用户名: 密码: 验证码:
双极膜电渗析生产酒石酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机酸被广泛应用于食品、饮料、医药、化妆品、化学合成、生物化学领域,与人类生活具有广泛而密切的联系。生产有机酸主要有两种方法:化学合成和发酵法。无论是发酵法还是化学合成法,有机酸的分离、浓缩、提纯都是必要的步骤。传统提纯工艺包括沉淀、酸化、析出、结晶、离子交换等步骤,其过程中需要消耗大量的酸碱,并产生大量固体废弃物。传统有机酸的生产提纯方法这些缺点都不符合现代绿色化学节能减排的要求,迫切的需要替代工艺。为了实现节能减排和绿色化工的目标,我们需要一种更经济和环保的技术。
     双极膜电渗析可以应用到这一领域,在通电条件下,双极膜解离水形成H~+和OH~-,同时在溶液中,有机酸盐解离为有机酸根离子和金属阳离子,H~+与有机酸根离子结合形成产品酸,OH~-同金属阳离子结合形成碱。因为离子交换膜具有较强的选择透过性,使用此方法生产有机酸具有较高纯度,后处理成本低的优点,同时生产的碱也可以应用于有机酸发酵过程,不产生任何废弃物,没有二次污染。
     本论文以双极膜电渗析技术生产酒石酸作为切入点,探讨了该技术应用于有机酸生产中的如何节能等共性问题,研究内容和主要结论如下:
     1.由于酒石酸氢钾的在水溶液中的低溶解度,实验的膜堆构型为BP—A—C构型。为了降低酸室中由于有机酸的低解离系数导致的高电阻,向酸室中添加了强酸型离子交换树脂。实验结果证明,添加离子交换树脂有效降低了相同电流密度下的操作电压,降低双极膜电渗析生产酒石酸的能量消耗。虽然添加离子交换树脂在一定程度上降低了酒石酸产量,但同能耗的降低幅度相比,仍然具有巨大的积极作用。
     2.在同等条件下,将添加离子交换树脂的方法应用于传统电渗析。实验结果同双极膜电渗析大致类似。实验扩展了添加离子交换树脂的应用范围。
     3.考虑到在大型电渗析器中添加离子交换树脂的复杂性,在中试规模的实验中采用了导离子隔板。导离子隔板由异相阳离子交换膜雕刻而成。实验结果证明导离子隔板有效降低了操作电压,降低了双极膜电渗析的能耗。实验还对国产双极膜和德国双极膜进行了对比实验,在酒石酸产量,电流效率等方面国产双极膜性能还有待提高。
     4.对以上的4个实验进行了经济核算,按照实验规模进行了两两对比。(1)在小试规模下核算结果显示:无论是双极膜电渗析还是传统电渗析,酒石酸总生产成本和能耗成本随电流密度升高都呈上升趋势;添加树脂后酒石酸总生产成本和能耗成本均有显著降低;由于双极膜价格的昂贵,双极膜电渗析生产成本普遍高于普通电渗析生产成本。(2)中试规模下:随着操作电流升高,酒石酸总生产成本和能耗成本都降低;添加导离子隔板降低了酒石酸生产的能耗费用,由于添加导离子隔板后,酒石酸产量有一定程度降低,总生产成本的降低幅度小于能耗成本降低幅度,在部分操作电流下有小幅度升高;使用国产双极膜的成本低于德国双极膜。
     5.实验简单考查了双极膜电渗析过程中的污染问题,基本重现了文献的污染现象。无机污染物污染阳离子交换膜,有机污染物污染阴离子交换膜。以腐殖酸为例,随着污染物浓度提高和电流强度提高,污染现象加重。
     本文研究结果表明,添加离子交换树脂和导离子隔板,有效降低了双极膜电渗析生产酒石酸的能耗,毫无疑问这项技术也可以扩展到其他有机酸的生产过程中。
Organic acids have extensive and close contact with human life, which arewidely used in food, beverage, pharmaceutical, cosmetic, chemical synthesis andbiochemistry. There are two ways to produce organic acid, chemical synthesis andfermentation. No matter fermentation or chemical synthesis, organic acids separation,concentration, purification is needed in post-processing. Traditional purificationprocesses include sedimentation, acidification, precipitation, crystallization and ionexchange step. Precipitation acidification process consumes large amounts of acid andbase, which also produces large amounts of solid waste. Traditional organic acidproduction and purification of these shortcomings do not meet the requirements ofgreen chemistry and energy saving, there is an urgent need for alternative processes.In order to achieve the goal of energy saving and green chemicals, we need a moreeconomical and environment-friendly technology.
     BPED (Bipolar membrane electrodialysis) can be applied to this area. If a directelectrical potential is established between bipolar membrane, water dissociationoccurs at the interphase of it, forming H~+and OH~-. Metal cations and anions of agiven organic salt combine with H~+and OH~-forming alkali and organic acidrespectively. Organic acid produced by this method has high purity, and the cost ofpost-processing is reduced. The alkali, which is by-product, can be applied to theorganic acid fermentation process, in this way it has no secondary pollution.
     Tartaric acid production by bipolar membrane is a starting point of this research.We focus on the energy-saving and other common problems of electrodialysis in thispaper, and the main conclusions are as follows:
     1. Due to low solubility of potassium hydrogen tartrate in aqueous solution, theconfiguration of experimental membrane stack is BP-A-C. In order to reduce the highresistance of the acid compartment which is caused by the low resolution of tartaricacid, strong acid ion exchange resin is added to the acid compartment.Experimental results show that adding ion exchange membrane reduces the operating voltage andthe energy consumption under the same current density. In some extend, adding ionexchange resin reduce the tartaric acid production. But comparing with the decreaseof energy consumption this method still has a tremendous positive performance.
     2. Under the same conditions, we add the ion exchange resins to ED(electrodislysis). The results are similar to the bipolar membrane electrodialysis. Theexperiment extends the application range of adding ion exchange resin.
     3. Considering the complexity of adding tiny resin to large-scale electrodialyzer,conductive spacer carved from cation exchange membrane is used in the pilot scaleexperiment. Experimental results show that the conductive spacer effectively reducesthe operating voltage, reducing energy consumption. Comparative experiment iscarried out between the Germany bipolar membrane and domestic bipolar membrane.The results show the tartaric acid yield and current efficiency of domestic bipolarmembrane should be improved in future.
     4. The process cost of four experiments is estimated according to theexperimental results, and there is a pair-wise comparison in accordance with theexperimental scale.(1) In small scale the accounting result of process cost show that:no matter BPED or ED, the total production cost increase with the current density;adding resin can reduce the total production cost and energy consumption costsignificantly; the total production cost of BPED is higher than ED,which is caused bythe expensive price of bipolar membrane.(2) In pilot scale, the tatal production costand energy consumption cost decrease with the current rising. The use of conductivespacer reduces the cost of energy consumption, and the decreased range of totalproduction cost is smaller than the decreased range of energy consumption cost,because of the reduce of tartaric acid production after adding the conductivespacer.The cost using domestic bipolar membrane is less than that of Germany bipolarmembrane.
     5. We also investigate the problem of pollution in the bipolar membraneelectrodialysis process; the results basically reproduce the phenomenon of pollution inthe literature. Cation exchange membrane is mainly affected by inorganic pollutants, and anion exchange membrane is mainly affected by organic pollutants. For example,the phenomenon of pollution increases with the holmic acid concentration and currentintensity.
     The results of this study show that add of ion exchange resin and conductivespacer effectively reduces the energy consumption of tartaric acid production byBPED. There is no doubt that this technology can also be extended to the productionprocess of other organic acids.
引文
[1] Hiroshi Takahashi, Kazuya Ohba, Ken-ichi Kikuchi. Sorption of di-and tricarboxylic acidsby an anion-exchange membrane. J. Membr. Sci,2003,222(1-2):103–111.
    [2] Chuanhui Huang, Tongwen Xu,Yaping Zhang etc. Application of electrodialysis to theproduction of organic acids: State-of-the-art and recent developments. Journal of MembraneScience,2007,288(1-2):1–12
    [3] Y.H. Kim, S.H. Moon. Lactic acid recovery from fermentation broth using one-stageelectrodialysis. J. Chem. Technol. Biotechnol,2001,76(2):169–178.
    [4]陈騊声.有机酸发酵生产工艺.北京:化学工业出版社.1991:120–168.
    [5] Q.H. Wang, G.S. Cheng, X.H. Sun etc. Recovery of lactic acid fromkitchen garbagefermentation broth by four-compartment configuration electrodialyzer. Process Biochem,2006,41(1):152–158.
    [6] C. Akerberg, G. Zacchi. An economic evaluation of the fermentative production of lactic acidfrom wheat flour.Bioresour. Technol,2000,75(2):119–126.
    [7] V.A.Shaposhnik, K.Kesore.An early history of electrodialysis with permselectivemembranes.J. Membr. Sci,1997,136(1-2):35-39
    [8] E. Maigrot, J. Sabates. Apparat zur L uterung von Zuckers ften mittels Elektrizit t, Germ.Pat. Nr.1890,50443.
    [9] H.N. Morse, J.A. Pierce. Z. Phys. Chem.,1903,45:589.
    [10] A. Bethe,T. Toropoff. über elektrolytische Vorg nge an Diaphragmen, Z. Phys. Chem.,1914,88:686-742.
    [11] T. Teorell. Zur quantitativen Behandlung der Membranpermeabilit t. J. Elektrochem.,195155:460-469.
    [12] T. Teorell, Transport processes and electrical phenomena in ionic membranes. Prog.Biophysics,1953,3:305-369.
    [13] W. Pauli, E. Yalko. Elektrochemie der Kolloiden, J.Springer, Wien,1929.
    [14] K.H. Meyer, W. Strauss. La permeabilité des membranes, VI, Sur la passage du courantelectrique a travers desmembranes selectives. Helv. Chim. Acta,1940,23:795-800.
    [15] W. Juda, W.A. McRae. Coherent ion exchange gels and membranes. J. Amer. Chem. Soc,1950,72(2):1044-1053.
    [16] T.R.E. Kressman. Ion exchange resin membranes and resin impregnated filter paper. Nature,1950,165(4197):568-574.
    [17]华河林,吴光夏,刘锴等.电渗析技术的新进展.环境污染治理技术与设备,2001,2(3):44-47
    [18] R. Audinos. Ion-exchange membrane processes for clean industrial chemistry. Chem. Eng.Technol,1997,20(4):247–258.
    [19] S. Koter, A.Warszawski. Electromembrane processes in environment protection. Pol. J.Environ. Stud.,2000,9(1):45–56.
    [20] R.K. Nagarale, G.S. Gohil, V.K. Shahi. Recent developments on ionexchange membranesand electro-membrane processes.Adv. Colloid Interf. Sci,2006,119(2-3):97–130.
    [21] T.W. Xu. Ion-exchange membranes: state of their development and perspective. J. Membr.Sci.2005,263(1-2):1–29.
    [22]陈碧娥,罗铁红.离子交换膜电渗析法从乳酸钠制备乳酸.华侨大学学报(自然科学版),2007,28(4):407-409
    [23] Young-Jung Wee, Jong-Sun Yun, Yoon Y. Lee. Recovery of Lactic Acid by Repeated BatchElectrodialysis and Lactic Acid Production Using Electrodialysis Wastewater. Journal ofBioscience and Bioengineering,2005.99(2):104–108.
    [24] KiBeom Lee. A media design program for lactic acid production coupled with extraction byelectrodialysis. Bioresource Technology,2005,96(13):1505–1510
    [25] Makoto Hirata, Min-tian Gao, Eiichi Toorisaka etc. Production of lactic acid by continuouselectrodialysis fermentation with a glucose concentration controller. Biochemical EngineeringJournal,2005,25(2):159–163
    [26] Gao Min-tian, Michiteru Koide, Rie Gotou etc. Development of a continuouselectrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus.Process Biochemistry,2005,40(3-4):1033–1036
    [27] Gao Min-tian, Makoto Hirata, Michiteru Koide etc. Production of l-lactic acid byelectrodialysis fermentation (EDF).Process Biochemistry,2004,39(12):1903–1907
    [28] L. Madzingaidzo, H. Danner, R. Braun. Process development and optimisation of lactic acidpurification using electrodialysis. Journal of Biotechnology,2002,96(3):223–239
    [29] Jae-Hwan Choi, Sung-Hye Kim, Seung-Hyeon Moon. Recovery of lactic acid from sodiumlactate by ion substitution using ion-exchange membrane. Separation and Purification Technology,2002,28(1):69–79
    [30]葛道才,迟仁清.电渗析法由d-酒石酸钠直接生产d-酒石酸的新工艺,膜科学与技术,2003,23(5):32-36
    [31]赵婧,冯骉.电渗析脱盐分离发酵液中氨基酸的研究,食品与发酵工业,2006,9(32),32-35
    [32]王传怀,张国宝,吕希化等.电渗析提取柠檬酸技术,膜科学与技术,1992,12(3):44-48
    [33] I.N. Widiasa, P.D. Sutrisna, I.G. Wenten. Performance of a novel electrodeionizationtechnique during citric acid recovery. Separation and Purification Technology,2004,39(1-2):89–97
    [34] K. Bé1afi-Bakó, N. Nemestóthy, L. Gubicza. A study on applications of membranetechniques in bioconversion of fumaric acid to L-malic acid. Desalination,2004,162:301-306
    [35] Marie-Laure Lameloise, Helmut Matinier, Claire Fargues. Concentration and purification ofmalate ion from a beverage industry waste water using electrodialysis with homopolar membranes.Journal of Membrane Science,2009,343(1-2):73–81
    [36] T.V. Elisseeva, V.A. Shaposhnik, I.G. Luschik. Demineralization and separation of aminoacids by electrodialysis with ion-exchange membranes. Desalination,2002,149(1-3):405-409
    [37] A.E. Bukhovets, A.M. Savel’eva, T.V. Eliseeva. Separation of amino acids mixturescontaining tyrosinein electromembrane system. Desalination,2009,241(1-3):68-74
    [38] V.Montiel, V Garc a-Garc a, J González-Garc a ect. Recovery by means of electrodialysisof an aromatic amino from a solution with a high concentration of sulphates and phosphates.Journal of Membrane Science,1998,140(2):243-250
    [39] Eszter Molnár, Matild Eszterle, Kornélia Kiss. Utilization of electrodialysis for galacturonicacid recovery.Desalination,2009,241(1-3):81-85
    [40] Mahendra Kumar, Bijay P. Tripathi, etc. Electro-Membrane Process for In Situ IonSubstitution and Separation of Salicylic Acid from its Sodium Salt. Ind. Eng. Chem. Res,2009,48(2):923–930
    [41] Mauro Moresi, Fabiana Sappino. Electrodialytic recovery of some fermentation productsfrom model solutions: techno-economic feasibility study. Journal of Membrane Science,2000,164(1-2):129–140
    [42]董泉玉,郑涛.日本电渗析技术的最新发展,水处理技术,200228(4):190-192
    [43]徐传宁.电渗析处理含铬废水.净化技术,1993,2
    [44]陈长春.电渗法处理造纸黑液回收碱的实验研究.环境污染与防治,1997,19(2):7210
    [45] Hong-Joo Lee, Suk-Jung Oh, Seung-Hyeon Moon. Recovery of ammonium sulfate fromfermentation waste by electrodialysis.Water Research,2003,37(5):1091–1099
    [46] Kyeong-Ho Yeon, Jung-Hoon Song, Seung-Hyeon Moon. A study on stack configuration ofcontinuous electrodeionization for removal of heavy metal ions from the primary coolant of anuclear power plant.Water Research,2004,38(7):1911–1921
    [47] Fernando Goncalves, Cristina Fernandes, Paulo Cameira dos Santos etc. Wine tartaricstabilization by electrodialysis and its assessment by the saturation temperature. Journal of FoodEngineering,2003,59(2-3):229–235
    [48]严斌,陈晓杰.电渗析法在葡萄酒冷稳定处理中的应用研究,中国酿造,2007,3:25—27
    [49] Laurent Bazinet, Yves DeGrandpré, Andrew Porter. Electromigration of tobaccopolyphenols.Separation and Purification Technology,2005,41(1):101–107
    [50] Laurent Bazinet, Céline Cossec, Hélène Gaudreau. Production of a Phenolic AntioxidantEnriched Cranberry Juice by Electrodialysis with Filtration Membrane. J. Agric. Food Chem,2009,57(21):10245–10251
    [51]张维润,樊雄.电渗析浓缩海水制盐.水处理技术,2009,35(20):1-4
    [52]电化学协会编.电化学便览.丸善株式会社:255.平成5年4月.
    [53] Isamu Azuma.Application ofelectrodialysis system technology inJapan.International Forumon Water Industry, Qingdao,2005,l11.
    [54]陈光森,马津伟.填充床电渗析的工作原理及制取纯水时影响因素的研究,甘肃科技,2004,20(10):97-98
    [55]孙惠国.电去离子(EDI)装置中离子交换树脂的功效,膜科学与技术,2009,29(5):108-113
    [56]吕维敏,王盛满,陈仙明等.电去离子过程的理论分析,膜科学与技术,200828(3):103-105
    [57] R Simons.Electrochim.Acta,1984,(2):151
    [58]王方.电去离子净水技术的新进展,工业水处理,2000,20(7):4-7
    [59]黄宝能,王飞,张波.电去离子替代混床的超纯水制备技术.水处理技术,2006,32(11):77-79
    [60]涂丛慧,王晓琳.电渗析法去除水体中无机盐的研究进展.水处理技术,2009,35(2),14-18
    [61]白如滨.电渗析在黄骅市苦咸水淡化过程中的应用.中国水利,2006,5:68-69
    [62]陈翠仙,余立新,戴猷元.新膜及膜过程的研究现状及发展动向.水处理技术,1996,22(6)307-313
    [63]唐宇,王晓琳,龚燕.双极膜电渗析理论与应用的研究进展.化工进展,2004,23(10)
    [64] Xu Tongwen, Yang Weihua, He Binglin. Water dissociation phenomena in a bipolarmembrane-The configurations and theoretical voltage analysis. Science in China (Series B),1999,42(6):589-598
    [65]徐铜文,杨伟华.双极膜水解离现象—双极膜的物理构型、离子传递及其水解离压降分析.中国科学(B辑),1999,29(6):481-488
    [66]徐铜文,何炳林.双极膜—新的工业革命.世界科技研究与发展,2000,22(3):19-27
    [67]徐铜文.均相离子交换膜暨双极膜的制备及其水解离机理研究.博士后出站报告,南开大学,1997
    [68]傅荣强,徐铜文,杨伟华.双极膜的制备技术进展.水处理技术,2003,29(2):67-69
    [69]徐芝勇,张建国.双极膜电渗析技术在有机酸生产中的应用进展.膜科学与技术,200727(3):75-78
    [70]罗铁红,陈碧娥.双极膜电渗析法制备乳酸.膜科学与技术,2007,27(4):66-69
    [71]李娟,陈振,王鹏.双极膜电渗析分离发酵液中L-乳酸.生物加工过程,2009,7(6):45-50
    [72] Věra Hábová, Karel Melzoch, Mojmír Rychtera. Electrodialysis as a useful technique forlactic acid separation from a model solution and a fermentation broth. Desalination,2004162:361-372
    [73] Hong Li, Roberta Mustacchi, Christopher J. Knowles etc. An electrokinetic bioreactor:using direct electric current for enhanced lactic acid fermentation and product recovery,Tetrahedron,2004,60(3):655–661
    [74]黄川徽,李应生.双极膜法生产葡萄糖酸的规模化研究,中国科学技术大学学报,2008,6:656—659
    [75]金可勇,金水玉,周勇. BPM2型双极膜装置在葡萄糖酸生产中的应用研究,水处理技术,2012,36(10):105-109
    [76] Xu Tongwen, Yang Weihua. Citric acid production by electrodialysis with bipolarmembranes. Chemical Engineering and Processing,2002,41(6):519–524
    [77] Xu Tongwen, Yang Weihua. Effect of cell configurations on the performance of citricacidproduction by a bipolar membrane electrodialysis.Journal of Membrane Science,2002,203(1-2):145–153
    [78] P. Pinacci, M. Radaelli. Recovery of citric acid from fermentation broths by electrodialysiswith bipolar membranes, Desalination,2002,148(1-3):177-179
    [79] Senad Novalic, James Okwor, Klaus D. Kulbe. The characteristics of citric acid separationusing electrodialysis with bipolar membranes. Desalination,1996(3),105:277-282
    [80] Lixin Yu, Aiguang Lin, Liping Zhang etc.Application of electrodialysis to the production ofVitamin C.Chemical Engineering Journal,2000,78(2-3):153–157
    [81] Lixin Yu, Qingfeng Guo, Jinhua Hao etc. Recovery of acetic acid from dilute wastewater bymeans of bipolar membrane electrodialysis. Desalination,2000,129(3):283-288
    [82] Francisco Alvarez, Ricardo Alvarez, José Coca etc. Salicylic acid production byelectrodialysis with bipolar membranes. Journal of Membrane Science,1997,123(1):61-69
    [83] J.S. Jaime Ferrer, S. Laborie, G. Durand, etc. Formic acid regeneration by electromembraneprocesses. Journal of Membrane Science,2006,280(1-2):509–516
    [84] Marcello Fidaleo, Mauro Moresi.Assessment of the main engineering parameterscontrolling the electrodialytic recovery of sodium propionate from aqueous solutions.Journal ofFood Engineering,2006,76(2):218–231
    [85] T.V. Eliseeva, V.A. Shaposhnik, E.V. Krisilova etc. Transport of basic amino acids throughthe ion-exchange membranes and their recovery by electrodialysis. Desalination,2009,241(1-3):86-90
    [86] V. Cauwenberg, J. Peels, S. Resbeut, etc. Application of electrodialysis within finechemistry. Sep. Purif. Technol,2001,23(22):115–121.
    [87] H. Strathmann. Ion-exchange Membrane Separation Processes, Elsevier, Amsterdam,2004.
    [88] L.X. Yu, J. Su, J. Wang. Bipolar membrane-based process for the recycle ofp-toluenesulfonic acid in d-()-p-hydroxyphenylglycine production. Desalination,2005,177(1-3):209–215
    [89] Fang Zhang, Chuanhui Huang, Tongwen Xu. Production of Sebacic Acid Using Two-PhaseBipolar Membrane Electrodialysis.Ind. Eng. Chem. Res,2009,48(16):7482–7488
    [90]张鹏,刘平,彭勇.双极性膜电渗析法连续处理酚钠的基本规律研究.膜科学与技术,2010,30(4):61-64
    [91] Bazinet L,Lamarche F,Labrecque R. Effect of number of bipolar membrane andtemperature on the performance of bipolar membane electroacidification. J Agric FoodChin,1997,45:3788-3794.
    [92] Laurent Bazinet, Denis Ippersiel, Behzad Mahdavi. Effect of Conductivity Control on theSeparation of Whey, Proteins by Bipolar Membrane Electroacidification. J. Agric. Food Chem,2004,52:1980-1984
    [93] Laurent Bazinet, Denis Ippersiel, Christine Gendron.Bipolar Membrane Electroacidificationof Demineralized Skim Milk, J. Agric. Food Chem.2001,49:2812-2818
    [94] Laurent Bazinet, Denis Ippersiel, Christine Gendron etc. Cationic balance in skim milkduring bipolar membrane electroacidification. Journal of Membrane Science,2000,173(2):201–209
    [95] Laurent Bazinet, Jér me Péricou, Monica Araya-Farias. Effect of flow rate and acidmolarity on redox potential modulation during electroreduction of milk and simulated milkaqueous mineral phase. Food Chemistry,2009,114(3):919–926
    [96] Fabrice Lin Teng Shee, Paul Angers, Laurent Bazinet. Delipidation of a Whey ProteinConcentrate by Electroacidification with Bipolar Membranes. J. Agric. Food Chem,2007,55(10):3985-3989
    [97] Martin Mondor, Denis Ippersiel, Fran ois Lamarche etc. Production of Soy ProteinConcentrates Using a Combination of Electroacidification and Ultrafiltration. J. Agric. FoodChem,2004,52(23):6991-6996
    [98] Edwin Vera, Jacqueline Sandeaux, Francoise Persin etc. Deacidification of clarified tropicalfruit juices by electrodialysis.Part I. Influence of operating conditions on the process performances.Journal of Food Engineering,2007,78(4):1427–1438
    [99] Edwin Vera, Jacqueline Sandeaux, Fran oise Persin. Deacidification of clarified tropicalfruit juices by electrodialysis. Part II. Characteristics of the deacidified juices. Journal of FoodEngineering,2007,78(4):1439–1445
    [100] Edwin Vera, Jacqueline Sandeaux, Fran oise Persin etc. Deacidification of passion fruitjuice by electrodialysis with bipolar membrane after different pretreatments. Journal of FoodEngineering,2009,90(1):67–73
    [101] Fabrice Lin Teng Shee, Joseph Arul, Serge Brunet etc. Solubilization of Chitosan byBipolar Membrane Electroacidification. J. Agric. Food Chem,2006,54(18):6760-6764
    [102] Fabrice Lin Teng Shee, Laurent Bazinet. Cationic balance and current efficiency of athree-compartment bipolar membrane electrodialysis system during the preparation of chitosanoligomers.Journal of Membrane Science,2009,341(1-2):46–50
    [103] Haozhe Feng, Chuanhui Huang, and Tongwen Xu. Production of Tetramethyl AmmoniumHydroxide Using Bipolar Membrane Electrodialysis, Ind. Eng. Chem. Res,2008,47(20):7552–7557
    [104] ChuanhuiHuang, TongwenXu, MonaL.Jaeobs. Regenerating Flue-gas desulfurizing agentsby bipolar membrane eleetrodialysis.AIChEJ,2006,52(1):393一401
    [105] ChuanhuiHuang, TongwenXu. Comparative study on the regeneration of flue-gasdesulfurizing agents by using eonventional electrodialysis(ED) and by biolar membraneelectrodialysis (BMED). Environ.Sci.Technol,2006,40(17):5527-553
    [106]黄川徽.双极膜电渗析再生有机胺脱硫剂:[博士学位论文].中国合肥:中国科技大学,2008
    [107] S. Sridhar. Electrodialysis in a non-aqueous medium: production of sodium methoxide,Journal of Membrane Science,1996,113(1):73-79
    [108] Qiuhua Li, Chuanhui Huang, Tongwen Xu. Ethanol splitting in bipolar membranes:evidence from NMR analysis. Journal of Membrane Science,2008,325(1):20-22
    [109] Qiuhua Li, Chuanhui Huang, Tongwen Xu. Bipolar membrane electrodialysis in anorganic medium: production of methyl methoxyacetate, Journal of Membrane Science,2009339(1-2):28-32
    [110]李秋花.双极膜电渗析在非水体系中的应用:[硕士学位论文],中国合肥:中国科技大学,2010
    [111] Laurcnt Bazinet, Monica Araya-Farias.Electrodialysis of calcium and carbonate hishconcentration solutions and impact on composition in cations of membrane fouling. Journal ofColloid and Interface Science,2005,286(2):639—646.
    [112] Viktoria Lindstrand, G ran Sundstr m, Ann-Sofi J nsson.Fouling of electrodialysismembranes by organic substances.Desalination,2000,128(1):91—102.
    [113] Viktoria Lindstrand,Ann-Sofi J nsson G ran Sundstr m.Organic fouling of electrodialysismembrane with and without applied voltage.Desalination,2000,130(1):73—84.
    [114]化学工业部人事教育司.化学工业部教育培训中心.电渗析[M].北京:化学工业出版社:1997.
    [115]任洪艳,张晓燕,王倩等.操作条件对双极膜电渗析性能和膜污染的影响,膜科学与技术,2008,28(5):45—50
    [116] Laurcnt Bazinet,Monica Araya-Farias. Effect of calcium and carbonate concentrations oncationic membrane fouling during electrcdialysis. Journal of Coloid and Interface Science,2005,281:188—196.
    [117] Christophe Casademonta, Gérald Pourcelly, Laurent Bazinet. Effect of magnesium/calciumratio in solutions subjected to electrodialysis: Characterization of cation-exchange membranefouling. Journal of Colloid and Interface Science,2007,315(2):544–554
    [118] Vikoia Lindstrand, G bran Sundstr m, Ann-Sofi J sson. Fouling of eltrodialysis membranes by organic substan ces.Desalination,2000,128(1):91—102.
    [119] Viktoria Lindstrand,Ann-J sson, G ran Sundstr m.Organic fouling of electrodialysismemb ranes with and without applied voltage.Desalination,2000,130(1):73—84.
    [120]孙惠国.电去离子(EDI)装置中离子交换树脂的功效.膜科学与技术,2009,29(5):108-113
    [121]王博彦,金其荣.发酵有机酸生产与应用手册,北京:中国轻工业出版社,2000.568-571
    [122]王博彦,金其荣.发酵有机酸生产与应用手册,北京:中国轻工业出版社,2000.586-587
    [123]魏琴.无机及分析化学教程,北京:科学出版社,2010.421-422
    [124]魏琴.无机及分析化学教程,北京:科学出版社,2010.134-136
    [125] J.S. Jaime-Ferrer, E. Couallier, Ph. Viers etc. Three-compartment bipolar membraneelectrodialysis for splitting of sodium formate into formic acid and sodium hydroxide:role ofdiffusion of molecular acid. Journal of Membrane Science,2008,325(2):528–536.
    [126] Kai. Zhang, Meng. Wang, Duo. Wang. Congjie Gao, The energy-saving production oftartaric acid using ion exchange resin-filling bipolar membrane electrodialysis. Journal ofMembrane Science,2009,341(1-2):246–251
    [127] G.S. Trivedi, B.G. Shah, S.K. Adhikary, etc. Studies on bipolar membranes. PartII—conversion of sodium acetate to acetic and sodium hydroxide. React. Funct. Polym,1997,32(2):209–215.
    [128] G.C. Ganzi. Ion pure CDI Electrodeionization Systems: New Product and ProcessDevelopments for High Purity Water Production, in: New Developments in Ion ExchangeMaterials, Fundamentals and Applications, Tokyo, Japan Proceedingsof the InternationalConference on Ion Exchange, ICIE’91, October2–4,1991.
    [129] Kai Zhang, Meng Wang, Congjie Gao.Tartaric acid production by ion exchangeresin-filling electrometathesis and its process economics. Journal of Membrane Science,2011,366(1-2):266–271
    [130] V. K. Shahi, S.K. Thampy, R. Rangarajan. The effect of conducting spacers on transportProperties of ion exchange membranes in electrodriven separation. Desalination,2001,133(3):245-258
    [131] E. Korngold, L. Aronov, O. Kedem. Novel ion-exchange spacer for improvingelectrodialysis I.Reacted spacer. J.Membr. Sci,1998,138(2):165-170
    [132] R. Messalem, Y. Mirsky, N. Daltrophe, etc. Novel ion-exchange spacer for improvingelectrodialysis II. Coated spacer. J. Membr. Sci.,1998,138(2):171-180
    [133] Piotr D ugo cki, J. D browskab, K. Nijmeijer, etc. Ion conductive spacers for increasedpower generation in reverse electrodialysis. J. Membr. Sci,2010,347(1-2):101-107
    [134] Kai Zhang, Meng Wang, Congjie Gao Ion conductive spacers for the energy-savingproduction of the tartaric acid in bipolar membrane electrodialysis.Journal of Membrane Science,2012,387-388:48-53
    [135] A. J. B.H. Kemperman. Handbook on bipolar membrane technology, Twente UniversityPress: Enschede, The Netherlands,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700