr-Mo-V steels tempered at773-993K, Part П. Acta Materialia,1998;46:39-49.
    [135] Janovec J, Svoboda M, Vyrostkova A, et al. Time–temperature–precipitation diagrams ofcarbide evolution in low alloy steels. Materials Science and Engineering A,2005,402(1):288-293.
    [136] Schneider A, Inden G. Simulation of the kinetics of precipitation reactions in ferritic steels.Acta Materialia,2005,53:519–531.
    [137] Tamura M, Shinozuka K, Esaka H, et al. Mechanical properties of8Cr–2WVTa steel agedfor30000h. Journal of Nuclear Materials,2000,283(12):667-671.
    [138] Fernandez P, Lancha A M, Lapena J, et al. Metallurgical properties of reduced activationmartensitic steel Eurofer97in the as-received condition and after thermal ageing. Journalof Nuclear Materials,2002,307(12):495-499.
    [139] Perrard F, Deschamps A, Maugis P. Modelling the precipitation of NbC on dislocations inα-Fe. Acta Materialia,2007,55(4):1255-1266.
    [140] Hin C, Brechet Y, Maugis P, et al. Kinetics of heterogeneous grain boundary precipitationof NbC in a-iron. Acta Materialia,2008,56(19):5653-5667.
    [141] Langer J S, Schwartz A J. Kinetics of nucleation in near-critical fluids. Physics Review A,1980,21(3):948-958.
    [142] Ishikawa F, Takanashi T, Ochi T. Intragranular ferrite nucleation in medium-carbonvanadium steels. Metallurgical and Materials Transactions A,1994,25(5)929-936.
    [143] Yang Z G, Enomoto M. Discrete lattice plane analysis of Baker–Nutting related B1compound/ferrite interfacial energy. Materials Science and Engineering A,2002,332(1):184-192.
    [144] Smithells C J. Smithells metals reference book,7th ed., Butterworth-Heinemann, Boston,1992.
    [145] Friedberg J, Torndahl L-E, Hillert M. Diffusion in iron. Jernkont. Ann.,1969, V153,263.
    [146] Enomoto M. Phase transformation in metal. Uchida Rokakuho, Tokyo,2000,249.
    [147] Peterson N L. Grain Boundary Structure and Kinetics ASM, Metals. Park, OH,1980,209-238.
    [148] Jayaram R, Klueh R L. Microstructural characterization of5to9pct Cr-2pct W-V-Tamartensitic steels. Metallurgical and Materials Transactions A,1998,29(6):1551-1558.
    [149] Kai J J, Klueh R L. Microstructural analysis of neutron-irradiated martensitic steels. Journalof Nuclear Materials,1996,230(2):116-123.
    [150] Iseda A, Teranishi H, Masuyama F. Effects of chemical compositions and heat treatmentson creep rupture strength of12wt.%Cr heat resistant steels for boiler. Tetsu-to-Hagane.1990,76(7):1076-1083.
    [151] Ennis P J, Zielinska-Lipec A, Wachter O, et al. Microstructural stability and creep rupturestrength of the martensitic steel P92for advanced power plant. Acta Materialia,1997,45(12):4901-4907.
    [152] Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitationbehavior of low-activation martensitic9Cr steels. Metallurgical and Materials TransactionsA,1991,22(10):2225-2235.
    [153] Carlan Y. de, Alamo A, Mathon M H, et al. Performance of V–4Cr–4Ti alloy exposed tothe JFT-2M tokamak environment. Journal of Nuclear Materials,2000,283(12):672-676.
    [154] Abe F, Noda T, Okada M. Optimum alloy compositions in reduced-activation martensitic9Cr steels for fusion reactor. Journal of Nuclear Materials,1992,195(1):51-67.
    [155] Alamo A, Brachet J C, Castaing A, et al. Physical metallurgy and mechanical behaviour ofFeCrWTaV low activation martensitic steels: Effects of chemical composition. Journal ofNuclear Materials,1998,258(10):1228-1235.
    [156] Fernandez P, Lancha A M, Lapena J, et al. Creep strength of reduced activationferritic/martensitic steel Eurofer’97. Fusion Engineering and Design,2005,75-79(11)1003-1008.
    [157] Larson F R, Miller J. Time-Temperature Relationships for Rupture and Creep Stresses.Transactions of the ASME,1952,74:756-761.
    [158] Orr R L, Sherby O D, Dorn J E. Correlatlons of Rupture Data for Metals at ElevatedTemperatures. Transactions of the ASM,1954,46:113-128.
    [159] YinFeng-shi, Jung Woo-sang, Chuang Soon-hyo. Microstructure and creep rupturecharacteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel. ScriptaMaterials.2007,57(6):469-472.
    [160] T. Masaka, F. Abe, K. Sawada, Creep-strengthening of steel at high temperatures usingnano-sized carbonitride dispersions. Nature,424,2003(7):294-296.
    [161] Li Y, Nagasaka T, Muroga T, et al. Effect of thermal ageing on tensile and creepproperties of JLF-1and CLAM steels. Journal of Nuclear Materials,2009,386(4):495-498.
    [162] Li, Y, Huang Q, Wu Y, et al. Mechanical properties and microstructures of China lowactivation martensitic steel compared with JLF-1. Journal of Nuclear Materials,2007,367(8):117-121.
    [163] Xia Z X, Zhang C, Yang Z Y. Effect of austenitising temperature on microstructure andmechanical properties of30Si2CrNi4MoNb ultrahigh strength steel. Materials Science andTechnology,2011,27(1):282-286.
    [164] Tomita Y. Application of decreased hot-rolling reduction treatments for improvedmechanical properties of quenched and highly-tempered low alloy structural steels. Journalof Materials Science,1991,26(1):35-42.
    [165] McClintock F A.. Ductility. ASM, Metals. Park, OH,1968,255.
    [166] Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of atempered martensitic9Cr-1W stee. Metallurgical and Materials Transactions A,2003,34(4)913-925.
    [167] Evans R W, Wilshire B. Creep of Metals and Alloys, The Institute of Metals, London,1985,10.
    [168] Ennis P J. Creep strengthening mechanisms in high chromium steels. In: Bakker WT,Parker JD, editors. Proceedings of the3rd Conference on Advances in MaterialsTechnology for Fossil Power Plants. London (UK): The Institute of Materials;2001.187-194.
    [169] Sklenicka V, Kucharova K, Svoboda M, et al. Long-term creep behavior of9-12%Cr powerplant steels. Materials Characterization.2003,51(1):35-48.
    [170] Kocer C, Abe T, Soon A. The Z-phase in9–12%Cr ferritic steels: A phase stability analysis.Materials Science and Engineering A,2009,505(1)1-5.
    [171] Abe F, Horiuchi T, Taneike M, et al. Stabilization of martensitic microstructure in advanced9Cr steel during creep at high temperature. Materials Science and Engineering A,2004,378(1):299-303.
    [172] Horiuchi T, Igarashi M, Abe F. Utilization of Added B in9Cr Heat-Resistant SteelContainig W, ISIJ International,2002,42: S67-S71.
    [173] Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior ofM23C6carbides and MX carbonitrides in martensitic9Cr steel during heat treatment.Metallurgical and Materials Transactions A,2004,35(4):1255-1262.
    [174] Rieth M, Schirra M, Falkenstein A, et al. EUROFER97Tensile, Charpy, Creep andStructural Tests. Institut für Materialforschung Programm Kernfusion, October2003.
    [175] Lars Hoglund. Foundation of Computational Thermodynamics. Royal Institute ofTechnology, Stockholm,1997.
    [176] Davies C K L, Nash P, Stevens R N, The effect of volume fraction of precipitate onOstwald ripening. Acta Materialia,1980,28(2):179-189.
    [177] Brailsford A D, Wynblatt P. The dependence of Ostwald ripening kinetics on particlevolume fraction. Acta Materialia,1979,27(3)489-497.
    [178] Ardell A J. On the coarsening of grain boundary precipitates. Acta Materialia,1972,20:601-609.
    [179] Ardell A J. The Effect of Volume Fraction on Particle Coarsening: TheoreticalConsiderations. Acta Materialia,1972,20:61-71.
    [180] Hattestrand M, Andren H O. Evaluation of particle size distributions of precipitates in a9%chromium steel using energy filtered transmission electron microscopy. Micron,2001,32:789-797.
    [181] Zhang Y D, Esling C, Muller J, et al. Magnetic-field-induced grain elongation in a mediumcarbon steel during its austenitic decomposition. Apply Physics Letters.2005;87:212504.
    [182] Joo H D, Kim S U, Shin N S, et al. An effect of high magnetic field on phase transformationin Fe–C system[J]. Mater. Lett.2000;43(5):225-229.
    [183] Guo H, Enomoto M. Influence of Magnetic Fields on α/γ Equilibrium in Fe-C(-X) Alloys.JIM.2000,41(8):911-916.
    [184] Zhou Z N, Wu K M. Molybdenum carbide precipitation in an Fe–C–Mo alloy under a highmagnetic field. Scripta Materialia,2009,61(7):670-673.
    [185] Jile D. Introduction to magnetism and magnetic materials. Chapman&Hall, London,1991.
    [186] Brillouin L. Moments of rot at ion and undulatory mechanics. Journal de Physique Archives,1927, Ser.6,8:74-84.
    [187]徐祖耀.相变原理.北京:中国科学出版社,1988.
    [188] Fujii H, Yokobori T, Tsurekawa S. Materials Science&Technology2010, Houston, TX,October17-21.
    [189] Cahn J W, Hilliard J E. Free Energy of a Nonuniform System. III. Nucleation in aTwo-ComponentIncompressible Fluid. Journal of Chemical Physics,1959,31:688-699.
    [190] Schneider A., Inden G. Simulation of the kinetics of precipitation reactions in ferritic steels.Acta Materialia,2005;53(2):519-531.
    [191]李昭东.变形和合金元素对钢中奥氏体组织形成和分解相变的影响[博士学位论文].北京:清华大学材料科学与工程系,2011.
    [192]雍岐龙,郑鲁.微合金化钢中NbC在铁素体中的沉淀和沉淀强化.金属学报,1984,20(1): A9-A16.
    [193] Ashby M F. Results and consequences of a recalculation of the frank-read and the orowanstress. Acta Materialia,1966;14(5):679-681.
    [194] kelly A, Nicholson R. B. Precipitation hardening. Progress in Materials Science,1963,10(3):151-391.
    [195] Maloney J L, Garrison Jr. Warren M. The effect of sulfide type on the fracture behavior ofHY180steel. Acta Materialia,2005,53(2):533-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700