用户名: 密码: 验证码:
斜流泵启动过程瞬态非定常内流特性及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜流泵快速启动过程表现出区别于稳态过程的特殊性质,其瞬态工作特性可为泵系统提供瞬时流体动力,但瞬态效应引起的水力激振、冲击负载和空化破坏将对泵装置和管路系统的安全稳定运行带来严重影响。因此,研究斜流泵启动过程瞬态水力特性和内流机理,建立斜流泵适用于瞬态工作环境的设计、优化和应用方法具有重要的理论意义和工程应用价值。
     目前,斜流泵瞬态流动的研究理论十分缺乏。本文在斜流泵稳态工况非定常流动特性研究的基础上,优化设计具有较好稳态水力性能和汽蚀性能的研究模型,建立准稳态、瞬态启动内部流动的数值计算方法和叶轮转子动态特性的耦合模型,搭建斜流泵瞬态启动性能测试实验台。采用数值计算和实验研究相结合的方法,对斜流泵瞬态外特性和内部瞬态流动机理进行研究,为斜流泵瞬态工作过程中的非定常流动控制和优化提供理论依据。
     1.采用二元理论优化设计了2种斜流泵模型,并通过稳态数值计算方法对斜流泵模型在不同转速下的外特性和汽蚀性能进行预测分析。由于方案a的无量纲外特性和汽蚀性能均优于方案b。因此,将具有良好稳态水力性能的方案a模型作为本文启动过程瞬态内流特性研究的水力模型。
     2.采用准稳态数值计算方法分别对斜流泵模型在750、1150、1450r/min(?)急态转速下的外特性和内流场进行分析,并数值预测了1450r/min稳态转速下不同工况点的外特性和内流场分布。由于准稳态数值计算方法忽略了叶片旋转加速对外特性的影响,数值预测的瞬态外特性结果与实验瞬态外特性存在较大差别。对比准稳态工况与稳态转速不同流量下的内部非定常流动,准稳态工况内流场呈现一定的相似性,内部流动结构明显区别于稳态工况因流量变化引起的周期性非定常流动。
     3.针对准稳态数值方法预测斜流泵启动过程瞬态水力特性准确性差的问题,建立了斜流泵启动过程瞬态性能的数值计算方法。提出采用滑移交界面对斜流泵启动过程进行数值模拟,通过CEL表达式控制叶轮加速度,通过改变变量赋值来达到不同的启动效果,瞬态数值计算方法预测的瞬态外特性与实验结果吻合较好,相比准稳态数值计算的内流场,瞬态数值计算方法解析的内部流动因考虑叶轮旋转加速度和流体惯性力的影响表现出更强烈的非定常性,并由此带来不同于准稳态工况的瞬态外特性。
     4.基于瞬态流动的数值计算结果,首次采用双向交替流固耦合方法对斜流泵启动过程中的叶轮流场和结构场进行联合求解,获得了斜流泵启动过程瞬态效应对叶轮应力和应变的影响规律。叶轮旋转加速度带来的瞬时水流冲击对叶轮轮毂处造成了更大的应力集中,最大等效应力呈现几何倍数增长。动应力和变形量随转速变化趋势为斜流泵叶轮的瞬态水力特性优化设计及可靠运行提供理论参考。
     5.建立斜流泵瞬态性能测试实验台,进行了瞬态外特性、PIV内流测量和瞬态压力脉动测量。通过改造进口管结构首次实现了对斜流泵垂直轴截面进口流场的PIV拍摄。实验得到的外特性结果、瞬态的速度矢量场和压力脉动数据为斜流泵瞬态流动机理的探索提供了真实有效数据,同时为检验数值计算方法的正确性提供参考。
     6.研究结果表明,斜流泵瞬态流动的PIV测试和压力脉动结果与瞬态外特性实验结果较为吻合,斜流泵启动过程的瞬态效应是叶轮加速度、管阻特性、流体惯性与内部流动结构共同作用的结果,瞬态内部流动结构的演化直接表现为扬程、负载的瞬态冲击与瞬时流量的滞后效应。瞬态无量纲扬程曲线偏离稳态无量纲曲线,说明启动过程的瞬态水力特性不具有相似性,准稳态方法不适用于揭示斜流泵瞬态工作过程的内流特性。在获取瞬时流体动力的同时,瞬态效应对叶轮造成的水力冲击应该进行有效控制。本文的研究内容和结论可以为应用于瞬态工作过程中的水力机械的设计与优化提供理论参考和依据。
Mixed-flow pumps show special nature distinct from the steady-state process during rapid starting period and the transient characteristics can provide the instantaneous fluid dynamic for pump system. However, the effects of hydraulic exciting vibration, impact load and cavitation damage generated by transient effects on the safe and stable operation of pump device and piping system are serious. Therefore, the study of hydraulic characteristics and internal flow mechanism during the mixed-flow pump starting transient period and the establishment of design, optimization as well as application method for transient working environment have an important theoretical significance and application value.
     At present, the study theory of mixed-flow pump transient flow is considerable inadequate. In this paper, based on the unsteady flow characteristics study of a mixed-flow pump under steady-state condition, the research models with good steady-state hydraulic and cavitation performance were optimized and the numerical computation method for internal flow of quasi-steady state, transient and the coupled models of impeller rotor dynamic characteristics were established, moreover the test-bed for mixed-flow pump transient starting performance was developed. The transient external characteristic and internal transient flow mechanism were investigated by combining Numerical simulation and experimental study, providing the theoretical foundation for the control and optimization of unsteady flow during transient working period.
     1. Two mixed-flow pumps were optimized by using two-dimensional theory and the prediction and analysis of overall characteristics as well as cavitation performance of different speeds were conducted through steady Numerical simulation. As the dimensionless overall characteristics of case a are better than case b, then the case a of good steady-state hydraulic performance was employed as the hydraulic model for the starting transient internal flow characteristics study.
     2. The overall characteristics and flow field distribution of the mixed-flow pump model were analyzed by using quasi steady-state Numerical simulation at the speeds of750rpm,1150rpm and1450rpm, respectively, and the overall characteristics and flow field distribution at different operating points for1450rpm steady speed were predicted.
     There is a big difference in the transient overall characteristics of numerical prediction and that of experiment due to neglecting the effect of blade rotational acceleration on overall characteristics when using the quasi steady-state Numerical simulation method. Compared the inner unsteady flow under quasi steady-state and steady-state conditions, the flow fields of quasi steady-state presented a certain similarity, internal flow structure was distinct from periodic unsteady flow induced by flow rate changes of steady-state.
     3. Numerical simulation methods of transient characteristics for mixed-flow pumps were developed aiming at the poor accurate prediction of transient hydraulic characteristics by quasi steady-state numerical method. The sliding interface for mixed-flow pump starting transient numerical simulation was introduced, in which impeller acceleration was controlled through the CEL expression and different starting effect was achieved by changing the variable assignment. The calculation results show that transient overall characteristics predicted by transient numerical simulation agreed well with the experiment data. Compared with the internal flow field of quasi steady-state numerical simulation, the internal flow analyzed by transient numerical simulation method shown a greater sense of unsteady due to considering the impeller rotating acceleration and fluid inertia force, and thus led to the transient overall characteristics differed from quasi steady-state.
     4. Based on the results of numerical simulation of transient flow, the two-way alternating Fluid-Structure Interaction method was used for the combined solutions of impeller flow and structure field in the starting process of the mixed-flow pump, and obtained the effects of transient effect on the stress and strain of impeller during the starting period of the mixed-flow pump. The instantaneous water impact caused by impeller rotation acceleration led to a great stress concentration on the impeller hub, and the maximum equivalent stress increased in a geometrical progression. The change trend of dynamic stress as well as deformation with speed provides a theoretical reference for the optimized design of transient hydraulic characteristics as well as reliable operation.
     5. The test-bed for mixed-flow pump transient starting performance was developed, and the transient overall characteristics, PIV internal flow and transient pressure pulsation were measured. The PIV shooting of inlet flow field on a vertical axis section of the mixed-flow pump was achieved for the first time through reforming the inlet pipe structure. The overall characteristics, transient velocity vector field and pressure pulsation data got from experiments can provide the real and effective data for exploring transient flow mechanism of the mixed-flow pump.
     6. The research results show that, PIV measurements and pressure pulsation of the mixed-flow pump transient flow agree with the experiment results of transient external characteristics well. The transient effect of the mixed-flow pump during starting period is the result of impeller acceleration, pipe resistance characteristics and internal flow structure, the evolution of transient internal flow structure reflects the hysteresis effect of head, load and transient flow rate. The transient dimensionless head curve deviating from steady-state dimensionless curve shows that the transient hydraulic characteristics during starting period do not have a similarity, and the quasi steady-state method is not suitable for revealing the internal flow characteristics of the mixed-flow pump. When obtaining the instantaneous fluid dynamics, it is necessary to carry out the effective control of hydraulic impact of impeller caused by transient effects. The contents and conclusions of this study can provide a theoretical reference and basis for the design and optimization of hydraulic machinery applied in the transient working process.
引文
[1]潘中永,倪永燕,袁寿其,等.斜流泵研究进展[J].流体机械,2009,37(9):37-40.
    [2]何希杰,李艳辉,高瑛,等.斜流泵的现状与发展趋势[J].通用机械,2003,(9):21-23.
    [3]Miyabe M, Maeda H, Umeki I, et al. Unstable head flow characteristic generation mechanism of a low specific speed mixed flow pump[J]. J. of Thermal Science,2006,1 (2):115-120.
    [4]Allievi. The Theory of Water hammer. English Translation by Halmos. ASME, New York,1925.
    [5]Bergeron. Study on the steady Variation in Water-filler conduits. General Graphical Solution. Revue General de LHydraulique,1935,1(1).
    [6]Wylie and V.L. Streeter. Fluid transients [M].New York:McGraw-Hill,1978
    [7]J.A.福克斯.管网中的不稳定流动的水力分析[M]..北京:石油工业出版社,1983.
    [8]秋元德三.水击与压力脉动[M].北京:电力工业出版社,1981.
    [9]Rawal S, Kshirsagar JT. Numerical simulation on a pump operating in a turbine mode,Kirloskar Brothers India Limited.In:Proceedings of the twenty-third international pump users symposium;2007.
    [10]马素霞.泵系统的瞬变流特性[M].北京:中国水利水电出版社,2007.
    [11]I.Demirdzic and M.Peric. Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries[J].International Journal for Numerical Methods in Fluids,1990,10(7):771-790.
    [12]李志峰.离心泵启动过程瞬态流动的数值模拟和实验研究[D].2009.
    [13]Dazhuan Wu, Leqin Wang and Zongrui Hao. Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation[J]. Journal of Mechanical Science and Technology,2010,24(2):575-582.
    [14]Kazem Farhadi. Transient behaviour of a parallel pump in nuclear research reactors[J]. Progress in Nuclear Energy,2011,53(2011):195-199.
    [15]H.Tsukamoto and H.ohashi.Transient characteristics of a centrifugal pump during starting period[J].ASMEJoumal of Fluid Engineering,1982,104(l):6-13.
    [16]H.Tsukamoto, S.Matsunaga and H.Yoneda.Transient characteristics of a centrifugal pump during stopping period[J].ASME Journal of Fluid Engineering,1986,108(4):392-399.
    [17]P.J.Lefebvre and W.P.Barker. Centrifugal pump performance during transient operation[J]. ASME Journal of Fluid Engineering,1995,117(2):123-128
    [18]许斌杰,李志锋,吴大转,等.离心泵启动过程瞬态特性的研究[J].中国科技论文在线,2009,4(9):644-649.
    [19]吴大转,王乐勤,胡征宇.离心泵快速启动过程瞬态水力特性的数值模拟[J].浙江大学学报,2005,39(9):1427-1454.
    [20]李志峰,王乐勤,戴维平,等.离心泵启动过程的涡动力学诊断[J].工程热物理学报,2010,,31(1):48-51.
    [21]吴大转,焦磊,王乐勤.离心泵启动过程瞬态空化特性的试验研究[J].工程热物理学报,2008,29(10):1682-1684.
    [22]李志峰,吴大转,王乐勤,等.离心泵启动过程瞬态特性的试验[J].排灌机械工程学报,2010,28(5):389-393.
    [23]吴大转,王乐勤,胡征宇.离心泵快速启动过程外部特性的实验研究[J].工程热物理学报,2006,27(1):68-70.
    [24]平仕良,吴大转,王乐勤.离心式水泵快速开启过程的瞬态效应分析[J].浙江大学学报,2007,41(5):814-817.
    [25]王乐勤,李志锋,戴维平,等.离心泵启动过程内部瞬态流动的二维数值模拟[J].工程热物理学报.2008,29(8):1319-1322.
    [26]杨华,刘超,汤方平,等.采用PIV研究离心泵转轮内部瞬态流场[J].水动力学研究与进展.2002,17(5):547-552.
    [27]Sami Elaoud and Ezzeddine Hadj-Taieb. Nuclear Engineering and Design[J]. Influence of pump starting times on transient flows in pipes,2011,241(2011):3624-3631.
    [28]ZHANG De-sheng, SHI Wei-dong and CHEN Bin. UNSTEADY FLOW ANALYSIS AND EXPERIMENTAL INVESTIGATION OF AXIAL-FLOW PUMP[J]. Journal of Hydrodynamics,2010,22(1):35-43.
    [29]Kazem Farhadi. Transient behavior of a cavitating centrifugal pump at rapid change in operating condition[J]. Progress in Nuclear Energy,2011,53 (2011) 195-199.
    [30]Shi,F. and Qin,W. Unsteady computations of pressure fluctuation downstream of a diffuser pump impeller[J]. American Society of Mechanical Engineers,1994.
    [31]Zhu Zuchao, Guo Xiaomei and Cui Baoling. External characteristics and internal flow features of a centrifugal pump during rapid startup[J].2011,24(5):798-804.
    [32]S.Kocabiyik. An accelerated flow around a sphere [J].Applied Mathematics Letters,1996,9(3):41-46
    [33]R.Bouard and M.Countanceau. The early stage of development of the wake behind an impulsively started cylinder for 40    [34]M.Countanceau and C.menard. Influence of rotain on the near-wake development behind an impulsively started circular cylinder[J].journal of Fluid Mechanics,1985,158:399-446.
    [35]S.Duplaa. Experimental Study of a Cavitating Centrifugal Pump During Fast Startups[J]. Journal of Fluids Engineering,2010,132:1-12.
    [36]李志峰,吴大转,王乐勤.基于动网格方法的圆柱启动瞬态流动数值模拟[J].浙江大学学报,2008,42(2):264-268.
    [37]许斌杰,李志峰,吴大转,等.离心泵启动过程瞬态湍流流动的数值模拟研究[J].中国科 技论文在线,2010,5(9):682-687.
    [38]杨从新,王斌.离心泵在启动阶段的瞬态三维数值模拟[J].排灌机械工程学报.2010,28(2):122-126.
    [39]吴大转,焦磊,王乐勤.离心泵启动过程瞬态空化特性的试验研究[J].工程热物理学报,2008,29(10):1682-1684.
    [40]曹卫东,张晓娣,施卫东.采用径向回流平衡孔的低比速离心泵压力脉动特性[J].水利水电科技进展,2011,31(5):22-26.
    [41]袁寿其,周建佳,袁建平,等.带小叶片螺旋离心泵压力脉动特性分析[J].农业机械学报,2012,43(3):83-92.
    [42]袁建平,付燕霞,刘阳,等.基于大涡模拟的离心泵蜗壳内压力脉动特性分析[J].排灌机械工程学报,2010,28(4):310-314.
    [43]解元玉,段滋华,孙亮.流固耦合系统计算方法及应用软件概述[J].广州化工,2011,39(1):34-37.
    [44]陈香林.混流式水轮机叶片流固耦合动力特性研究[硕十学位论文].昆明:昆明理工大学,2004.
    [45]W.Dettmer, D.Peric. A computational framework for fluid-structure interaction:Finite element formulation and applications[J],Comput Methods Appl. Mech.Engrg,206(195):5754-5779.
    [46]Rodriguez C G, Equsquiza E, Escaler X, et al. Experimental investigation of added mass effects on a Francis turbine runner in still water[J]. J. Fluids and Structures,2006, 22(5):699-712.
    [47]Ohashi H. Vibration and Oscillation of Hydraulic Mavhinery[M]. Cambridge University Press,1991.
    [48]B.Koobus and C.Farhat. Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes[J].Computer Methods in Applied Mechanics and Engineering,1999,170:103-129.
    [49]张宇宁,刘树红,吴玉林,等.轴流式水轮机转轮流固耦合计算[J].工程热物理学报,2008,29(10):1673-1675.
    [50]姬晋廷,陈国强,涂玉平.轴流式水轮机叶片的刚强度及模态有限元分析[J].华中电力,2005.
    [51]郑小波,罗兴琦,邬海军.轴流式叶片的流固耦合振动特性分析[J].西安理工大学学报,2005,21(4).
    [52]肖若富,韦彩新.混流式水轮机转轮的动力学研究[J].大电机技术,2001(7):41-42.
    [53]张丽霞,张伟,潘际奎.基于流固祸合理论的混流式叶片动力学分析[J],清华大学学报(自然科学版),2008,48(5):773-776.
    [54]Brennen C E. Hydrodynamics and cavitation of pumps[M]. Vienna:Springer,2008.
    [55]Benra F K, Dohmen H J. Comparison of pump impeller orbit curves obtained bymeasurement and FSI simulation[C]. ASME PVP2007-26149,2007.
    [56]Guadaqni, Gualtiero, Fiore, et al. A fluid-structure analysis of the structural and fluid dynamic behaviour of a new disposable pulsatile pump for cardiopulmonary bypass [J]. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, v50, 2001:229-230.
    [57]Langthjem M A. A numerical study of flow-induced noise in a two-dimensional centrifugal pump, Part I:hydrodynamics[J]. J. Fluid and Structures,2004,19(3):349-368.
    [58]王洋,王洪玉,徐小敏,等.冲压焊接离心泵叶轮有限元计算[J].排灌机械工程学报,2011,29(3):109-113.
    [59]袁启明.轴流泵叶片流固耦合振动特性分析[硕士学位论文].扬州:扬州大学,2009.
    [60]陈向阳,袁丹青,杨敏官,等.基于流固耦合方法的300MWe级反应堆主泵叶片应力分析[J].机械工程学报,2010,46(4):111-115.
    [61]B.P.M.van Esch, N.P.Kruyt. Hydraulic Performance of a mixed-flow pump:Unsteady Inviscid Computations and Loss Models. Journal of Fluids Engineering[J].2001:256-264.
    [62]Chisachi Kato. Les of internal flows in a mixed-flow pump with performance instability[C]. Proceedings of ASME FEDSM02. ASME 2002 Fluids Engineering Division Summer Meeting Montreal, Quebec, Canada, July 14-18,2002:955-962.
    [63]Fernandez. J, Santolaria.C. A Numerical Analysis of a Mixed Flow Pump[C]. Proceedings of ASME FEDSM02. ASME 2002 Fluids Engineering Division Summer Meeting. Montreal, Quebec, Canada, July 14-18,2002:791-798.
    [64]钱晓,徐天茂,张赛珍,等.关于斜流泵的开发与研究——斜流泵的设计方法[J].云南水力发电,1997,2:74-78.
    [65]王乐勤,吴大转.混流泵管路负载快速变化过程瞬态特性的试验研究[J].产品检测与试验技术,2003,2:64-68.
    [66]陈炜,柯仙文,吴大转,等.混流泵停机过程的瞬态水力特性分析研究[J].流体机械,2006,34(12):1-4.
    [67]王乐勤,吴大转,郑水英.混流泵开机过程瞬态水力性能的数值计算[J].流体机械,2004,32(1):9-13.
    [68]王乐勤,吴大转,郑水英.混流泵瞬态水力性能试验研究[J].流体机械,2003,31(1):1-6.
    [69]王乐勤,吴大转,郑水英,等.混流泵开机瞬态水力特性的试验与数值计算[J].浙江大学学报,2004,38(6):751-755.
    [70]施卫东,邹萍萍,张德胜,等.高比转速斜流泵内部非定常压力脉动特性[J].农业工程学报,2011,27(4):146-152.
    [71]张德胜,施卫东,王川,等.斜流泵叶轮和导叶叶片数对压力脉动的影响[J].排灌机械工程学报,2012,30(2):167-170.
    [72]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [73]祝宝山.非定常流动的快速拉格朗日涡方法数值模拟[J].力学学报,2008,40(1):9-17.
    [74]黄剑峰,张立翔,王文全,等.混流式水轮机三维非定常流分离涡模型的精细模拟[J].中国电机工程学报,2011,31(26):82-89.
    [75]金鑫,祝宝山,曹树良.三角翼周围非定常流动的三维涡方法数值模拟[J].清华大学学报,2008,48(2):255-259.
    [76]王龙步,祝宝山,王宏,等.水力机械非定常的三维涡方法计算[J].力学学报2012,44(3):520-527.
    [77]冯卫民,宋立,左磊,等.轴流泵装置三维非定常湍流流场的数值模拟[J].排灌机械工程学报,2010,28(6):531-536.
    [78]祝宝山,王旭鹤,龟本乔司,等.流体机械非定常流动的涡方法数值模拟[J].水力发电学报,2011,30(5):178-184.
    [79]韩忠华,宋文萍,乔志德,等.一种隐式预处理方法及其在定常和非定常流动数值模拟中的应用[J].计算物理,2009,26(5):679-684.
    [80]Liu Hou-Lin, Lu Ming-Zhen and Lu Bin-Bin. Unsteady flow numerical simulation in a double channel pump and measurements of pressure fluctuation at volute outlet[C] Proceedings of the ASME Fluids Engineering Division Summer Conference,2009.
    [81]Yoshida, Y. Design method of curved diffusers for high performance mixed flow pumps [J]. Proceedings of 12th IAHR Symposium, Trondheim,1988:541-552.
    [82]T. Takemura, A. Goto. Experimental and numerical study of three-dimensional flows in a mixed-flow pump stage [J]. ASME 94-GT-44.
    [83]Yoshiki Yoshida, Yoshinori Murakami. Rotating stalls in centrifugal impeller/vaned diffuser systems [J]. ASME/JSME Joint Fluids Engineering, FED-107, Portland,1991:125-130.
    [84]Manish Sinha. Rotor-stator interactions, turbulence modeling and rotating stall in a centrifugal pump with diffuser vanes [D]. The Johns Hopkins University,1999,8
    [85]T. Takemura, A. Goto. Experimental and numerical study of three-dimensional flows in a mixed-flow pump stage [J], ASME Journal of Turbomachinery,1996,118(6):552-561
    [86]Akira Goto. Numerical and experimental study of 3D flow fields within a diffuser pump stage at off-design condition [J]. ASME-JSME Fluids Engineering Joint Conference, FED-227:1-9
    [87]王新,魏述和.大型泵站的流固耦合振动分析[J].人民长江,2009,40(22):56-59.
    [88]郭军刚,王春伙,胡丽国,等.基于流—固耦合方法的涡轮叶片热应力仿真[J].强度与环境,2012,39(1):22-28.
    [89]臧庆,王琪民,厉玉康,等.考虑流固耦合的压电微小泵的有限元运动分析[J].中国机械工程,2006,17(6):582-586.
    [90]刘小民,王星,许运宾,等.运动罐体内液体晃动的双向流固耦合数值分析[J].西安交通大学学报,2012,46(5):120-126.
    [91]周知进,卢浩,王钊,等.垂直提升管道输送过程流固耦合分析[J].应用力学学报,2012,29(3):310-313.
    [92]廖传军,黄伟峰,索双富,等.核主泵机械密封的流固强耦合模型[J].中国科学,2011,41(12):1649-1657.
    [93]Byung Hoon Park, Ji Hwan Lim and Woongsup Yoon. Fluid dynamics in starting and terminating transients of zero-secondary flow ejector[J]. International Journal of Heat and Fluid Flow,2008,29(2008):327-399.
    [94]Kazem Farhadi, Anis Bousbia-salah and Franscesco D'Auria. A model for the analysis of pump start-uptransients in Tehran Research Reactor[J]. Progress in Nuclear Energy,2007,29(2007):499-510.
    [95]Wu Dazhuan, Wu Peng and Li Zhifeng. The transient flow in a centrifugal pump during the discharge valve rapid opening process[J]. Nuclear Engineering and Design,2010,240 (2010) 4061-4068.
    [96]Duplaa, S. Coutier-Delgosha, O. and Dazin, A. Experimental characterization and modelling of a cavitating centrifugal pump operating in fast start-up conditions[R].13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,2010.
    [97]Kazem Farhadi, Anis Bousbia-salah and Franscesco D'Auria. A model for the analysis of pump start-up transients in Tehran Research Reactor[J]. Progress in Nuclear Energy,2007,49 (2007) 499-510.
    [98]徐玉明,迟卫,莫立新,等.PIV测试技术及其应用[J].PIV测试技术及其应用,2007,29(3):101-105.
    [99]王玲花,高传昌,陈德新,等.水泵水轮机流动可视化研究[J].水力发电,2005,31(7):61-63.
    [100]李亚林,袁寿其,汤跃,等.离心泵内部流动PIV测试研究进展[J].水泵技术,2010,5:1-5.
    [101]Kadambi J R, Charoenngam P, Subramanian A. Investigations of Particle Velocities in a Slurry Pump Using PIV:Part 1:the Tongue and Adjacent Channel Flow[J], J of Energy Resources Technology,2004,126(4):271-278.
    [102]Akin O, Rockwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry[J]. ASME Journal of fluids engineering, 1994,116:538-544.
    [103]Paone N. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry[J]. Experiments in Fluids,1989,7:371-378.
    [104]Stoffel B, Ludwig G, Weiss K. Experimental Investigations on the Structure of Part-Load Recirculations in Centrifugal Pump Impellers and the Role of Different Influence[J]. Proc of 16th IAHR Symp,1992,445-454.
    [105]Miner S M, Beaudion R J, Flack R D. Laser Velocimeter Measurements in a Centrifugal Flow Pump[J]. Trans ASME,J Turbomachinery,1989,111:205-212.
    [106]Oldenburg M. Velocity measurement in the impeller and in the volute of a centrifugal pump by particle image displacement velocimetry[C]. Proceedings of the 8th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon,1996.
    [107]Pedersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions-Part I:Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements[J]. Journal of Fluids Engineering,2003,125(1):61-72.
    [108]Dong R. Quantitative visualization of the flow with the volute of a centrifugal pump - Part A [J]. Journal of Fluids Engineering,1992,114:390-395.
    [109]Feng J, Benra F, Dohmen H J. Time-resolved particle image velocity(PIV) measurements in a radial diffuser pump[C]. Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting/FEDSM2009-78297,August 2-6,2009,Colorado,USA.
    [110]Shepherd I C, La Fontaine R F, Welch L W, et al. Velocity measurement in fan rotors using particle image velocimetry[C]. Laser Anemometry 1994: Advances and Applications ASME FED, New York:1994,191:179-183.
    [111]Stickland M T, Scanlon T J, Fernandez-Francos J, et al. A numerical and experimental analysis of flow in a centrifugal pump[J].American Society of Mechanical Engineers, Fluids Engineering Division,2002,257(2B):703-708.
    [112]陈斌,张华,施卫东,等.超厚叶片低比转速无过载排污泵数值计算与PIV实验[J].农业机械学报,2012,.43,(5):74-48.
    [113]赵斌娟,袁寿其,刘厚林,等.双流道泵内非定常流动数值模拟及粒子图像测速测量[J].机械工程学报,2009,45(9):82-88.
    [114]赵斌娟,袁寿其,刘厚林,等.双流道及双叶片式叶轮内流场的PIV测量与比较[J].农业机械学报,2008,39(12):82-85.
    [115]王凯,刘厚林,袁寿其,等.零流量工况下双叶片泵内部流场三维PIV测量[J],农业机械学报,2011,42(7):61-65.
    [116]Wang Kai, Liu Houlin,Yuan Shouqi, et al. Numerical simulation and stereo PIV test of inner flow in a double blades pump[C]. Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011/AJK2011-06062,July 24-29,2011,Hamamatsu,Japan.
    [117]朱宏武,薛敦松,董守平.用PIV技术研究离心泵扩散段第八断面内流场[J],工程热物理学报,1995,16(4):440-443.
    [118]陈松山,周正富,何钟宁,等.离心泵偏置短叶片叶轮内部流动的粒子图像速度测量[J].机械l工程学报,2008,44(1):56-61.
    [119]邵春雷,顾伯勤,黄星路,等.低比转数泵叶轮流道内部流动的PIV实验[J].航空动力学报,2010,25(9):2091-2096.
    [120]周正富,陈松山,耿卫明,等.3叶片离心泵内流场的PIV测量[J].扬州大学学报,2006,9(3):72-75.
    [121]袁寿其,何有世,袁建平,等.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟[J].机械工程学报,2006,42(5):60-63.
    [122]刘栋,杨敏官,高波.离心泵叶轮内部伴有盐析流场的PIV实验[J].农业机械学报,2008,39(11):55-58.
    [123]李文广.大出口角离心泵叶轮内部清水流动测量[J].农业机械学报,1999,30(2):54-59
    [124]王玲花,高传昌,等.水泵水轮机流动可视化研究[J].水力发电,2005,31(7):61-63.
    [125]张克危.流体机械原理(上册)[M].北京:机械工业出版社,2006.
    [126]Wu C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial radial and mixed flow types. NACA TN 2604,1952.
    [127]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
    [128]张树生,吴大转.混流泵启动过程汽蚀性能的试验研究[J],流体机械,2012,33(1):1-10.
    [129]甘加业,薛永飞,吴克启.混流泵叶轮内空化流动的数值计算[J],工程热物理学报,2007,28(1):166-168.
    [130]常书平,王永生.基于CFD的混流泵空化特性研究[J].排灌机械工程学报,2012,30(2):173-180.
    [131]关醒凡.轴流泵和斜流泵[M].北京:中国宇航出版社,2009.
    [132]刘二会.泵阀调节过程瞬态特性的数值模拟[硕士学位论文].镇江:江苏大学,2012.
    [133]李宝良,范振兴,霍焰.基于CFD混流泵内流场数值分析[J].大连交通大学学报,2011,32(4):43-46.
    [134]孔繁余,王文廷,黄道见,黄建平,耿纪中.前置导叶调节混流泵性能的数值模拟[J],农业工程学报,2010,26(10):124-128.
    [135]潘中永,李俊杰,李晓俊,袁寿其.斜流泵不稳定特性及旋转失速研究[J].农业机械学报,2012,43(5):64-68.
    [136]朱红耕,张仁田,程吉林,姚林碧,张斌.变速运行混流泵装置性能预测与参数换算[J],水力发电学报,2010,29,No6:205-209.
    [137]邴浩,曹树良,谭磊,陆力.混流泵导叶对其性能的影响[J].排灌机械工程学报,2012,30(2):125-130.
    [138]邴浩,曹树良,谭磊,陆力.速度矩分布规律的参数化描述及对混流泵性能的影响[J].农业工程学报,2012,.28(43):100-105.
    [139]D.M.Manole and J.L.Lage. Nonuniform gira accuracy test applied to the natural convection flow within a porous medium cavity[J]. Numerical Heat Transfer. Part B,1993,23:351-368.
    [140]Sumio SAITO. The transient characteristics of a pump during start up[J]. Bulletin of the JSME, Vol.25:372-379, No.201, Mach 1982.
    [141]ANSYS Inc. Theory Reference. ANSYS Inc,2004
    [142]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [143]王学.基于ALE方法求解流固耦合问题[D].[硕十学位论文],国防科学技术大学,2006.
    [144]裴吉.基于于流固耦合的离心泵流动诱导振动特性数值研究[D].[硕士学位论文],江苏大学,2009.
    [145]Sayma A I, Vahdati M, Imregun M. An integrated nonlinear approach for turbo machinery forced response prediction-Part I: formulation[J]. J. Fluids and Structures,2000,14:87-101.
    [146]Morand H J-P, Ohayon R. Fluid-structures interaction[M]. Chichester: John Wiley and Sons, 1995.
    [147]孔繁余,王婷,王文廷,周水清.基于流固耦合的高温泵叶轮应力有限元分析[J],江苏大学学报,2012,33(3):269-273.
    [148]陈山,杨策,杨长茂,等.几何参数对离心叶轮强度和气动性能影响的研究[J].流体机械,2012,40(3):21-26.
    [149]陈香林.混流式水轮机叶片流固耦合动力特性研究[D].[硕士学位论文],昆明理工大学,2004.
    [150]周东岳,祝宝山,上官永红,曹树良.基于流固耦合的混流式水轮机转轮应力特性分析[J].水力发电学报,2012,31(4):217-220.
    [151]邬海军.水轮机叶片三维有限元刚强度与振动特性研究[D].[硕十学位论文],西安理工大学,2005.
    [152]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报,2004,18(2):123-126.
    [153]骆清国,司东亚,冯建涛,垄正波.基于流固耦合方法的离心式压气机叶片强度与振动特性研究[J].车用发动机,2012(2):51-54.
    [154]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [155]杨兴林,陈波,陈栋.基于流固耦合技术的特定结构瞬态冲击载荷响应分析[J].江苏科技大学学报(自然科学版),2012,26(1):35-39.
    [156]李伟,施卫东,蒋小平,等.基于APDL的多级离心泵泵轴强度有限元分析[J].农业机械学报,2012,43(5)92-96.
    [157]张双全,吴俊,秦仕信,袁晓辉.基于ANSYS的混流泵转轮力学特性分析[J].水电能源科学,2010,28,No10:107-112.
    [158]吴宇飞,王跃方.径向基函数插值在叶轮流固耦合分析中的应用[J].风机技术,2012(3):37-39.
    [159]王洋,王洪玉,张翔,等.基于流固耦合理论的离心泵冲压焊接叶轮强度分析[J].农业工程学报,2011,27(3):131-136.
    [160]廖伟丽,徐斌,逯鹏,等.部分负荷下混流式水轮机转轮叶片变形对流场的影响[J].机械工程学报,2006,42(6):55-59.
    [161]潘旭,李成,铁瑛,张万枝.轴流泵叶片流固耦合强度分析[J].水力发电学报,2012,31(4):221-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700