用户名: 密码: 验证码:
CALPUFF模式用于放射性核素不同尺度的迁移扩散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放射性核素在大气中的迁移扩散问题,在核事故应急响应、突发事件应急响应、裂变材料生产、核厂址风险评价、禁核实验的源项估算等领域都倍受关注。从1986年的切尔诺贝利核事故到2011年的日本福岛核泄露事故,放射性核素迁移扩散的研究经历了数十年的发展,无论是模式理论还是模拟技术都有了很大进步。放射性核素迁移扩散研究最主要的应用是核事故的应急响应,美国和欧洲等研究机构在这方面都有自已成熟的不同尺度的模式及体系,但是我国在这方面的研究还很不足,尤其是在事故情况下对污染水平的应急预测,以及事故后短期的实时模拟计算。为了满足我国核能发展和辐射环境影响评价的需求,本文在调研文献的基础上,总结了放射性核素迁移扩散模式的研究方法,对新的模拟技术如集合分析等进行了分析研究,并利用现有资源进行模拟计算,开展了放射性核素迁移扩散的研究。
     本论文调研了放射性核素的迁移扩散模式的发展状况,对现有的模式及其应用作了综述,在研究现有模式的基础上,选择拉格朗日烟团模式CALPUFF作为本论文关于放射性核素不同距离迁移扩散研究的工具。CALPUFF是美国EPA推荐模式,有成熟的理论基础和长期的跟踪改进及验证研究,是一个成熟的应用模式。CALPUFF模式可运用于复杂地形,非稳态的流场,在长距离情况下可以矫正地形对流场的影响,而且在扩散计算时可以根据具体流场特点选择积分方式和扩散参数计算方法。CALPUFF的计算区域可以从几十米到上千公里,从局地尺度到区域尺度,对于模拟突发核事故情况下的短期及长期扩散非常适合。CALPUFF系统由于针对的是非放物质所以不能用于放射性核素的模拟计算,本论文的工作即是在CALPUFF的基础上,进行进一步的开发,在烟团模式的基础上加入了对放射性核素的放射性衰减的模拟计算、加入放射性核素的干湿沉积参数、并建立了事故情况下的剂量估算模式,使CALPUFF能用于核事故情况下的估算分析。
     在核事故模拟计算中,从事故的初始释放,到事故的持续几十小时的释放,事故释放的各个空间尺度及各时间范围都很关健。为了研究事故释放的各时间、空间范围的迁移扩散特征,本论文进行了不同距离范围的模拟,从近距离20公里到200-300公里及上千公里的应用研究,并分别进行验证分析。
     本论文的主要研究工作有四个部分:
     1.在对扩散模式进行调研的基础上,选择拉格朗日烟团模式CALPUFF作为研究的基础,对现有的烟团模式进行改进。
     (1)在CALPUFF模式中加入关于核素的放射性衰减计算模型,并加入有关核素的干湿沉积计算参数。
     (2)建立剂量模型,计算在事故应急情况下的有效外照射剂量及吸入内照射剂量,为应急决策提供重要的数据支持。
     2.在事故初期,最关心的问题是近距离内放射性核素的分布水平,以决定撤离范围及响应的水平。为了研究事故初始释放特征,开展了近场复杂地形的示踪实验研究,并同时用CALPUFF模式进行模拟计算,通过现场监测数据与模式结果的对比,研究了复杂地形近距离扩散的特征,并说明CALPUFF模式在近距离短期释放的模拟计算结果较好,但也存在一定问题:
     1)从现场实验数据看,对于事故初期的高架源近距离扩散,当风速较小时,地形影响较大,当风速较大时,地形影响减小,地面最高浓度值一般在1-3公里范围。浓度和风向摆动相关,当风向较稳定时,地面浓度分布窄,浓度值较高,当风向摆动时,地面浓度分布较宽,浓度值趋于平均,浓度降低。水平浓度分布并非标准高斯分布,在采样点浓度轴线两边的边缘浓度有异常增高现象。
     2)模式结果与实验数据相比,模式的浓度分布呈标准高斯分布没有反映出实测数据的异常值,在模拟计算时,计算了几种扩散计算方法:
     a.选择了不同的扩散参数计算方法:P-G法和相似理论(Similarity)计算方法和不同的积分取样方式:烟团模式(PUFF)和烟片模式(SLUG),进行了四种方式的模拟计算:PUFF+P-G、PUFF+Similarity、SLUG+P-G、SLU+Similarity。实验结果说明在实验条件下,PUFF+P-G有较好的模拟结果,偏差为-13.82ug m3H-1,均方根为3.02ug m3H-1,FA2和FA5分别为27.06%和61.41%,FOEX为-25.91%。
     b.选择了不同的积分取样方式即烟片取样函数和烟团取样函数,结果比较说明烟片取样函数更能反应近距离、短时间的Causality effects(因果效应),在事故情况的初始阶段能更好的模拟污染物的扩散。
     c.计算了实验数据以MESOPUFFⅡ的扩散参数形式拟合的扩散参数,并与模式PG方法(MESOPUFFⅡ)扩散参数比较,说明模式参数与实验数据存在差异,并影响最后浓度结果。
     d.四种方式的模拟对比说明CALPUFF模式对初始释放近距离的模拟存在一定问题,预测结果偏低,不能很好的预测峰值,但是在应急情况下,模式结果有一定的指导意义。
     3.为了研究放射性核素在中尺度的迁移扩散,用开发的CALPUFF-R模式对日本福岛核事故进行了400×400公里的模拟计算(以源为模拟中心,半径200公里),并与可获得的监测数据进行了对比。结果说明模式可以准确预测放射性烟团的分布,在距源128公里和140公里的两个城市点对点数据吻合较好,时间序列也相对应。在近距离30-60公里8个方位的计算中,与可获得的监测数据对比显示,近距离数据差别在一个数量级以内,但是在核素沉积的西北方向,模式未计算出相应的高浓度。用剂量模型计算了特定核素Ⅰ-131和Cs-137在事故情况下累计外照射有效剂量,并与监测数据相对比,结果低于监测数据。由于缺少降水的准确数据,模式未能准确计算湿沉积通量,因而由地面沉积通量和空气浓度计算的烟云浸没外照射剂量小于监测数据,但是模式结果还是认为比较理想的。为了进一步验证模式中尺度扩散模拟效果,选择了非放惰性物质计算了太原地区PM10的扩散。
     4.为了研究放射性核素在长距离的迁移扩散,用CALPUFF模式对ETEX-1实验进行了长距离扩散模拟计算。放射性核素的迁移扩散对环境的影响,在时间空间尺度上一般都比较大,所以用于模拟放射性物质的模式一般都是长距离模式。本文选择ETEX-1实验数据进行上千公里的迁移扩散研究,研究CALPUFF模式在长距离条件下的模拟计算结果。结果显示CALPUFF模式可以正确预测放射性烟云的迁移方向,但是模拟浓度范围小于实验数据的覆盖范围,模拟浓度低于实验数据,模式结果与实验数据对比统计参数FOEX为-29.23%,FA2为1.41%,FA5为6.17%,NMSE为193.12%。
     5.对于放射性核素在大气中的迁移扩散,模式研究和模式验证同等重要,对于长距离的模式研究,模式验证存在很大的困难。本文在研究大气迁移模式评价研究ATMES (Atmospheric Trans port Model Evaluation Study)计划的基础上,根据ATMES统计理论分析了模式验证的基本统计参数及代表的模式特征,并在模式验证中进行了计算评估。
     在放射性核素的不同尺度的迁移扩散研究中,近距离的研究工作比较全面丰富,无论是理论研究还是现场实验研究都有大量的文献报道,近距离的模式验证也易于进行,很多成熟的模式已经运用于核事故的应急响应,但是在长距离扩散模式研究中,模式的验证是一个非常困难的部分。对于现场实验,超过50公里的实验已经需要复杂的条件才能进行,对于上百公里和上千公里的野外现场实验难度及不确定性非常大。而外场实验是模式验证的最基本方法,所获得的数据能真实地反应实际大气对污染物的输送、扩散能力,可以用来验证理论模型的正确性,是模式研究的基础。任何模式只有经过有效性验证分析,才能用于实际应用,即使是一个成熟模式如CALPUFF模式,也必须注意模式的适用条件和范围。实际大气是一个高度复杂的系统,其中的各种过程几乎都是不可重复的,在一些大气环境下,模式有好的模拟结果,但是如果条件变化,可能结果会不同。
The transport of radionuclides in atmosphere is a key question in many application of dispersion models such as rapid respond of nuclear accident, accidental release, fissile material production and nuclear test ban. From the Chernobyl accident in1986to FUKUSHIMA nuclear accident release in2011, the study of long-range transport have been conducted by many institutes in world,and both the atmospheric transport theory and simulation technology have been improved. The main application of long-range dispersion model is in the rapid-responds of nuclear accident, and both America and Europe have their ripe model system about nuclear accident rapid respond plan, however in our country there is not sufficient study on this scale especially in rapid-respond plan and real-time simulation about nuclear accident. To support the development of nuclear power and evaluate the atmospheric environment, we transplantate and developed radionuclids long-rang transport model based on CALPUFF, and the transplantated model can be applied in simulation of radionuclides transport, radionuclides dry deposition, wet deposition and radioation decay. In additional, we developed dose model.The dose module utilizes the results from dispersion and deposition modeling, time integrating the concentration and deposition fields, and computes the doses. In real time simulation of nuclear accident, the initial release is important. To apply in nuclear accident, we conducted tracer experiment in a complex terrain in near field and used CALPUFF to similate this experiment to evaluate the CALPUFF results. In simulation of nuclear accident, different distance and time scale are important, so we used transplantated CALPUFF and CALPUFF to calculate different cases and evaluate the results separately. The model evaluation is priorto to model application, and evaluation of long-range dispersion model is more difficult than near field. In this paper, we reviewed evaluation methods of long-range dispersion model, and studied the new simulation technology of ensemble method. Some ensemble simulation results were presentd here.
     We chose CALPUFF model as a tool to study the radionuclides transport because CALPUFF is a lagrangian puff model and recommended by U.S EPA for long-range dispersion simulation. CALPUFF model has sufficient theory study, tracking application study and evaluation study. It can be applied in complex terrain and no-stable flow situation. In long-range simulation, it can be calculated terrain effects in meteorologic field, and has different dispersion options in calculating concentration fields. The distance of CALPUFF can be set from tens meters to thousands of kilometers, and it is suitable for application in simulation of radionuclides transport in atmospheric environment. Because CALPUFF can not be applied in radionuclids condition and has not ability of calculation radioactive decay, we transplantate CALPUFF and added the ability of calculate radioactive decay and developed dose model to simulate nuclear accident crisis.
     There are four parts in this paper, the details are listed below
     1) Review of long-range dispersion model, and chose CALPUFF as a tool to study radionuclides transport and transplantate CALPUFF model.
     A:Added radioactive decay calculation and added radionuclides dry velocity parameters and wet rinse factors.
     B:Developed dose model to calculate external dose.
     2) To evaluate CALPUFF model applicability in near complex terrain, we conducted a tracer experiment in some planed nuclear plant site to simulate initial release in accident situation. The algrith area is40X40kilometers, and the grid space is500meters. From the comparison of model and measurements, we can see CALPUFF has good results totally, but there are some questions in simulation:
     A:The sufficient meteorological observation only can develop a good wind field for near-field dispersion. The CALMET model can correctly capture the shape and direction of tracer cloud and results do not suggest there are severe problems in the near-field application.
     B:Both CALPUFF dispersion methods (PG and Similarity theory) failed to predict peak concentrations in short-range dispersion. The main problem in this tracer experiment is the globally underestimation of CALPUFF especially in high concentration region. CALPUFF model has good performance when it simulates long-range or short-range but long time average dispersion, but in near-field, short-term application there is some uncertainties in its components.(e.g., in the complex terrain region close to the source where concentration sharply varies with space, the hourly meteorological field seems too coarse to reflect the variation and the dispersion model can not process this variation too.)Besides experimental errors, there are may be some inherent modeling limitation when applying in near-field complex setting for short-term prediction.
     C:For short-range dispersion, the effects of dispersion methods is more important than wind field.The wind fields affect the tracer cloud directions and mixing height which definite the vertical dispersion, but in short-range the influence is limited. The dispersion parameter method influences the concentration lever and is an important component in short-range dispersion modeling. We can not say which dispersion method is good because it likely involve site-specific decisions.
     3) Used transplantate CALPUFF model simulating FUKUSHIMA nuclear accident. The simulation area is400×400kilometers with release point as center and model default parameters was set in this simulation. The comparison shows that transplantate CALPUFF model can predict puff direction correctly and simulate results in two cities are agreed well and time series meet well too. However in near field from30-60kilometers in eight directions, the comparison of model and measurements are different and the differences are limited within one order. In north-west direction, there is high air concentration in measurements while there is not such high concentration in model. The external dose was calculated in dose model, the comparison shows the model results is little lower than measurements. The reason of lower model results is beacuse of lack of rain data and lack of correct wet deposition flux. In total, there is an appropriate model result in this simulation.
     4) Study of evaluation methods for long-range dispersion models. In model study, the evaluation of model is a important part, and any model which is applied must be evaluated at first. Although CALPUFF model is evaluated by EPA for some cases, but its applied results is different because of different condiations. The atmosphere is a complex system, and the process can not repeat. In some condiations, model has good results, in another condiations, the results will be different. Field experiments are a basic method of model evaluation, but there are many questions in conduction trancer experiments. So until now, there are only five successful field experiments about long-range transport dispersion: They are OKC(1980), ACURATE(1982-1983), CAPTEX(1983) and ANATEX(1985) in America and ETEX in Euroup. The ATMES is a atmospheric transport model evaluation study plan, based on the ATMES study, some statistical parameters were discussed and concluded. Every statistical factors definited a character of model, and based on the analysis of these parameters, we can evaluate model simulation quality. In addition, a new ensemble technology has been introduced and is claased as a evaluation method about model predict quality. A new method was concluded that is ensemble method based on space analysis of simulation results. In last part of paper, we used CALPUFF and HYSPLIT to simulate ETEX experiment, and show the percent model results and compared with measurements. Through internal comparison of models and ensemble results, we can offer simulation of crisis companied with probility to surport the decision makin in accident release. The specific content is listed below:
     A:Discussed ATMES evaluation method
     B:Evaluated the CALPUFF application in long-range dispesion used ETEX data.
     C:Discussed application of ensemble technology in model evaluation.
引文
[1]H.Van Dop, R.Addis,et al. ETEX:A European Tracer Experiment Observations, Dispersion modeling and emergency Response. [J] Atmospheric Environment,1998,32(24):4089-4094
    [2]Chris J.Walcek..Effects of Wind Shear on Pollution Dispersion. [J] Atmospheric Environment, 2002,36:511-517
    [3]Jorgen Brandt. Testing The Importance of Accurate Meteorological Input Field and Parameterizations in Atmospheric Transport Modeling Using DREAM-Validation Against ETEX1. [J] Atmospheric Environment,1998,32:4167-4186
    [4]Andreas Stohl, Sabine Eckhardt, et al.A Replace for Simple Back Trajectory Calculations in The Interpretation of Atmospheric Trace Substance Measurement. [J] Atmospheric Environment, 2002,36:4635-4648
    [5]Pielke, R.A.,Uliasz,M. Use of meteorological models as input to regional and mesoscale air quality model-Limitation and strenghs. [J] Atmospheric Environment,1998,32:1455-1466
    [6]Pielke,R.A. Mesoscal Meteorological Modeling.[C] Academic Press, Orlando, FL, 1984.,612-619pp
    [7]Pielke,R.A, Cotton,W.R.. A comprehensive meteorological modeling system-RAMS.[J] Meteorology and Atmospheric Physics,1992,49::69-91
    [8]Zannetti. Numerical Simulation Modeling of Air Pollution [M].Camarillo, CA.1993:.3-14
    [9]E.R.Lutman, S.R.Jones, L.H. moliel. Comparison between the Predictions of A Gussian Plume and A Lagrangian Particle Dispersion Model for Annual Average Calculations of Long-range Dispersion of Radionuclides. [J]. Journal of Environment Radioactivity,2004,75:339-355
    [10]Denis Quelo, Jerome Groell,. Qualification of A Long-range Transport Model of Radionuclides in An Emergency Context. [C] 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Marilyne Tombette,2010,1-4
    [11]Bent Lauritzen, Alexander Baklanov, Alexander Mahura et al. Probabilistic Risk Assessment for Long-range Atmospheric Transport of Radionuclides. [J] Journal of Environment Radioactivity,2007, 96::110-115.
    [12]Acob D J,Davis D D, et al. Transport and Chemical Evolution Over the Pacific(TRACE-P):ANASA/GTE Air Craft Mission[J] Journal of Geophysical Research,2002,108: 12-15
    [13]Li pan, Jung-Hun Woo, Gregory R. Carmichael, et al. Regional Distribution and Emissions of Mercury in East Asia. [J] Journal of Geophysical Research,2006,111(DO7109):12-13
    [14]赵恒,王体健等.利用向后轨迹模式研究TRACE-P期间香港大气污染物的来源.[J]热带气象学报,2009,25,4:183-186
    [15]Prapat Pongkiatkul,Nquyen Thi Kim Oanh,et al. Assessment of Potential long-range Transport of Particulate Air Pollution Using Trajectory Modeling and Monitoring Data. [J] Atmospheric Research 2007,85:3-17
    [16]Maria I.Gassmann,Claudio F.Perez,et al. Trajectories Associated to Regional and Extra-regional Pollen Transport in the Southest of Buenos Aires Province,Mar Del Plata.lnt J [J] Biometeorology (2006)50:280-291
    [17]姚仁太,徐向军等.远东地区核风险厂址释放的气载放射性污染物长距离迁移的模拟.[J]辐射防护,2005,25,4:194-204
    [18]Gupta S, McNide R T, Trainer, et al. Nocturnal Wind Structure and Plume Growth Rates due to Inertial Oscillations.[J] Journal of Applied Meteorology,1997.36:1050
    [19]Lingjuan Wang, David B.Parker, et al. Comparison of CALPUFF and ISCST3 models for predicting downwind odor and source emission rates.[J] Atmospheric Environment,2006.40: 4663-4669
    [20]Ying zhou,Jonathan I.Levy,et al. Estimating population exposure to power plant emission using CALPUFF:a case studay in Beijing,China. [J] Atmospheric Environment,2003.37:815-826
    [21]Jonathan I.Levy, John D.Spengler,et al. Using CALPUFF to evaluat the impact of power plant emission in Illinois:model sensitivity and implications.[J] Atmospheric Environment,2002.36: 1063-1075
    [22]Hurley, P.,Manins,et al..Year-long,high-resolutionurban airshed modeling verification of TAMP prediction of smog and particles in Melbourne, Australia. [J] Atmospheric Environment,2003, 37(14):1899-1910.
    [23]Galmarini S, Bonnardot F, Jones A. Multi-model Vs EPS-based Ensemble Atmospheric Dispersion Simulation [J] Atmospheric Environment 2010,44:3558-3567
    [24]A.Mahura, A.Baklanov, et al.Methodology for Evaluation of Possible Consequences of Accident Atmospheric Release of Hazardous Matter. [J] Radiation Protection Dosimetry.2004, vol.103,No.2: ppl31-139
    [25]Michael M.Bradley. NARAC:AN Emergency Response Resource for Predicting the Atmospheric Dispersion and Assessing the Consequences of Airborne Radionuclides. [J]Journal of Environment Radioactivity,2007,96:116-121
    [26]R.Bianconi,S.Galmarini,et al. Web-based System for Decision Support in Case of Emergency Ensemble Modeling of Long-range Atmospheric Dispersion of radionuclides.[J] Environment Modeling and Software,2004,19:401-411
    [27]Andreas Becker, Gerhard Wotawa, et al. Global Backtracking of Anthropogenic Radionuclides by Means of A Receptor Oriented Ensemble Dispersion Modelling System in Nuclear-Test-Ban Treaty Verification. [J] Atmospheric Environment,2007,41:4520-4534
    [28]Masamichi CHINO, Hiromasa NAKAYAMA, Harayasu NAGAI. Preliminary Estimation of Release Amounts of 131I and 137Cs Accidentally Discharged from Fukushima Daiichi Nuclear Power Plant into the Atmosphere [J] Journal of NUCLEAR SCIENCE and TECHNOLOGY.2011. Vol.48.No7:1129-1134
    [29]USEPA,.40CFR Part51 Revision to the Guideline on air quality models:Adoption of a preferred General Purpose (Flat and complex terrain) dispersion model and other Revisions. U.S.E.P Agency. Federal Register 70,2005. (No.216).
    [30]Bret A.Anderson, Roger W.Brode, Ralph.Morris., etc. Evaluation of Long Range Transport Models using Inert Tracer Experiment Data.[C] PNWIS Conference,Harrison Hot Springs BC,2011: 1-23
    [1]Sciee,J.S.,D.G.strimaitis and R.J. Yamartino,1990a:Model formulation and user's guide for the CALPUFF dispersion model. Singma Research Crop.,Concord,MA.
    [2]Scire,J.S., E.M.Insley and R.J.Yamartino,1990b:Model formulation and user's guide for the CALMET meteorological model. Singma Research Crop.,Concord,MA.
    [3]EPA,1993:Interagency Workgroup on Air Quality Modeling(IWAQM) Phase I report:Interim recommendations for modeling long range transport and impacts on regional visibility. U.S.EPA, Research Triangle Park,NC.
    [4]EPA,1995:Testing of meteorological and dispersion models for use in regional air quality modeling. Report prepared for U.S.EPA by Sigma Research/EARTH TECH,Concord,MA.
    [5]EPA,1998:Interagency Workgroup on Air Quality Modeling(IWAQM) Phase II Summary report and Recommendations for Modeling Long-Range Transport Impacts.EPA Publication No.EPA-454/R-98-019.
    [6]Maclntosh, David L., Stewart, James H., Myatt, Theodore A., Sabato, Joseph E.,.Use of CALPUFF for exposure assessment in a near-field, complex terrain setting.[J] Atmospheric Environment 2010,44,262-270.
    [7]Wang, L., Parker, David B., Parnell, Calvin B., Lacey, Ronald E., Shaw, Bryan W.,.Comparison of CALPUFF and ISCST3 models for predicting downwind odor and source emission rates.[J]Atmospheric Environment 2006,40,4663-4669.
    [8]Levy, Jonathan I., Spengler, John D., Hlinka, Dennis, Sullivan, David,. Using CALPUFF to evaluate the impact of power plant emission in lllino is model sensitivity and implications. [J]Atmospheric Environment 2002,36,1063-1075.
    [9]A User's Guide for the CALPUFF Dispersion Model 5,2000. Earth Tech, Inc, Concord, MA.
    [10]Liu, M.K. and M.A.Yockc,:Sitting of wind turbine generators in complex terrain. [J]Energy, 1980,4,10-16.
    [11]Scire, J.S. and F.R.Robe,1997:Fine-scale application of the CALMET meteorological model to a complex terrain site. Paper 97-A1313, AWMA90th Annual Meeting & Exhibition,June 8-13, Toronto,Ontario,Canada.
    [12]Mahrt, L. Momentum balance of gravity flows [J] J. of Atmos. Sci.,1982,39,2701-2711
    [13]Hanna, S.R.,L.L.Schulman,R.J.Paine,etc. Development and evaluation of the offshore and coastal Dispersion Model. JAPCA,35,1039-1047.
    [14]Holtslag, A.A.M. and A.P.van Ulden [J] Simple estimates of nighttime surface fluxes from routine Weather data. KNMI Scientific Report,W.R.82-4,11pp.
    [15]weil, J.C. and R.P. Brower,1983:Estimating convective boundary layer parameters for diffusion application. Draft Report Prepared by Environmental Center, Martin Marietta Corp. for Maryland Dept. of Natural Resources.
    [16]Maul,P.R.,1980:Atmospheric transport of sulfur compound pollutants. Center Electricity Generating Bureau MID/SSD/80/0026/R. Nottingham, England.
    [17]Venkatram,A.:Estimation of Monin-Obukov length in the stable boundary layer for dispersion calculations.[J] Boundary layer Meteorology,1980,19,481-485.
    [18]Petersen,W.B. A Demonstration of INPUFF with the MATS data base.[J] Atmospheric Environment,1986,20,1341-1346.
    [19]Ludwig,F.L., L.S.Gasiorek and R.E.Ruff. Simplification of a Gaussian puff model for real-time minicomputer use [J] Atmospheric Environment,1977,11,431-436.
    [20]Panofsky, H.,Tennekes, D.H.,Lenschow,etc. The characteristics of turbulent velocity components in the surface layer under convective conditions[J] Bound. Layer Meteor.,1977,11,355-361.
    [21]Hicks,B.B., Critical Assessment Document on Acid Deposition[M] Atmospheric Turbulence and laboratory, NOAA, Oak Ridge,TN,1982,344-356.
    [22]Blackadar,A.K., H.Tennekes. Asymptotic similarity in neutral baroscopic planetary boundary layers[J] Atmospheric Science,1968,25,1020-1025.
    [23]Briggs,G.A. Analysis parameterizations of diffusion:The convective boundary layer[J] Clim.and Appl.Meteor.1985,24,1167-1186.
    [24]蒋维楣,孙鉴泞,王雪梅等.空气污染气象学[M]南京大学出版社,2003,199-207.
    [25]Weil,J.C., R.P.Brower. A PDF Model for Buoyant Plumes in the Convective Boundary Layer.[J] Appl.Meteor.1997,36,982-1003.
    [26]Huber,A.H.,W.H.Snyder. Wind tunnel investigation of the effects of a rectangular-shaped building and dispersion of effluents from short adjacent stacks.[J]Atmospheric Environment, 1982,17,2837-2848.
    [27]Briggs, G.A. Plume rise predictions[C] Lecture on Air Pollution and Environmental Impact Analyses, American Meteorological Society,Boston,MA,59-111.
    [28]Garratt, J.R. The Atmospheric Boundary Layer[C] Cambridge University Press, Great Britain,1992,11-36.
    [29]Slinn,S.A., W.G.N.Slinn. Prediction for particle deposition on natural water[J] Atmospheric Environment,1980,14,1013-1016.
    [30]Scire,J.S.,E.M.,Insley,R.J.Yamartino. Model formation and user's guide for the CALMET meteorological model[M] Prepared for the California Air Resource Board by Sigma Research Corporation, Concord, MA.
    [3 l]Pleim, J.A., R.J. Yamartino. The Dry deposition model[M] Ontario Ministry of the Environment, Rexdale, Ontario,Canada,1984, Volume4.
    [1]USEPA,2008. Clarification of regulatory status of CALPUFF for near-field applications. U.S. Environmental Protection Agency, Research Triangle Park, NC.
    [2]A User's Guide for the CALPUFF Dispersion Model 5,2000. Earth Tech, Inc,Concord, MA.
    [3]Mosca, Sonia, Graziani, Giovanni,et al. A statistical Methodology for the evaluation of long-range Dispersion models:an application to the ETEX Exercise. Atmospheric Environment 1998,32, 4307-4324.
    [4]Byun, D. Dynamically consistent formulations in meteorological and air quality models:part a. Governing equations in a generalized coordinate system[J]Journal of Atmospheric Science,1999,56, 3787-3807.
    [5]Byun, D., Dynamically consistent formulations in meteorological and air quality models[J] Part. Mass conservation issues. Journal of Atmospheric Science,1999b,4307-4324.
    [6]Draxler,R.R. Determination of atmospheric diffusing parameters[J] Atmospheric environment, 1976,10,99-105
    [7]Grell, G.A., Dudhia, J., Stauffer, D.R., A description of the fifth generation Penn State/NCAR mesoscale model(MM5). NCAR Technical Note NCAR/TN-398tSTR, 1994.p.138.
    [1]USEPA,40CFR Part51 Revision to the Guideline on air quality models:adoption of a preferr ed General Purpose (Flat and complex terrain) dispersion model and other Revisions. US.E.P. Agency. Federal Register,2005.70 (No.216).
    [2]Masamichi CHINO, Hiromasa NAKAYAMA, Haruyasu NAGAI, Hiroaki TERADA, Genki KATATA and Hiromi YAMAZAWA. Preliminary Estimation of Release Amounts of 131I and 137Cs Accidentally Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere. [J].Journal of NUCLEAR SCIENCE and TECHNOLOGY.2011,48(7):1129-1134
    [3]Draxler, R.R., G.D. Hess. Description of The Hysplit 4 Modeling System.2004
    [4]MEXT. http://www.mext.go.jp/english
    [5]JCAC. http://www.icac.or.jp/lib/senryo
    [6]胡二邦,武清华,王辉等.太原市居民吸入途径风险研究[J]环境科学学报.2004,24(1):116-120
    [7]国家环保部.山西省环境质量公报(2010)[EB/OL]http://www.zhb.gov.cn
    [8]闫雨龙,何秋生,钱天伟.太原市大气污染现状及监测站优化[J]太原科技大学学报.2010,10:428-431
    [9]蒋维楣等.空气污染气象学[M]南京大学出版社2003.85-103
    [10]国家环保部.数据中心[EB/OL]http://www.zhb.gov.cn
    [11]黄健,颜鹏,Roland R Daxler利用HYSPLIT模式分析珠海地面S02浓度的变化规律.[J]热带气象学报.2002,04:56-62
    [12]Scire J S, Strimattis D G, Yamartino R J. A User's Guide for the CALPUFF Dispersion Model(Version 5)[M]. Concord, MA:Earth Tech Inc,2000:1-79
    [13]Draxler,R. R., G. D. Hess. An Overview of the Hysplit4 Modeling System for Trajectories Dispersion and deposition. Aust. Met.1998:47,295-308.
    [14]Levy, Jonathan I., Spengler, John D., Hlinka, Dennis, Sullivan, David. Using CALPUFF to evaluate the impact of power plant emission in Illino [J] Atmospheric Environment 2002,36:1063-1075.
    [15]温丽仙,李素清.太原市PM10污染分布规律.[J]安徽农业科学.2007.35(12)3642-3644
    [16]武辉,方清华,钱志强.太原市大气中PM10的监测’与分布[J]城市环境与城市生态.2002,15(3)49-51.
    [17]Ying Zhou, Jonathan I Levy, James K. Hammitt, Johns. Evans. Estimating Population Exposure to Power Plant Emissions Using CALPUFF:A Case Study in Beijing, China[J] Atmospheric Environment 2003,37:815-826.
    [1]Sonia mosca, Giovanni graziani, Werner klug. Astatistical Methodology for Evaluation of Long-range Dispersion Models:An Application to The ETEX Exercise[J] Atmosperic Environment, 1998,32,4307-4324.
    [2]S. Galmarini, F. Bonnardot, A. Jones. Multi-model vs. EPS-based ensemble atmospheric dispersion simulations:A quantitative assessment on the ETEX-1 tracer experiment case[J] Atmospheric Environment,2010,44,3558-3567.
    [3]S. Galmarinia,, R. Bianconib, R. Bellasio. Forecasting the consequences of accidental releases of radionuclides in the atmosphere from ensemble dispersion modellin[J] Journal of Environmental Radioactivity,2001,57,203-219.
    [4]L. Delle Monache, R.B. Stull.An ensemble air-quality forecast over western Europe during an ozone episode[J] Atmosperic Environment,2003,37,3469-3474.
    [5]Straume, AG. A more extensive investigation of the use of ensemble forecasts for dispersion model evaluation. [J] JOURNAL OF APPLIED METEOROLOGY,2001,30,425-445
    [6]Warner, TT, Sheu, RS, Bowers, JF. Ensemble Simulations with coupled atmospheric dynamic and dispersion models:Illustrating uncertainties in dosage simulations[J] JOURNAL OF APPLIED METEOROLOGY,2002,41,488-504
    [7]Bartnicki,, Saltbones, J, Foss, A. Performance of the SNAP model in an ENSEMBLE exercise of simulating real-time dispersion from a nuclear accident[J] INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION,2003,20,22-32
    [8]Andreas Becker, Gerhard Wotawa, Lars-Erik De Geer. Global backtracking of anthropogenic radionuclides by meansof a receptor oriented ensemble dispersion modelling system in support of Nuclear-Test-Ban Treaty verification[J]Atmospheric Environment,2007,41,4520-4534.
    [9]蒋维楣.[M]空气污染气象学.南京大学出版社,2003,120-126.
    [10]F.Desiato, D.Anfossi, S.Trinicastell.The Role of Wind Field,Mixing Hight and Horizontal Diffusivity Investigation Through Two Lagrangain Particle Models[J] Atmospheric Environment,1998,32,4157-4165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700