用户名: 密码: 验证码:
基于统计建模的雷达高分辨距离像目标识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代战争信息化和智能化水平的提高,军方对雷达自动目标识别的需求愈加迫切。与窄带雷达相比,宽带雷达有着更高的距离分辨率,能够提供更多的目标结构信息,因此基于宽带雷达信号的目标识别受到广泛关注。常用的宽带信号有高分辨距离像(HRRP)和合成孔径雷达像(包括SAR和ISAR像)两类,与后者相比,HRRP具有易于获取和处理简单等优势,逐渐成为目标识别领域的研究热点。
     本论文主要围绕国防预研等相关项目,结合雷达HRRP目标识别的理论与工程应用背景,从特征提取、统计建模以及噪声稳健识别等方面展开相关研究。论文的主要工作概括如下:
     1.分析了HRRP的方位敏感性,阐明了对HRRP样本分帧建模的原因,并提出了一种基于子空间模型和Kullback-Leibler距离的子帧合并分帧方法。实验结果表明,该方法能够按照目标姿态的变化将相似分布的样本划分到同一帧中。因此,该方法不但降低了各类目标的总帧数而且提高了系统的识别性能。
     2.研究了噪声背景下的识别问题。许多工作都假设训练和测试样本具有很高的信噪比,在识别中忽略了噪声的影响。但在实际战场条件下,目标回波中总是不可避免地含有噪声,而训练与测试样本间信噪比的失配会使识别性能恶化。我们回顾了已有的噪声稳健识别方法,指出了它们的优势与不足。然后提出了一种新的噪声稳健识别思路,即向训练样本中加入噪声来学习各种信噪比下的模板,并在测试阶段选择相应信噪比下的模板进行匹配。实验结果表明这种方法能够避免训练与测试样本间信噪比的失配,改善了系统在低信噪比条件下的识别性能。
     3.研究了HRRP识别中的特征提取问题。原始的HRRP数据具有较高的维度和较多的敏感性,给识别工作带来了不便。我们分析了HRRP频谱幅度的统计特性,提出使用自回归模型对频谱幅度的广义平稳性建模,并提取自回归系数和偏相关系数作为识别特征。这两种特征维度较低,同时具有平移和强度不变性,而且保留了频谱幅度的结构信息。此外,为了克服HRRP的方位敏感性,我们提出了一种基于混合高斯模型的自适应分帧算法。该算法不但可以自动确定总帧数,而且能够保证各帧内样本统计特性一致,避免了样本与模型失配。
     4.研究了小样本识别问题。HRRP具有较高维度,而实际获取的样本数量又很有限,因此HRRP识别是一个典型的小样本学习问题。我们提出使用HRRP频谱幅度(以下简称频幅)作为识别特征,并沿频率维对其序列建模。这种建模方式将频幅视为一维的序列数据,从而既达到了降维的目的,又避免了传统降维方法中的信息损失。我们首先假设频幅分量服从高斯分布,采用线性动态模型对频幅序列建模。该模型能够描述频幅序列的广义平稳性,具有较好的识别性能。之后我们进一步分析了频幅分量的统计特性,认为其服从多模分布,于是采用混合自回归模型对频幅序列建模。由于该模型更加准确地描述了频幅的统计特性,因此其识别性能进一步提高。以上序列模型自由度都很低,而且使用一个样本就能估计它们所有的参数,这些性质使得它们能够在小样本条件下具有良好性能。
     5.研究了统计建模与模型选择的问题。HRRP服从联合非高斯分布,且样本间有较强的时序相关性。我们提出使用局部因子分析模型对HRRP的非高斯性和维间相关性建模,使用时序因子分析模型对HRRP的子空间结构和时序相关性建模。这二者对HRRP统计特性描述地更加准确,所以识别性能较传统模型有明显特高。另外传统的模型选择方法存在着计算量大、模型选择准则评估不可靠的问题。为此,我们采用Bayesian Ying-Yang (BYY)和谐学习理论进行模型学习,它能够在估计参数的同时自动完成模型选择。与传统方法相比,BYY学习显著降低了计算量,并提高了参数估计和模型选择的精度。
     6.研究了复HRRP识别问题。我们分析了初相对复HRRP统计特性的影响,指出初相变化并不影响复HRRP的统计分布,进而提出采用复数因子分析(CFA)模型对复HRRP统计建模。由于利用了复HRRP中的相位信息,CFA模型的识别性能要优于FA模型。另外,我们同时提出一种针对CFA模型的噪声自适应修正算法。在复HRRP识别中,含噪测试样本内的噪声完全为加性噪声,修正模型参数时将不存在实HRRP识别中的模型-数据失配问题,因此该算法会有更好的噪声稳健性。
With the application of information and intelligence technologies in modernwarfare, there is an urgent need for Radar Automatic Target Recognition (RATR).Wideband radar can provide abundant target structure information, and thus hasreceived intensive attention from the RATR community. The general wideband signalsinclude High Resolution Range Profile (HRRP) and Synthesized Aperture Radar (SAR)image or Inverse SAR image. Since the former is easily obtained and computationallyefficient, HRRP based recognition is more attractive in many circumstances. Thisdissertation focuses on HRRP recognition from feature extraction, statistical modelingand noise robustness, etc. The main research efforts are summarized as follows.
     1. The first part analyzes the target-aspect sensitivity of HRRP and proposes a newframe partition method which is based on subspace modeling and Kullback-Leiblerdistance. Experimental results show that the new method can allocate those samplesfollowing the similar statistical distribution into a same frame, and hence decrease thetotal frame number of all targets and improve the final recognition performance.
     2. The second part focuses on noise robust recognition. In many literatures, it wasassumed that the training and testing samples were measured under high signal-to-noise(SNR) ratio conditions, and the effect of noise was ignored. However, in practicalapplications the testing samples are unavoidably contaminated by noise, andconsequently the SNR mismatches between training and testing samples will deterioratethe recognition performance. We firstly make a review of existing methods and thenpropose a new framework for noise robust recognition. In the training phase, we learndifferent models for different SNRs by adding noise into the clean samples, while in thetesting phase we choose appropriate models for recognition based on the estimated SNRvalue of testing sample. Experimental results show the new framework can considerablyimprove the recognition performance under low SNR conditions.
     3. In the third part, feature extraction from HRRP is discussed. HRRP ischaracterized by high-dimensionality and four sensitivities, which pose hurdles forHRRP based target recognition. After analyzing the statistical property of HRRP’sfrequency spectrum amplitude (FSA), we propose to model FSA by Autoregressive (AR)model and extract the AR coefficients and partial correlation coefficients as recognitionfeatures. Both the two features are low-dimensional and invariant to translation and amplitude-scale changes of HRRP, and more importantly, they preserve most of thestructure information of FSA. In addition, to tackle the remaining target-aspectsensitivity, we propose a Gaussian mixture model based frame partition method whichcan determine the frame number automatically and guarantee the distributionconsistency of samples in each frame.
     4. The fourth part manages to fulfill the recognition task under small trainingsample size condition. Both the high feature dimensionality and limited sample sizemake HRRP based recognition a typical small sample learning problem. To cope withthis, we adopt FSA as recognition feature and model it along the frequency dimensionby sequential models. In this way, we relax the heavy requirement of training samples inHRRP recognition. Firstly, assuming the FSA components are Gaussian distributed, weemploy Linear Dynamic model to describe FSA. This model can well capture thestationarity of FSA and thus obtain satisfactory recognition performance. Afterwards,experimental results based on measured data reveal that the Gaussian assumption isinappropriate, hence we further make a study on more accurate statistical modeling.Mixture Autoregressive model is thus introduced to describe the stationarity andmulti-modality of FSA simultaneously which show incremental improvements onrecognition accuracy. The models mentioned above have low degrees of freedom and alltheir parameters can be estimated via a single sample, which collectively make theirrecognition performance robust to the variation of training sample size.
     5. In the fifth part, we investigate accurate statistical modeling and model selectionproblem. HRRP samples are temporally dependent and jointly non-Gaussian distributed,the statistical modeling of which is a challenging task for HRRP based recognition. Ourmain work includes:1) adopting Local Factor Analysis model to describe thenon-Gaussian property and inter-dimensional dependency of HRRP;2) employingTemporal Factor Analysis model to describe the spatio-temporal structure of HRRP.Since both the two models can describe HRRP more accurately, they achieve betterperformance than traditional models. Furthermore, the conventional two-phaseapproach for model learning suffers from intensive computation burden and unreliableevaluation. To tackle these problems, we adopt Bayesian Ying-Yang (BYY) harmonylearning that has automatic model selection ability during parameter estimation.Experimental results illustrate that the BYY learning can significantly decrease thecomputation burden while improving the accuracy of parameter estimation and modelselection.
     6. The last part demonstrates the feasibility of recognition using complex HRRP. Based on the theoretical analysis, it is pointed out that the variation of initial-phase hasno effect on the statistical distribution of HRRP. So it is natural to generalize the FAmodel to the complex domain and model complex HRRP directly. By using additionalphase information in complex HRRP, the complex FA (CFA) model is superior to the FAmodel in recognition performance. Also, we develop a noise adaptive modificationalgorithm for the CFA model. Since there is no approximation made in the modificationstep, this algorithm can gain better performance under low SNR conditions.
引文
[1] Skolnik M. I.. Introduction to Radar Systems. Third Edition. McGraw-Hill Inc.2001.
    [2] Skolnik M. I.. Radar Handbook. Second Edition. McGraw-Hill Inc.1990.
    [3]王雪松.宽带极化信息处理研究.博士研究生学位论文.国防科学技术大学.1999.
    [4]肖怀铁.宽带极化毫米波雷达目标特征信号测量与识别算法研究.博士研究生学位论文.国防科学技术大学.2000.
    [5]周代英.雷达目标一维距离像识别研究.博士研究生学位论文.电子科技大学.2001.
    [6]裴炳南.高分辨雷达自动目标识别方法研究.博士研究生学位论文.西安电子科技大学.2002.
    [7]付强.毫米波导引头智能化信息处理技术研究.博士研究生学位论文.国防科学技术大学.2004.
    [8]王涛.弹道中段目标极化域特征提取与识别.博士研究生学位论文.国防科学技术大学.2006.
    [9]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007
    [10]袁莉.基于高分辨距离像的雷达目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [11]陈渤.基于核方法的雷达高分辨目标识别技术研究.博士研究生学位论文.西安电子科技大学.2008.
    [12]陈凤.雷达自动目标识别技术研究.博士研究生学位论文.西安电子科技大学.2009.
    [13]候庆禹.基于高分辨距离像的雷达自动目标识别方法研究.博士研究生学位论文.西安电子科技大学.2010.
    [14]柴晶.雷达高分辨距离像目标识别的拒判算法和特征提取技术研究.博士研究生学位论文.西安电子科技大学.2010.
    [15]刘勇.动态目标极化特性测量与极化雷达抗干扰新方法研究.博士研究生学位论文.国防科学技术大学.2011.
    [16]尹奎英. SAR图像处理及地面目标识别技术研究.博士研究生学位论文.西安电子科技大学.2011.
    [17] Andrew F.. Target recognition techniques for multifunction phased array radar.PhD Dissertation. Department of Electronic&Electrical Engineering,University College London.2010.
    [18]刘宏伟,杜兰,袁莉等.雷达高分辨距离像目标识别研究进展.电子与信息学报.2005,27(8):1328-1334.
    [19] Du L., Wang P., Liu H., et al.. Bayesian spatiotemporal multi-task learning forradar HRRP target recognition. IEEE Transactions on Signal Processing,2011,59(7):3182-2196.
    [20]杜兰.飞机目标的雷达回波特性研究.硕士研究生学位论文.西安电子科技大学.2004.
    [21]李彦兵,杜兰,刘宏伟.基于微多普勒特征的地面目标分类.电子与信息学报,2010,32(12):2848-2853.
    [22] Bell M. R., Grubbs R. A.. JEM modeling and measurement for targetidentification. IEEE Transactions on Aerospace Electronic Systems,1993,29(1):73-87.
    [23] Blaricum M.. A technique for extracting the poles and residues of a systemdirectly from its transient response. IEEE Transactions on Antennas andPropagation,1975,23(6):777-781.
    [24] Rothwell E., Nyquist D., Chen K. M. et al.. Radar target discrimination usingthe Extinction-Pulse technique. IEEE Transactions on Antennas and Propagation,1985,33(9):929-937.
    [25] Carrara W. G., Goodman R. S., Majewski R. M.. Spotlight Synthetic ApertureRadar–Signal Processing Algorithms. Norwood, MA: Arthech House,1995.
    [26]保铮,邢孟道,王彤.雷达成像技术.电子工业出版社.2005.
    [27]刘永祥.导弹防御系统中的雷达目标综合识别研究.博士研究生学位论文.国防科学技术大学.2004.
    [28] Zhao Q., Jose C.. Support Vector Machine for SAR automatic target recognition.IEEE Transactions on Aerospace Electronic Systems,2001,37(2):643-654.
    [29] Musman S., Kerr D., Bachmann C.. Automatic recognition of ISAR ship images.IEEE Transactions on Aerospace Electronic Systems,1996,32(4):1392-1404.
    [30] Li H., Yang S.. Using range profiles as feature vectors to identify aerospaceobjects. IEEE Transactions on Antennas and Propagation,1993,41(3):261-268.
    [31] Nebabin V. G. Methods and techniques of radar recognition. Boston: ArtechHouse.1997.
    [32] Rihaczek A. W., Hershkowitz S. J.. Theory and practice of radar targetidentification. Boston: Artech House.2000.
    [33] Lewis G. N., Postol T. A.. Future Challenges to Ballistic Missile Defense. IEEESpectrum,1997,34(9):60-68.
    [34] William P. D., William W. W.. Radar development at Lincoln laboratory: Anoverview of the first fifty years. Lincoln Laboratory Journal.2000,12(2):147-166.
    [35] Li H. J., Farhat N. H., Shen Y., et al.. Image understanding and prediction inmicrowave diversity imaging. IEEE Transactions on Antennas and Propagation,1989,37(8):1048-1057.
    [36] Cohen M. N.. Variability of ultra-high range resolution profiles and someimplications for target recognition. SPIE,1992,256-266.
    [37] Hudson S., Psaltis D.. Correlation Filters for Aircraft Identification from RadarRange Profiles. IEEE Transactions on Aerospace Electronic Systems,1993,29(3):741-748.
    [38] Zywechm A., Bogner R. E.. Coherent averaging of range profiles. IEEEInternational Radar Conference,1995, page456-461.
    [39] Li H., Wang Y., Wang L.. Matching score properties between range profile ofhigh-resolution radar targets. IEEE Transactions on Antennas and Propagation,1996,44(4):444-452.
    [40] Zyweck A., Bogner R. E.. Radar target classification of commercial aircraft.IEEE Transactions on Aerospace Electronic Systems,1996,32(2):598-606.
    [41] Copsey K., Webb A.. Bayesian gamma mixture model approach to radar targetrecognition. IEEE Transactions on Aerospace Electronic Systems,2003,39(4):1201-1217.
    [42] Webb A. R.. Gamma mixture models for target recognition. Pattern Recognition,2000,33(12):2045-2054.
    [43]刘敬,张军英,杜兰.基于最大相关系数的雷达高分辨距离像分帧方法.电子与信息学报,2008,30(9):2060-2064.
    [44]陈凤,侯庆禹,刘宏伟等.一种新的雷达自适应划分角域建模方法.西安电子科技大学学报,2009,36(3):410-417.
    [45]袁莉,刘宏伟,保铮.雷达高分辨距离像分类器的参数自适应学习算法.电子与信息学报,2008,30(1):198-202.
    [46] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition: parametric modeland model selection. IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [47] Shi L., Wang P., Liu H., et al.. Radar HRRP statistical recognition with localfactor analysis by automatic Bayesian Ying-Yang harmony learning. IEEETransactions on Signal Processing,2011,59(2):610-617.
    [48] Chen B., Liu H., Bao Z.. Adaptively segmenting angular sectors for radar HRRPautomatic target recognition. EURASIP Journal on Advances in SignalProcessing,2008, Article ID641709.
    [49] Glüer C., Wu C., Genant H.. Correlation Techniques for ultrasonic signalalignment. Osteoporosis International,1993,3(4):185-191.
    [50] Conant J. S., Mokwa M. P., Varadarajan P. R.. A multiple measurementapproach for feature alignment. Strategic Management Journal,1990,11(5):365-383.
    [51] Rothwell E. J., Chen K. M., Nyquist D. P., et al.. A radar target discriminationscheme using the discrete wavelet transform for reduced data storage. IEEETransactions on Antennas and Propagation,1994,42(7):1033-1037.
    [52] Li Q., Rothwell E. J., Chen K. M., et al.. Radar target discrimination schemesusing time-domain and frequency-domain methods for reduced data storage.IEEE Transactions on Antennas and Propagation,1997,45(6):995-1000.
    [53] Tra S. T.. Computer processing of high resolution radar data at naval oceansystems center. IEEE International Conference on Systems Engineering,1990,page482-485.
    [54] Coakley K. J., Hale P.. Alignment of noisy signals. IEEE Transactions onInstrumentation and Measurement,2001,50(1):141-149
    [55] Gil-Pita R., Rosa-Zurera M., Jarabo-Amores P., et al.. Statistical analysis of thezero-phase method for aligning noisy high-resolution radar signals. IET Radar,Sonar, and Navigation,2008,3(1):62-69.
    [56] Portegies J., Van Der Heiden R., Gelsema S., et al.. Fast translation invariantclassification of HRR range profiles in a zero phase representation. IEEProceedings–Radar, Sonar, and Navigation,2003,150(6):411-418.
    [57]陈渤,刘宏伟,保铮.一种基于零相位表示法的HRRP识别方法.西电学报,2005,32(5):657-662.
    [58] Gil-Pita R., Rosa-Zurera M., Jarabo-Amores P., et al.. Maximum positionalignment method for noisy high-resolution radar target classification. IEEESignal Processing Letters,2008,15:120-123.
    [59]李晓辉,黎湘,郭桂蓉.基于LDA算法的一维距离像特征提取.国防科技大学学报,2005,27(6):72-76.
    [60] Du L., Liu H., Bao Z., et al.. Radar HRRP target recognition based on higherorder spectra. IEEE Transactions on Signal Processing,2005,53(7):2359-2368.
    [61] Jouny I., Garber Fred D., Moses R. L., et al.. Application of the bispectrum inradar signature analysis and target identification. SPIE,1991.
    [62] Pei B., Bao Z., Xing M.. Logarithm bispectrum based approach to high radarrange profile for automatic target recognition. Pattern Recognition,2002,35(11):2643-2651.
    [63] Liao X., Bao Z.. Circularly integrated bispectra-novel shift invariant featuresfor high-resolution radar target recognition. Electronics Letters,1998,34(19):1879-1880.
    [64] Zhang X., Shi Y., Bao Z.. A new feature vector using selected bispectra forsignal classification. IEEE Transactions on Signal Processing,2001,49(9):1875-1885.
    [65] Kim K., Seo D., Kim H.. Efficient radar target recognition using the MUSICalgorithm and invariant feature. IEEE Transactions on Antennas andPropagation,2002,50(3):325-337.
    [66] Wong S.. Non-cooperative target recognition in the frequency domain. IEEProceedings–Radar, Sonar, and Navigation,2004,151(2):77-84.
    [67] Guo Z., Li S.. One-dimensional frequency-domain feature for aircraftrecognition from radar range profiles. IEEE Transactions on AerospaceElectronic Systems,2010,46(4):1880-1892.
    [68] Wang P., Dai F., Pan M., et al.. Radar HRRP target recognition in frequencydomain based on autoregressive model. IEEE Radar Conference, Kansas City,USA,2011, page714-717.
    [69] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition based on hyperspheremodel. Signal Processing,2008,88(5):1176-1190.
    [70] Chen B., Liu H., Bao Z.. An efficient kernel optimization method for radarhigh-resolution range profile recognition, EURASIP Journal on Applied SignalProcessing.2007, Article ID49597.
    [71]陈凤,杜兰,刘宏伟等.一种强度和平移联合优化的雷达HRRP目标识别方法.电子学报,2009,37(3):3459-3463.
    [72]黄培康,殷成红,许小剑.雷达目标特性.电子工业出版社.2006.
    [73] Shui P., Xu S., Liu H.. Range-spread target detection using consecutive HRRPs.IEEE Transactions on Aerospace Electronic System,2011,47(1):647-665.
    [74] Lee K. C., Ou J. S., Fang M. C.. Application of SVD noise-reduction techniqueto pca based radar target recognition. Progress In Electromagnetic Research,2008,81:447-459.
    [75] Monica M.. Wavelet feature extraction of high-range resolution radar profilesusing generalized Gaussian distributions for automatic target recognition. PhDDissertation. Claremont Graduate School.2006.
    [76] Liu H., Yang Z., He K., et al.. Radar high range resolution profiles recognitionbased on wavelet packet and subband fusion. Proc. ICASSP,2005, page445-448.
    [77] Brian M., Steven C., Randy P.. Wavelet preprocessing for high range resolutionradar classification. IEEE Transactions on Aerospace Electronic System,2001,37(4):1321-1331.
    [78] Secmen M., Turhan-Sayan G.. Radar target classification method with reducedaspect dependency and improved noise performance using multiple signalclassification algorithm. IET Radar, Sonar, and Navigation,2008,3(6):583-595.
    [79] Liu H., Chen F., Du L., et al.. Robust radar automatic target recognitionalgorithm based on HRRP signature. Frontiers of Electrical and ElectronicEngineering,2012,7(1):49-55.
    [80] Du L., Liu H., Wang P., et al.. Noise robust radar HRRP target recognition basedon multitask factor analysis with small training data size. IEEE Transactions onSignal Processing,2012, to be published.
    [81] Natalia A., Joseph A.. Thresholding method for dimensionality reduction inrecognition systems. IEEE Transactions on Information Theory,2001,47(7):2903-2920.
    [82] Li J., Stoica P.. Efficient mixed-spectrum estimation with application to featureextraction. IEEE Transactions on Signal Processing,1996,42(2):281-295.
    [83] Kim K., Seo D., Kim H.. One-dimensional scattering centre extraction forefficient radar target classification. IEE Proceedings–Radar, Sonar, andNavigation,2001,148(5):285-296.
    [84] Pei B., Bao Z.. Multi-aspect radar target recognition method based on scatteringcenters and HMMs classifiers. IEEE Transactions on Aerospace ElectronicSystems,2005,41(3):1067-1074.
    [85] Kim K., Choi I., Kim H.. Target recognition using a set of scale, rotation andtranslation invariant features extracted directly from the radar echoes. IEEETransactions on Antennas and Propagation,2000,48(12):1789-1801.
    [86] Engin A., Ibrahim T., Mustafa P.. Intelligent target recognition based on waveletpacket neural network. Expert Systems with Applications,2005,29(1):175-182.
    [87]袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别.电子学报,2004,32(12):2078-2081.
    [88] Slomka J. S.. Features for high resolution radar range profile based shipclassification. In fifth International Symposium on Signal Processing and itsApplications (ISSPA), Queensland, Australia,1999, page329-332.
    [89] Christopher M., Alireza K.. Maritime ATR using classifier combination andhigh resolution range profiles. IEEE Transactions on Aerospace and ElectronicSystems,2011,47(4):2558-2573.
    [90] Jacobs S. P. Automatic target recognition using high resolution radar rangeprofiles. PhD Dissertation, Washington University.1997.
    [91]朱劼昊,周建江,吴杰.基于半参数化概率密度估计的雷达目标识别.电子与信息学报,2010,32(9):2161-2166.
    [92] Du L., Liu H., Bao Z., et al.. A two-distribution compounded statistical modelfor radar HRRP target recognition. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [93] Caruana R.. Multitask learning: A knowledge-based source of inductive bias.Machine Learning,1997,28(1):41-75.
    [94] Pan M., Du L., Wang P., et al.. Multi-task hidden Markov modeling ofspectrogram feature from radar high-resolution range profiles. EURASIPJournal on Advances in Signal Processing,2012, to be published.
    [95] Du L., Liu H., Bao Z., et al.. A novel feature vector using complex HRRP forradar target recognition. Advances in Neural Networks,2007, page1303-1309.
    [96] Du L., Liu H., Bao Z., et al.. Radar automatic target recognition using complexhigh-resolution range profiles. IET Radar, Sonar, and Navigation,2007,1(1):18-26.
    [97] Chen B., Liu, H., Bao Z.. Speeding up SVM in test phase: application to radarHRRP ATR. Neural Information Processing,2006, page811-818.
    [98] Liu H., Bao Z.. Radar HRR profiles recognition based on SVM withpower-transformed-correlation kernel. Advances in Neural Networks,2004,page531-536.
    [99]栾英宏,李跃华.高分辨率毫米波雷达目标识别研究.兵工学报,2010,31(7):902-905.
    [100] Yu X., Wang X.. Kernel uncorrelated neighbourhood discriminative embeddingfor radar target recognition. Electronics Letters,2008,44(2):154-155.
    [101] Liu H., Su H., Bao Z.. Radar high range resolution profiles feature extractionbased on kernel PCA and kernel ICA. Advances in Neural Networks,2005,913-918.
    [102] Zhao Q., Bao Z.. Radar target recognition using a radial basis function neuralnetwork. Neural Networks,1996,9(4):709-720.
    [103] Du L., Zhang J., Bao Z.. Multicategory classification based on the hypercubeself-organization mapping (SOM) scheme. Lecture Notes in Computer Science,2006, page107-110.
    [104] Shi Y., Zhang X.. A Gabor atom network for signal classification withapplication in radar target recognition. IEEE Transactions on Signal Processing,2001,49(12):2994-3004.
    [1] Du L., Liu H., Bao Z.. A two-distribution compounded statistical model forradar HRRP target recognition. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [2] Chen B., Liu H., Bao Z.. Adaptively segmenting angular sectors for radar HRRPautomatic target recognition. EURASIP Journal on Advances in SignalProcessing,2008, Article ID641709.
    [3]刘敬,张军英,杜兰.基于相关系数的雷达高分辨距离像分帧方法.电子与信息学报,2008,30(9):2060-2064.
    [4]陈凤,侯庆禹,刘宏伟,保铮.一种新的雷达自适应划分角域建模方法.西安电子科技大学学报,2009,36(3):410-417.
    [5]梁海涛,童创明,王晓丹.基于极化高分辨距离像的SVM目标识别方法.西安电子科技大学学报,2007,34(增刊):148-151.
    [6] Shi L., Wang P., Liu H., et al.. Radar HRRP statistical recognition with localfactor analysis by automatic Bayesian Ying-Yang harmony learning. IEEETransactions on Signal Processing,2011,59(2):610-617.
    [7] Wong S. K.. High range resolution profile as motion-invariant features formoving ground targets identification in SAR-based automatic target recognition.IEEE Transactions on Aerospace and Electronic Systems,2009,45(3):1017-1039.
    [8] Guo Z., Li S.. One-dimensional frequency-domain features for aircraftrecognition from radar range profiles. IEEE Transactions on Aerospace andElectronic Systems,2010,46(4):1880-1892.
    [9] Gudnason J., Cui J., Brookes M.. HRR automatic target recognition fromsuperresolution scattering center features. IEEE Transactions on Aerospace andElectronic Systems,2009,45(4):1512-1524.
    [10]陈凤.基于HRRP和JEM信号的雷达目标识别技术研究.博士研究生学位论文.西安电子科技大学.2009.
    [11]袁莉.基于高分辨距离像的雷达目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [12]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [13] Carrara W. G., Goodman R. S., Majewski R. M.. Spotlight Synthetic ApertureRadar–Signal Processing Algorithms. Norwood, MA: Arthech House,1995.
    [14] Fukunaga K.. Introduction to Statistical Pattern Recognition, Second Edition.San Diego, Academic Press,1990.
    [15] Christopher M. B.. Pattern Recognition and Machine Learning, First Edition.New York: Springer Science Business Media,2006.
    [16] Todd K. M.. The Expectation-Maximization algorithm. IEEE Signal ProcessingMagazine,1996,13(6):47-60.
    [17] Andrew R. W.. Statistical Pattern Recognition, Second Edition. London: JohnWiley&Sons Ltd.,2002.
    [18]杜兰,刘宏伟,保铮.利用目标方位信息改善雷达距离像识别性能.系统工程与电子技术,2004,26(8):1040-1043.
    [1] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition: parametric modeland model selection. IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [2] Jacobs S. P., O’Sullivan J. A.. Automatic target recognition using sequences ofhigh resolution radar range profiles. IEEE Transactions on Aerospace andElectronic Systems,2000,36(2):364-380.
    [3] Webb A. R.. Gamma mixture models for target recognition. Pattern Recognition,2000,33(12):2045-2054.
    [4] Copsey K., Webb A. R.. Bayesian Gamma mixture model approach to radartarget recognition. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1201-1217.
    [5] Du L., Liu H., Bao Z., et al.. A two-distribution compounded statistical modelfor radar HRRP target recognition. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [6] Wang P., Dai F., Pan M., et al.. Radar HRRP target recognition in frequencydomain based on autoregressive model. IEEE Radar Conference, Kansas City,USA,2011, page714-717.
    [7] Guo Z., Li S.. One-dimensional frequency-domain feature for aircraftrecognition from radar range profiles. IEEE Transactions on Aerospace andElectronic Systems,2010,46(4):1880-1892.
    [8]陈凤.雷达自动目标识别技术研究.博士研究生学位论文.西安电子科技大学.2009.
    [9]候庆禹.基于高分辨距离像的雷达自动目标识别方法研究.博士研究生学位论文.西安电子科技大学.2010.
    [10] Shui P., Xu S., Liu H.. Range-spread target detection using consecutive HRRPs.IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):647-654.
    [11] Du L., Liu H., Wang P., et al.. Noise robust radar HRRP target recognition basedon multitask factor analysis with small training data size. IEEE Transactions onSignal Processing,2012, to be published.
    [12] Liu H., Chen F., Du L., et al.. Robust radar automatic target recognitionalgorithm based on HRRP signature. Frontiers of Electrical and ElectronicEngineering,2012,7(1):49-55.
    [13] Du L., Wang P., Liu H., et al.. Bayesian spatiotemporal multitask learning forradar HRRP target recognition. IEEE Transactions on Signal Processing,2011,59(7):3182-3196.
    [14] Duda R. O., Hart P. E., Stork D. G.. Pattern Classification. John Wiley&Sons,inc.2001.
    [15] Geoffrey J. M., Thriyambakam K.. The EM algorithm and Extensions. JohnWiley&Sons, inc.1997.
    [16] Shui P., Liu H., Bao Z.. Range-spread target detection based on crosstime-frequency distribution features of two adjacent received signals. IEEETransactions on Signal Processing,2009,56(5):3733-3745.
    [17] Katkovnik V., Stankovic L. J.. Instantaneous frequency estimation using theWigner distribution with varying and data-driven window length. IEEETransactions on Signal Processing,1998,46(9):2315-2326.
    [18] Wong S. K.. High range resolution profiles as motion-invariant features formoving ground targets identification in SAR-based automatic target recognition.IEEE Transactions on Aerospace and Electronic Systems,2009,45(3):1017-1039.
    [19] Richard A. M., John J. W.. Robust statistical feature based aircraft identification.IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):1077-1094.
    [20] Fawcett T.. An introduction to ROC analysis. Pattern Recognition Letters,2006,27(8):861-874.
    [1] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition: parametric modeland model selection. IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [2] Pita R. G., Zurera M. R., Bueno R. V., et al.. Study of the performance ofdifferent alignment methods in pattern recognition. Proc. Eur. Signal Process.Conf., Italy,2006.
    [3] Zyweck A., Bogner R. E.. Radar target classification of commercial aircraft.IEEE Transactions on Aerospace Electronic Systems,1996,32(2):598-606.
    [4] Chen B., Liu H., Yuan L., et al.. Adaptively segmenting angular sectors for radarHRRP automatic target recognition. EURASIP Journal on Advances in SignalProcessing,2008, Article ID641709.
    [5] Zhang X., Shi Y., Bao Z.. A new feature vector using selected bispectra forsignal classification with application in radar target recognition. IEEETransactions on Signal Processing,2001,49(9):1875-1885.
    [6] Du L., Liu H., Bao Z., et al.. Radar HRRP target recognition based onhigher-order spectra. IEEE Transactions on Signal Processing,2005,53(7):2359-2368.
    [7] Kim K., Seo D., Kim H.. Efficient radar target recognition using the MUSICalgorithm and invariant feature. IEEE Transactions on Signal Processing,2002,50(3):325-337.
    [8] Liao X., Runkle P., Carin L.. Identification of ground targets from sequentialhigh-range-resolution radar signatures. IEEE Transactions on AerospaceElectronic Systems,2002,38(4):1230-1242.
    [9] Jacobs S. P., O’Sullivan J. A.. Automatic target recognition using sequences ofhigh resolution radar range-profiles. IEEE Transactions on Aerospace ElectronicSystems,2000,36(2):364-382.
    [10] Nelson D. E., Starzyk J. A., Ensley D. D.. Iterated wavelet transformation andsignal discrimination for HRR radar target recognition. IEEE Transactions onSystem, Man and Cybernetics,2002,33(1):52-57
    [11] Sun G., Wang J., Qin S., et al.. Radar target recognition based on themulti-resolution analysis theory and neural network. Patter Recognition Letters,2008,29:2109-2115.
    [12] Mishra A. K.. Separability indices and their use in radar signal based targetrecognition. IEICE Electronics Express.2009,6(14):1000-1005.
    [13] Wong S. K.. Non-cooperative target recognition in the frequency domain. IEEProceedings–Radar, Sonar, and Navigation,2004,151(2):77-84.
    [14] Copsey K., Webb A.. Bayesian Gamma mixture model approach to radar targetrecognition. IEEE Transactions on Aerospace Electronic Systems,2003,39(4):1201-1217.
    [15] Wang P., Dai F., Pan M., et al.. Radar HRRP target recognition in frequencydomain based on autoregressive model. IEEE Radar Conference, Kansas City,USA, May2011, page714-717.
    [16] Duda R. O., Hart P. E., Stork D. G.. Pattern classification, John Wiley&Sons,New York,2001
    [17] Bello P. A.. Characterization of randomly time-variant linear channels. IEEETransactions on Communication Systems,1963,38:360-393.
    [18] Van Trees H. L.. Detection, estimation, and modulation theory, John Wiley&Sons, New York,1971.
    [19] Sekita I., Kurita T., Otsu N.. Complex autoregressive model for shaperecognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(4):489-496.
    [20] Mao J., Jain A. K.. Texture classification and segmentation usingmulti-resolution simultaneous autoregressive models. Pattern Recognition.1992,25(2):173-188.
    [21] Brockwell P., Davis R.. Time Series: Theory and Methods, Springer-Verlag,New York,1987.
    [22] McLachlan G., Peel D.. Finite Mixture Models, John Wiley&Sons, New York,2000.
    [23] Xu L.. Bayesian Ying-Yang system, best harmony learning, and five actioncircling. Frontiers of Electrical and Electronic Engineering in China,2010,5(3):281-328.
    [1]周代英,杨万麟.雷达目标一维距离像识别中的最优因式分析子空间法.电子与信息学报,2007,29(10):2341-2345.
    [2]朱劼昊,周建江,吴杰.基于半参数化概率密度估计的雷达目标识别.电子与信息学报,2010,32(9):2161-2166.
    [3] Guo Z., Li S. One-dimensional frequency-domain feature for aircraftrecognition from radar range profiles. IEEE Transactions on AerospaceElectronic Systems,2010,46(4):1880-1892.
    [4] Mitchell R. A., Westerkamp J. J. Robust statistical feature based aircraftidentification. IEEE Transactions on Aerospace Electronic Systems,1999,35(3):1077-1094.
    [5] Du L., Wang P., Liu H., et al. Bayesian spatiotemporal multitask learning forradar HRRP target recognition. IEEE Transactions on Signal Processing,2011,59(7):3182-3196.
    [6] Duda R. O., Hart P. E.., Stork D. G. Pattern Classification. New York: JohnWilly and sons,2001.
    [7] Zyweck A., Bogner R. E.. Radar target classification of commercial aircraft.IEEE Transactions on Aerospace Electronic Systems,1996,32(2):598-606.
    [8] Pei B., Bao Z.. Multi-aspect radar target recognition method based onscattering centers and HMMs classifiers. IEEE Transactions on AerospaceElectronic Systems,2005,41(3):1067-1074.
    [9] Kim K., Seo D., Kim H.. Efficient radar target recognition using the MUSICalgorithm and invariant feature. IEEE Transactions on Antennas andPropagation,2002,50(3):325-337.
    [10] Engin Avci, Ibrahim Turkoglua, Mustafa Poyraz. Intelligent target recognitionbased on wavelet packet neural network. Expert Systems with Applications,2005,29:175-182.
    [11] Jacobs S. P., O’Sullivan J. A.. Automatic target recognition using sequences ofhigh resolution radar range profiles. IEEE Transactions on AerospaceElectronic Systems,2000,36(2):364-380.
    [12] Copsey K., Webb A.. Bayesian Gamma mixture model approach to radar targetrecognition. IEEE Transactions on Aerospace Electronic Systems,2003,39(4):1201-1217.
    [13] Du L., Liu H., Bao Z, et al.. Y. A two-distribution compounded statisticalmodel for radar HRRP target recognition. IEEE Transactions on SignalProcessing,2006,54(6):2226-2238.
    [14] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition: parametric modeland model selection. IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [15] Joe F., Simon K.. Speech recognition using linear dynamic models. IEEETransactions on Audio, Speech, and Language Processing,2007,15(1):246-256.
    [16] Digalakis V., Rohlicek J., Ostendorf M.. ML estimation of a stochastic linearsystem with the EM algorithm and its application to speech recognition. IEEETransactions on Speech Audio Processing,1993,1(4):431-442.
    [17] Ghahramani Z., Hinton G. E.. Parameter estimation for linear dynamicalsystems. Technical Report CRG-TR-96-2,1996.
    [18] Shumway R. H., Stoffer D. S.. An approach to time series smoothing andforecasting using the EM algorithm. Journal of Time Series Analysis,1982,3(4):253-264.
    [19] McLachlan G. J., Peel D.. Finite Mixture Models. New York: John Willy andsons, Inc.,2000.
    [20]郭立君,刘曦,赵杰煜等.基于改进局部特征分布的图像分类方法.模式识别与人工智能,2011,24(3):368-375.
    [21] Constantinos C., Michalis K. T., Aristidis L.. Bayesian feature and modelselection for Gaussian mixture models. IEEE Transactions on Pattern Analysisand Machine Intelligence.2006,28(6):1013-1018.
    [22] Wong C., Li W.. On a mixture autoregressive model. Journal of the RoyalStatistical Society,2000,62(1):95-115.
    [23] Schwarz G.. Estimating the dimension of a model. The Annals of Statistics,1978,7(2):461-464.
    [1] Hudson S., Psaltis D.. Correlation filters for aircraft identification from radarrange profile. IEEE Transactions on Aerospace Electronic Systems,1993,29(3):1741-1748.
    [2] Li H., Yang S.. Using range profiles as feature vectors to identify aerospaceobjects. IEEE Transactions on Antennas and Propagation,1993,41(3):261-268.
    [3] Jacobs S. P., Sullivan, J. A.. Automatic target recognition using sequences ofhigh resolution radar range profiles. IEEE Transactions on Aerospace ElectronicSystems,2000,36(2):364-381.
    [4] Webb A. R.. Gamma mixture models for target recognition. Pattern Recognition,2000,33(12):2045-2054.
    [5] Copsey K., Webb A. R.. Bayesian Gamma mixture model approach to radartarget recognition. IEEE Transactions on Aerospace Electronic Systems,2003,39(4):1201-1217.
    [6] Du L., Liu H., Bao Z., et al.. A two-distribution compounded statistical modelfor radar HRRP target recognition. IEEE Transactions on Signal Processing,2006,54(6):2226-2238.
    [7] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition based on hyperspheremodel. Signal Processing,2008,88(5):1176-1190.
    [8] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition: parametric modeland model selection. IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [9] Du L., Liu H., Bao Z.. Radar HRRP target recognition based on higher-orderspectra. IEEE Transactions on Signal Processing,2005,53(7):2359-2368.
    [10] Zyweck A., Bogner R. E.. Radar target classification of commercial aircraft.IEEE Transactions on Aerospace Electronic Systems,1996,32(3):598-606.
    [11] Xu L.. Bayesian Ying Yang System, Best harmony learning, and Gaussianmanifold based family. In J.M. Zurada, G. G. Yen, and J. Wang, editors, WCCI2008Plenary/Invited Lectures,2008, LNCS5050:48-78.
    [12] Ghahramani Z., Hinton G. E.. The EM algorithm for mixtures of factoranalyzers,1996, Technical Report CRG-TR-96-1.
    [13] Hinton G. E., Revow M., Dayan P.. Recognizing handwritten digits usingmixtures of linear models. In Advances in NIPS,1994, page1015-1022.
    [14] Shi L., Wang P., Liu H., et al.. Radar HRRP statistical recognition with localfactor analysis by automatic Bayesian Ying-Yang harmony learning. IEEETransactions on Signal Processing,2011,59(2):610-617.
    [15] Xu L.. Bayesian Ying Yang Learning. In Scholarpedia: http://scholarpedia.org/article/Bayesian Ying Yang Learning,2007.
    [16] Xu L.. A unified perspective and new results on RHT computing, mixture basedlearning, and multi-learner based problem solving, Pattern Recognition,2007,40(8):2129-2153.
    [17] Xu L.. Bayesian Ying Yang system and theory as a unified statistical learningapproach:(I) Unsupervised and semi-unsupervised learning. In: Amari S,Kassabov N, eds. Brain-like Computing and Intelligent Information Systems.Springer-Verlag,1997, page241-274.
    [18] Xu L.. Bayesian Ying–Yang system and theory as a unified statistical learningapproach:(V) temporal modeling for temporal perception and control, InvitedPaper, Proceedings of the International Conference on Neural InformationProcessing (ICONIP’98),1998,2:877-884.
    [19] Xu L.. Temporal Bayesian Ying-Yang dependence reduction, blind sourceseparation and principal independent components, Invited talk, Proc.1999IEEE-INNS International Joint Conference on Neural Networks (IJCNN'99),Vol.2of6, page1071-1076, Washington, D.C., USA, July10-16.
    [20] Xu L.. Temporal BYY learning for state space approach, hidden Markov model,and blind source separation. IEEE Transactions on Signal Processing,2000,48(7):2132-2144.
    [21] Xu L.. BYY harmony learning, independent state space, and generalized APTfinancial analyses. IEEE Transactions on Neural Networks,2001,12(4):822-849.
    [22] Xu L.. Temporal factor analysis: stable-identifiable family, orthogonal flowlearning, and automated model selection. Proceedings of International JointConference on Neural Networks2002(IJCNN’02), Honolulu, Hawaii, USA,2002, page472-476.
    [23] Chiu K., Xu L.. Optimizing financial portfolios from the perspective of miningtemporal structures of stock returns. Lecture Notes in AI, LNAI2734, Proc. of2003Machine Learning and Data Mining in Pattern Recognition, P. Perner andA. Rosenfeld, eds., Springer Verlag,2003, page266-275.
    [24] Xu L.. Temporal BYY encoding, Markovian state spaces, and space dimensiondetermination. IEEE Transactions on Neural Networks,2004,15(5):1276-1295.
    [25] Xu L.. Learning algorithms for RBF functions and subspace based functions. In:Olivas E, et al. eds. Handbook of Research on Machine Learning, Applicationsand Trends: Algorithms, Methods and Techniques. Hershey(PA): IGI Global,2009, page60-94.
    [26] Xu L.. Independent component analysis and extensions with noise and time: ABayesian Ying-Yang learning perspective. Neural Information Processing–Letters and Reviews,2003,1(1):1-52.
    [27] Xu L.. Another perspective of BYY harmony learning: representation inmultiple layers, co-decomposition of data covariance matrices, and applicationsto network biology. A special issue on Machine learning and intelligence science:IScIDE2010(A), Frontiers of Electrical and Electronic Engineering in China,2011,6(1):86-119.
    [28] Tu S., Xu L.. Parameterizations make different model selections: empiricalfindings from factor analysis. Frontiers of Electrical and Electronic Engineeringin China,2011,6(2):256-274.
    [29] Burnham K. P., Anderson D.. Model Selection and Multi-Model Inference.Springer, July2002.
    [30] Akaike H.. Factor analysis and AIC. Psychometrika,1987,52(3):317-332.
    [31] Xu L.. Machine learning problems from optimization perspective. Journal ofGlobal Optimization,2010,47(3):369:401.
    [32] Xu L.. Bayesian Ying-Yang system, best harmony learning, and five actioncircling. Frontiers of Electrical and Electronic Engineering in China,2010,5(3):281-328.
    [33] Xu L.. Bayesian-Kullback coupled Ying-Yang machines: Unified learnings andnew results on vector quantization. In Proc. of ICONIP'95, page977-988,Beijing, China,1995.
    [34] Gilks W. R., Spiegelhalter D. J.. Spotlight Synthetic Aperture Radar–signalprocessing algorithms. Norwood, MA: Arthech House,1995.
    [35] Wang P., Shi L., Du L, et al.. Radar HRRP statistical recognition with temporalfactor analysis by automatic Bayesian Ying-Yang harmony learning. Frontiersof Electrical and Electronic Engineering in China,2011,6(2):300-317.
    [36] Shumway R. H., Stoffer D. S.. An approach to time series smoothing andforecasting using the EM algorithm. Journal of Time Series Analysis,1982,3(4):253-264.
    [37] Roweis S., Ghahramani Z.. A unifying review of linear Gaussian models, NeuralComputation,1999,12(2):305-345.
    [38] Ghahramani Z., Hinton G E.. Variational learning for switching state-spacemodels. Neural Computation,2000,12(4):831-864.
    [39] Xu L.. Temporal BYY learning and its applications to extended Kalman filtering,hidden Markov model, and sensor motor integration. In: Proceedings ofIEEE-INNS1999Intl J. Conf on Neural Networks, Washington.1999,2:949-954.
    [40] Shumway R. H., Stoffer D. S.. Dynamic linear models with switching. Journalof the American Statistical Association,1991,86(415):763-769.
    [41] Elliott R. J., Aggoun L., Moore J. B.. Hidden Markov Models: Estimation andControl, New York: Springer-Verlag,1995.
    [42] Digalakis V., Rohlicek J. R., Ostendorf M.. ML estimation of a stochastic linearsystem with the EM algorithm and its application to speech recognition. IEEETransactions on Speech and Audio Processing,1993,1(4):431-442.
    [1]陈凤.基于HRRP和JEM信号的雷达目标识别技术研究.博士研究生学位论文.西安电子科技大学.2009.
    [2] Du L., Liu H., Bao Z. Radar HRRP statistical recognition: parametric model andmodel selection, IEEE Transactions on Signal Processing,2008,56(5):1931-1944.
    [3] Zyweck A., Bogner R. E. Radar target classification of commercial aircraft.IEEE Transactions on Aerospace and Electronic Systems,1996,32(2):598-606.
    [4] Borden B. Radar Imaging of Airborne Targets: A Primer for AppliedMathematicians and Physicists. Inst. of Physics Pub.,1999.
    [5] Hawley R. W. Complex HRR signature generation for TRUMPETS.TRUMPETS Research Note,1998.
    [6] Rihaczek A. W. Radar resolution of ideal point scatterers. IEEE Transactions onAerospace and Electronic Systems,1996,32:842-845.
    [7] Borden B. Cross-entropy regularization and complex-valued image analysisapplicable to ISAR. SPIE Conference on Radar/Ladar Processing andApplications,1996.
    [8] Ma J. Feature study of HRR based ATR analysis and extraction. PhDDissertation, Ohio State University.2001.
    [9] Rigling B., Potter L. C., Moses R. L. Relative information in phase of radarrange profiles, Proceedings of SPIE,2000, page211-218.
    [10] Jacobs S. P. Automatic target recognition using high-resolution radar rangeprofiles. PhD Dissertation, Washington University.1999.
    [11] Du L., Liu H., Bao Z., et al. A novel feature vector using complex HRRP forradar target recognition. Lecture Notes in Computer Science,2007, page1303-1309.
    [12] Du L., Liu H., Bao Z., et al.. Radar automatic target recognition using complexhigh-resolution range profiles. IET Radar, Sonar, and Navigation,2007,1(1):18-26.
    [13] Ahmad Mouri S.. Complex Factor Analysis. Master Dissertation. Department ofMicroelectronics&Computer Engineering, Delft University of Technology.2011.
    [14] Carrara W. G., Goodman R. S., Majewski R. M.. Spotlight Synthetic ApertureRadar–Signal Processing Algorithms. Norwood, MA: Arthech House,1995.
    [15] Van Trees H. L.. Detection, Estimation, and Modulation Theory. John Wiley&Sons, New York,1971.
    [16] Ma J., Du X., Stanley C..2D HRR radar data modeling and processing.Multidimensional Systems and Signal Processing,2003,14:25-48.
    [17] Gil-Pita R., Rosa-Zurera M., Jarabo-Amores P., et al.. Statistical analysis of thezero-phase method for aligning noisy high-resolution radar signals. IET Radar,Sonar, and Navigation,2008,3(1):62-69.
    [18] Goodman N. R.. Statistical analysis based on a certain multivariate complexGaussian distribution (an introduction). The Annals of Mathematical Statistics,1963,34(1):152-177.
    [19] Picinbono, Bernard. Second-order complex random vectors and normaldistributions. IEEE Transactions on Signal Processing,1996,44(10):2637-2640.
    [20] Du L., Liu H., Bao Z.. Radar HRRP statistical recognition based on hyperspheremodel. Signal Processing,2008,88(5):1176-1190.
    [21] Shi L., Wang P., Liu H., et al.. Radar HRRP statistical recognition with localfactor analysis by automatic Bayesian Ying-Yang harmony learning. IEEETransactions on Signal Processing,2011,59(2):610-617.
    [22] Wang P., Shi L., Liu H., et al.. Radar HRRP statistical recognition with temporalfactor analysis by automatic Bayesian Ying-Yang harmony learning. Frontiers ofElectrical and Electronic Engineering in China,2011,6(2):300-317.
    [23] Zoubin G., Geoffrey E.. The EM algorithm for mixture of factor analyzers.1996,Technical Report CRG-TR-96-1.
    [24] Du L., Liu H., Wang P., et al.. Noise robust radar HRRP target recognition basedon multitask factor analysis with small training data size. IEEE Transactions onSignal Processing,2012, to be published.
    [25] Liu H., Chen F., Du L., et al.. Robust radar automatic target recognitionalgorithm based on HRRP signature. Frontiers of Electrical and ElectronicEngineering,2012,7(1):49-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700