用户名: 密码: 验证码:
海面目标合成孔径雷达成像模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海面及其上方目标的合成孔径雷达(SAR)成像模拟研究在海洋环境监测、目标识别和信号分离技术中具有重要的科学意义,是提高SAR系统性能、检验成像算法和提高SAR应用效果的重要途径。本论文就此领域的相关问题开展了系统的研究工作。
     首先讨论了SAR成像的海浪表面模型。研究了SAR所能“看到”的海面的结构和SAR探测海面大尺度波的机制。应用海浪水质点运动的流体力学模型对波浪进行描述,同时,针对海浪具有的明显的随机性,用振幅、频率、方向、相位不同的波叠加起来描述海浪,介绍了双尺度表面模型以及最新的研究结果。
     分析了两种高分辨率的SAR成像处理算法:距离多普勒(RD)算法和Chirp Scaling(CS)算法,并对它们的性能进行了比较。在此基础上,针对普通方法处理双站SAR(Bis-SAR)数据的局限性,提出了一种改进的非线性Chirp Scaling (NLCS)方法来处理一般情况下的Bis-SAR数据。其中关键是应用级数展开来得到信号精确的频谱,然后进行线性距离单元徙动校正(LRCMC)来减少距离-方位耦合,再应用非线性Chirp Scaling对数据进行处理,使之能够进行方位向压缩。模拟结果表明,改进后的非线性Chirp Scaling方法可以处理复杂的Bis-SAR数据。
     详细研究了海浪SAR的成像机理。针对SAR系统只能探测与入射电磁波发生Bragg谐振的微尺度波,中尺度海洋现象(如海浪、内波、水下地形、舰船和尾迹等)通过对微尺度波在空间和时间上的调制间接被SAR系统获得而成像的特点。讨论了空间上的调制和时间上的调制对SAR成像的影响。针对谱域调制函数难以实现精确调制的难题,提出一种高效的双叠加模型。然后在此模型的基础上,应用调制分布面元模型(MDSFM)计算海面在合成孔径内的散射截面,结合空域计算和谱域上的调制详细讨论了海浪的调制机理对SAR成像的影响,从而实现海浪SAR成像的精确模拟。并进一步讨论了破碎波对SAR成像的影响。另外,对于舰船和海面复合模型的SAR成像问题,利用物理光学法(PO)和物理绕射等效流方法(PTDEEC)的混合方法来计算电大尺寸舰船目标的高频散射;并在此基础上结合四路径模型和MDSFM方法研究了动态海面及其上方舰船复合目标的SAR成像。
     针对海洋干涉SAR测量模式这一项新技术,详细探讨了顺轨干涉SAR (Along-TrackInterferometric Synthetic Aperture Radar, ATI-SAR)和交轨干涉SAR (Across-TrackInterferometric Synthetic Aperture Radar,XTI-SAR)海浪成像机制。得到了ATI-SAR和XTI-SAR的海浪复图像,以及ATI-SAR相位谱与海浪谱之间的非线性映射关系。
     针对海面Bis-SAR系统比单站SAR (Mon-SAR)系统更加复杂的几何关系,将调制分布面元模型(MDSFM)拓展到双站,同时研究了速度聚束调制这一SAR成像特有的调制机理对Bis-SAR的影响;通过双站散射机理的分析,来计算海面和复杂目标的复合电磁散射,获得Bis-SAR的散射回波。得到了平飞斜视情况下Bis-SAR图像平面中强度变化表达式,它定量地描述了目标方位位置偏移量,方位向分辨率的下降程度以及海面目标的耦合散射造成的距离向分辨率的下降程度,为Bis-SAR的海洋应用研究及系统设计提供了理论基础。
     对Franceschetti提出的SAR原始回波模型进行改进,克服了仅考虑重力波谱的影响和KA近似带来的误差问题,得到了更加精确的海浪SAR回波模型。并在此基础上,应用快速傅里叶变换(FFT)和海浪谱色散关系将三维时域卷积替换为二维频域相乘,使时域方法计算量显著减小,提高了大范围动态海面SAR原始回波模拟的可行性和准确性。
The research on synthetic aperture radar (SAR) imaging simulation from the maritimescene has important scientific significance in the ocean environment monitoring, targetdetection and separation technology of signal. It is an important way to improve theperformance of SAR systems, verify SAR imaging algorithm and enhance the effect of theSAR application. The related works are systematically researched in this paper.
     The ocean surface wave model for SAR imaging is discussed firstly. The structure of theocean surface, which can be “seen” by the SAR, and the mechanism of the SAR to detectlarge-scale surface waves are studied. Ocean surface waves are described by the fluidmechanics model of water wave point. And, for ocean surface waves with obviousrandomness, it can be described by the superposition of waves with different amplitudes,frequencies, directions and phases. Two-scale surface model and the latest findings areintroduced.
     Two high-resolution SAR imaging processing algorithms are presented: range Doppler(RD) algorithm and chirp scaling (CS) algorithm, whose performances are compared. On thebasis of this, an improved non-linear chip scaling (NLCS) approach is proposed to handle thegeneral bistatic SAR (Bis-SAR) data to overcome the limitations of normal approach. The keyis to achieve the accurate spectrum of signal obtained by the method of series reversion andreduce the range-azimuth coupling by the linear range cell migration correction (LRCMC).Then the data is handled by NLCS, so the azimuth compression is enabled. Simulation resultsshow that the improved NLCS method can handle the complex Bis-SAR data.
     SAR imaging mechanism of ocean waves is investigated in detail. For SAR systems canonly probe the microscale waves which can emerge Bragg resonance with the incidentelectromagnetic (EM) wave. And, mesoscale ocean phenomena (such as surface waves,internal waves, under water topography and ships trails, etc.) can only be obtained by SARsystems indirectly through the modulation to microscale waves in space and time. The impactof spatial modulation and time modulation to SAR imaging is discussed in detail. In view ofthe inaccuracy of spectra modulation, a modulated distributed surface facet model (MDSFM)is proposed to calculate the radar cross section (RCS) of ocean surface in synthetic aperturetime based on the efficient double superimposition model (DSM). The modulation mechanismof ocean wave on SAR imaging is discussed in detail combined with calculation in spatialdomain and modulation in spectral domain. So the accurate SAR imaging simulation of oceanwaves is achieved. In addition, the impact of breaking waves on SAR imaging is discussed. Further, a hybrid method based on physical optics (PO) and physical theory of diffraction withequivalent edge currents (PTDEEC) is presented to calculate the high frequency scatteringcharacteristics of large ship target. Finally, this hybrid method combines with the four-pathmodel and MDSFM to investigate SAR imaging mechanism for the composite model of shipon dynamic ocean scene.
     Imaging mechanisms of Along-track interferometric synthetic aperture radar (ATI-SAR)and across-track interferometric synthetic aperture radar (XTI-SAR) for ocean waves arestudied in detail to analyze the application of this new technology on marine remote sensing.The complex image of ATI-SAR and XTI-SAR for ocean waves and the non-linear mappingbetween ATI-SAR phase spectra and wave spectral are obtained.
     For the more complicated geometry of marine Bis-SAR systems related to the marineMon-SAR systems, the modulated distributed surface facet moel (MDSFM) is extended tobistatic case. In addition, the impact of velocity bunching (VB) modulation, which is theunique modulation mechanism for SAR, on Bis-SAR is researched. The composite EMscattering between the ocean surface and the complex targets is calculated by the analysis ofthe bistatic scattering mechanism to obtain the scattering echo data of Bis-SAR. The intensityexpression in Bis-SAR image plane is derived which quantificationally describes the azimuthdisplacement of the scatter elements, the azimuth degradation of radar resolution and therange degradation of radar resolution caused by composite scattering. It provides a theoreticalbasis for the system design and applied research in ocean remote sensing of the Bis-SAR.
     A more accurate SAR raw echo model is obtained by improving the model proposed byFranceschetti. It overcomes the imprecise problem caused by the spectrum only to considergravity and the scattering coefficient only to take KA approximation. Then thethree-dimensional (3-D) convolution in time-domain (TD) is replaced by two-dimensional(2-D) product in frequency-domain (FD) by using the Fast Fourier Transform (FFT) and thedispersion relation of sea spectrum. The computational efficiency is greatly improved by thismodel, so the feasibility and accuracy of SAR raw echo data simulation for extended oceanscene is improved.
引文
[1] Sullivan R. J.,“Micowave Radar Imaging and Advanced Concepts,” ArtechHouse, Boston,2000.
    [2] Soumekh M.,“Synthetic Aperture Radar Signal Processing with MATLABAlgorithms,” John Wiley&Sons, Inc.,1999.
    [3] Mingquan B., Bruning C. and Alpers W.,“Simulation of ocean waves imaging byan along-track interferometric synthetic aperture radar,” IEEE Trans. Geosci.Remote Sensing,1986, Vol.35(3), pp.618-631.
    [4] Shemer L.,“On the focusing of the ocean swell images produced by a regular andby an interferometric SAR,” Int. J. Remote Sensing,1995, Vol.16(5), pp.925-947.
    [5] Erland K. K.,“Application of inverse synthetic aperture radar on aircraft,”Proc.of the international conference on radar, Paris,1984, pp.618-623.
    [6] Kovaly J. J.,“High resolution radar fundamentals,” In Eli-Broakner, RadarTechnology, Dedham. Mass., Artech House,1977.
    [7] Sherwin C. W., Raweliffe D.,“Some early developments in synthetic apertureradar,” IRE Transactions on military electronics,1962, Vol. Mil-6:111, pp.111-115.
    [8] Kirk J. C.,“Digital synthetic aperture radar technology,” IEEE InternationalRadar Conference,1975, pp.482-487.
    [9]胡明城,“卫星遥感技术的发展和最新成就,”测绘学报,2000, Vol.25, pp.25-28.
    [10]朱述龙等编著,“遥感图像获取与分析,”科学出版社,2000.
    [11] Franceschetti G., Iodice A. and Riccio D. et al.,“SAR raw Signal Simulation ofoil slicks in ocean environments,” IEEE Trans. On Geoscience and RemoteSensing,2002, Vol.40, pp.1935-1949.
    [12] Garello R., Chapron B.,“Simulation of SAR images of the ocean fromgeophysical and statistical models,” OCEANS’95,1995, Vol.2, pp.1116-1121.
    [13] Wang A. M., Zhu M. H.,“Simulation of Ship generated turbulent and verticalwake imaging by SAR,” Journal of Electronics (China),2004, Vol.21, pp.64-71.
    [14] Sarabandi K., Pierce L. E., Ulaby F. T. et al.,“Polarimetric calibration of SIR-Cusing point and distributed targets,” IEEE Trans. On Geoscience and RemoteSensing,1995, Vol.33, pp.858-866.
    [15] Yamaguchi Y., Kimura K., Kakizaki S. et al.,“ALOS-PALSAR image simulationin various polarization bases,” IGARSS’02,2002, Vol. l, pp.381-383.
    [16] Nasr J. M.,“Application of a sar image simulator to the study polarizationsignature of man-made targets,” IGARSS’89,1989, Vol. l, pp.25-28.
    [17] Elizavetin I. V., Pailou P.,“Study of surface scattering properties in S-band usingradar image simulation,” Radar97, Oct1997, pp.811-815.
    [18] Onstott R.G.,“Study of the polarization behavior of complex natural andman-made clutter at middle and grazing angles,” IGARSS’98,1998, Vol.5,pp.177-179.
    [19] Xu W., Cumming I.,“Simulator for repeat-pass satellite InSAR studies,”IGARSS’97,1997, Vol.4, pp.1704-1706.
    [20] Klaus F., Blewonska U., Knuefermann R. et al.,“Otmar Loffeld,“Simulation ofShuttle Trajectory and Attitude for a SAR,” IGARSS’93,1993, Vol.4, pp.1771-1773.
    [21] Franceschetti G., Riccio D.,“Efficient simulation of SAR interfermetric rawsignal pairs,” IGARSS’97,1997, Vol.4, pp.1701-1703.
    [22]孙尽尧,王晓军,孙洪,“评价滤波算法的SAR图像模拟,”武汉大学学报,2004, Vol.50, pp.95-98.
    [23] Kulpa K., Smolarczyk M., Gorzelanezyk A.,“Radar Signal generator and itsusage for SAR algorithm tests,” MIKON-2002,2002, Vol.3, pp.749-752.
    [24] Gouinaut C., Pons I.,“Use of geometrical SAR simulation for visibilityprediction: application to mission planning and urban study,” IGARSS’96,1996,Vol.1, pp.257-259.
    [25] Moeeia A., Vetrella S., Ponte S.,“Passive and active calibrator characterizationusing a spaceborne SAR system simulator,” IEEE Trans. On Geoscience andRemote Sensing,1994, Vol.32, pp.715-721.
    [26] Gierull C., Ruppel M.,“An end-to-end synthetic aperture radar Simulator,”EUSAR’96,1996, Konigswinter, Germany, pp.569-572.
    [27] Franceschetti G., Migliaccio M., Rieeio D.,“The SAR simulation: an over view,”IGARSS’95,1995, Vol.3, pp.2283-2285.
    [28] Bamler R., Runge H., Steinbrecher U.,“A Distributed Target SAR Raw DataSimulator with Arbitrary Doppler Variation,” IGARSS’92,1992, pp.287-290.
    [29] Kaupp V. H., Waite W. P., MacDonald H. C.,“SAR simulation,” IGARSS’86,1986, pp.1645-1650.
    [30] Pike T. K.,“SARSIM: a synthetic aperture radar system simulation model,”DFVLR-Mitteilung,1985, Rport: DFVLR-Mitteilung,85-101.
    [31] Klaus F.,“SISAR: advanced SAR simulation,” SPIE,1995, Vol.25, pp.391-399.
    [32] Franceschetti G., Migliaccio M., RIccio D. et al.,“SARAS: A Synthetic ApertureRadar (SAR) Raw Signal Simulator,” IEEE Trans. Geoscience and RemoteSensing, January1992, Vol.30, pp.110-123.
    [33] Taket N. D., Howarth S. M., Burge R. E.,“A Model for Imaging of Urban Areaby Synthetic Aperture Radar,” IEEE Trans. Geoscience and Remote Sensing,1991, Vol.29, pp.432-443.
    [34] Meyer R. H., Oddo L. A., Mcdonald S. P.,“A software tool to predict SARsignatures for building modeling,” Applied Imagery Patern RecognitionWorkshop,2000, pp.245-251.
    [35] Klaus F., Loffeld O.,“Simulation of Planetary Surfaces for a SAR DataSimulator,” IGARSS’92,1992, P.291-293.
    [36] Meric S., Chassay G., and Bechu O. et al.,“Propagation Predietion Caleulationused for SAR imaging urban area,” ELECTRONICSLETTERS,1998, Vol.34, pp.1147-1147.
    [37] Kimura H., Kodaira N.,“Simulation and comparison of JERS-1and ERS-1SARimages,” IGARSS’93,1993, Vol.4, pp.1774-1776.
    [38] Eldhuset K.,“Image quality in an ERS-1SAR processor with erroneous Dopplerparameters and moving targets,” IGARSS’91,1991, Vol.2, pp.1039-1042.
    [39] Maity S., Patnaik C., Chakraborty M. et al.,“Analysis of temporal backscatteringof cotton crops using a semiempirical model,” IEEE Trans. Geoscience andRemote Sensing,2004, Vol.42, pp.577-587.
    [40] Bara M., Broquetas A., Closa J.,“Precise geometry simulation of interferometricSAR signal for air and spaceborne sensors,” IGARSS’2000,2000, Vol.2, pp.746-748.
    [41] Garello R., Proust S., Chapron B.,“2D ocean surface SAR images simu1ation: astatistical approach,” IGARSS’93,1993, Vol.3, pp.1112-1117.
    [42] Carlstrom A., Ulander L. MH., Hakansson B.,“Model for estimating surfaceroughness of level and ridged sea ice using ERS-1SAR,” IGARSS’94,1994, Vol.l, pp.168-170.
    [43] Wegmuller U., Holecz F., and Wang Y. et al.,“Theoretical Sensitivity of ERS-1SAR backscatter over forest,” IGARSS’94,1994, Vol.4, pp.2477-2479.
    [44] Magagi R., Bernier M, Bouehard M. C.,“Use of ground observations tosimulation the seasonal changes in the backscattering coefficient of the subarcticforest,” IEEE Trans. Geoscience and Remote Sensing,2002, Vol.40, pp.281-297.
    [45] Deroin J. P., Simonin A.,“An empirical model for interpreting the relationshipbetween backscattering and arid land surface roughness as seen with the SAR,”IEEE Trans Geoscience and Remote Sensing,1997, Vol.35, pp.86-92.
    [46]齐向阳,朱敏慧,白友天,“极化合成孔径雷达的模拟研究,”电子与信息学报,2003, Vol.23, pp.899-904.
    [47]王睿,“星载合成孔径雷达系统设计与模拟软件研究,”中科院电子所博士论文,2003.
    [48]王睿,杨汝良,“一种面向雷达工作流程的星载合成孔径雷达回波模拟,”遥感技术与应用,2003, Vol.18, pp.327-331.
    [49]倪江,“星载合成孔径雷达回波信号模拟源的研制,”中国科学院电子学研究所,1997.
    [50]程玉平,“一种改进的非线性CS成像算法,”西安电子科技大学学报,2000,Vol.27(3), pp.273-277.
    [51]郑义明,保铮,“用频率变标算法处理大斜角SAR数据,”系统工程与电子技术,2000, Vol.22(4), pp.8-11.
    [52]詹学丽,“机载合成孔径雷达回波模拟器设计与实现,”北京理工大学,硕士论文,2003.
    [53]黄智刚,柳重堪,万国龙等,“一种基于PCI总线的可编程雷达信号模拟器的实现,”北京航空航天大学学报,2003, Vol.29, pp.5-8.
    [54]黄立胜,王贞松,郑天垚,“基于FFT的SAR分布目标模拟算法,”遥感学报,2004, Vol.8, pp.128-136。
    [55] Sun J. Y., Sun H.,“Synthetic aperture radar raw signals simulation of extendedscenes,” Wuhan university journal of natural sciences,2004, Vol.9, pp.327-331.
    [56]汤志伟,陆志强,黄顺吉,“星载合成孔径雷达数据仿真研究,”系统工程与电子技术,2001, Vol.23, pp.22-24。
    [57] Raney, R. K.,“Synthetic aperture radar imaging and moving targets,” IEEETrans. Aerosp. Electron Syst.,1971, Vol. AES-7, pp.499-505.
    [58] Rice S. O.,“Reflection of electromagnetic waves from slightly rough surfaces,”Commun. Pure Appl., Math.41951, pp.361–378.
    [59] Longuet-Higgins M. S., F.R.S.,“A Nonlinear Mechanism for the Generation ofSea Waves,” Rroeeeding of Royal Soeiety London A.,1969, Vol.311, pp.371-389.
    [60] Senyonov B. I.,“Approximate Computation of Seattering of ElectromagneticWaves by Rough Surface Contours,” Radio Engineering and Electronics Physics,1966, pp.1179-1187.
    [61] Wright J. W.,“Backscattering from Capillary Waves with Application to SeaClutter,” IEEE Trans. ON A. P.,1966, Vol.14(6), pp.749-754.
    [62] Holliday D., St-cyr G., Woods N. E.,“A Radar Imaging Mode1for Smal1toModerate Incidence Angles,” Int. J. Remote Sensing,1986, Vol.7(12),pp.1809-1834.
    [63] Axline R. M. and Fung A. K.,“Numerical computation of scattering from aperfectly conducting random surface,” IEEE Trans. Antennas Propagat.,1978,Vol.26, pp.482-488.
    [64] Fung A. K. and Chen M. F.,“Numerical simulation of scattering from simple andcomposite random surfaces,” J. Opt. Soc. Am.,1985, Vol.2, pp.2274-2284.
    [65] Fung A. K., Li Z. and Chen K. S.,“Backscattering from a randomly roughdielectric surface,” IEEE Trans. Geosci. Remote Sensing,1992, Vol.30, pp.356-369.
    [66] Chen K. S. and Fung A. K.,“A comparison of backscattering models for roughsurfaces,” IEEE Trans. Geosci. Remote Sensing,1995, Vol.33, pp.195-200.
    [67] Ishimaru A. and Chen J. S.,“Scattering from very rough surfaces based on themodified second-order Kirchhoff approximation with angular and propagationshadowing,” J. Acoust. Soc. Am.,1990, Vol.88, pp.1877-1883.
    [68] Ogilvy J. A.,“Theory of Wave Scattering from Random Rough Surface” Bristol:institute of physics Publishing,1991.
    [69]柯熙政,吴振森,郭立新,“二维随机粗糙面的fBm模拟及其统计特性,”电波科学学报,1998, Vol.13, pp.167-172.
    [70] Xia M. Y. et al.,“An efficient algorithm for electromagnetic scattering fromrough surfaces using a single integral equation and multilevel sparse-matrixcanonical-grid method,” IEEE Trans. on Antennas and Propagat.,2003, Vol.51,pp.1142-1149.
    [71] Xia M. Y. and Chan C. H.,“Parallel analysis of electromagnetic scattering fromrandom rough surfaces,” Electronics Letters,2003, Vol.39, pp.710-712.
    [72]夏明耀,伍振兴,“基于单积分方程矩量法的海洋表面微波散射模拟,”电子学报,2005, Vol.33, pp.385-388.
    [73] Jin Y. Q., Li Z. X.,“Bistatic scattering and transmitting through a fractal roughdielectric surface using the forward and backward method with spectrumacceleration algorithm,” J. Electro. Wave. Appl.,2002, Vol.16, pp.551-572.
    [74]薛谦忠,吴振森,“粗糙介质面对高斯波束的散射,”电子与信息学报,2000,Vol.22, pp.875-880.
    [75]郭立新,徐燕,吴振森,“分形粗糙海面高斯波束散射特性模拟,”电子学报,2005, Vol.33, pp.534-537.
    [76]郭立新,任玉超,“动态分形粗糙海面散射遮蔽效应和多普勒谱研究,”电子与信息学报,2005, Vol.27, pp.1666-1670.
    [77] Chen, H. Zhang M., and Nie D.,“Robust semi-deterministic facet model for fastestimation on EM scattering from ocean-like surface,” Progress In ElectromagneticsResearch B, Vol.18,347-363,2009.
    [78] Zhang M., Chen H., and Yin H. C.,“Facet-Based Investigation on EM Scatteringfrom Electrically Large Sea Surface with Two-Scale Profiles: TheoreticalModel,” IEEE Trans. on Geoscience and Remote Sensing,2011, Vol.49, pp.1967-1975.
    [79] Alpers, W. R., Bruening C., and Sehroeter J.,“On the focusing issue of syntheticaperture radar imaging of oeean surface waves,” Paper Presented at InternationalGeoscience and Remote Sensing Symposium, IEEE, Vancouver, B. C., Canada,1989.
    [80] Alpers, W. R.,“Monte Carlo simulations for studying the relationship betweenthe ocean wave and synthetic radar image spectra,” J. Geophys. Res.,1983, Vol.88, pp.1745-1759.
    [81] Alpers, W. R., and Bruening C.,“On the relative importance of motion-relatedcontributions to the SAR imaging mechanism of ocean waves,” IEEE Trans.Geosci. Remote Sens.,1986, Vol. GE-24, pp.873-885.
    [82] Alpers, W. R., and Hasselmann K.,“Spectral signal to clutter and thermal noiseproperties of ocean wave imaging synthetic aperture radars,” Int. J. Remote Sens.,1982, Vol.3, pp.423-446.
    [83] Alpers, W. R., Ross D. B., and Rufenach C. L.,“On the detectability of oceansurface waves by real and synthetic aperture radar,” J. Geophys. Res.,1981, Vol.86, pp.6481-6498.
    [84] Lyzenga D. R. and Shuchman R. A.,“Analysis of scatterer motion effects inMARSEN X band SAR imagery,” J. Geophys. Res.,1983, Vol.88, pp.9769-9775.
    [85] Lyzenga, D. R.,“An analytic representation of the synthetic aperture radar imagespectrum for ocean waves,” J. Geophys. Res.,1988, Vol.93, pp.13859-13865.
    [86] Raney, R. K., and Vachon P. W.,“Does a SAR respond to both phase speed andorbital velocity in Ocean sensing?” paper presented at the21st InternationalSymposium on Remote Sensing of Environment, Env. Res. Inst. of Mich, AnnArbor,1987.
    [87] Raney, R. K., and Vachon P. W.,“Synthetic aperture radar imagingof oceanwaves from an airborne platform: Focus and tracking issues,” J. Geophys. Res.,1988, Vol.93, pp.12475-12487.
    [88] Vachon, P. W., Raney R. K., and Emery W. J.,“A simulation for spaceborneSAR imagery of a distributed, moving scene,” IEEE Trans. Geosci. Remote Sens.,1989, Vol. GE-27, pp.67-77.
    [89] Kasilingam D. P., and Shemdin O. H.,“Theory for synthetic aperture radarimaging of the ocean surface: With application to the Tower Ocean Wave andRadar Dependence Experiment on focus, resolution and wave height spectra,” J.Geophys. Res.,1988, Vol.93, pp.13837-13848.
    [90] Harger, R. O.,“Synthetic Aperture Radar Systems,” Academic, SanDiego,Calif.1970.
    [91] Harger, R. O.,“The SAR image of short gravity waves on a long gravity wave, inWave Dynamics and Radio Probing of the ocean Surface,” edited by O. M.Phillips and K. Hasselmann, Plenum, New York,1986, pp.371-392.
    [92] Hasselmann, K. et al,“Theory of synthetic aperture radar ocean imaging: AMRSEN view,” J. Geophys. Res.,1985c, Vol.90, No.C3, pp.4659-4686.
    [93] Hasselmann K. and Hasselmann S.,“On the Nonlinear Mapping of an OceanWave Spectrum Into a Synthetic Aperture Radar Image Spectrum and ItsInversion,” Journal of Geophysical Research,1991, Vol.96, pp.10713-10729.
    [94] Krogstad H. E., Samset O. and Vachon P. W. et al.,“Generalizations of thenon‐linear ocean‐SAR transform and a simplified SAR inversion algorithm,”Atmosphere-Ocean,1994, Vol.32(1), pp.61-82.
    [95] Franceschetti G “On Ocean SAR Raw Signal Simulation,” IEEE Trans. Geosci.Remote Sensing,1998, Vol.36, pp.84-100.
    [96] Mastenbroek and de Valk C. F.,“A semiparametric algorithm to retrieve oceanwave spectra from synthetic aperture radar,” J. Geophys. Res.,2000, Vol.105(C2):pp.3497-3516.
    [97] Franceschetti G., Iodice A., and Riccio D. et al.,“SAR Raw Signal Simulation ofOil Slicks in Ocean Environments,” IEEE Trans. Geosci. Remote Sensing,2002,Vol.40, pp.1935-1949.
    [98] Schulz-Stenllenfleth J. and Lehner S.,“Ocean wave imaging using an airbornesingle pass across-track interferometric SAR,” IEEE Trans.Geosci.RemoteSensing,2001, Vol.39(1), pp.38-45.
    [99]何宜军,“成像雷达海浪成像机制[J],”中国科学(D辑),2000, Vol.30(5), pp.554-560.
    [100] Ma Y. and Zhnag J.,“Simulation study of imaging of underwater bottomtopography by synthetic aperture radar [J],” Journal of Hydro-dynamics (Ser. B).2001, Vol.13(3), pp.57-64.
    [101] Huang X. X. and Zhu Z. H.“Detection of sea surface slick features using SARimage [J],” Journal of Remote Sensing,1999, Vol.3(1), pp.48-53.
    [102]杨劲松,周长宝,黄韦良,“星载合成孔径雷达海浪遥感测量[J],”地球物理学报,2001, Vol.44(增刊), pp.22-27.
    [103]傅斌,黄韦良,周长宝等,“星载SAR浅海水下地形和水深测量模拟仿真,”海洋学报,2001, Vol.1, pp.35-41.
    [104] Huang W. G., Fu B., Zhou C. B.et al.,“Simulation Study on Optimal Currents andWinds for the spaceborne SAR Mapping of Sea Bottom Topography,” Progress inNatural Science,2000, Vol.10, pp.859-866.
    [105]王伟,“潜艇尾迹探测技术研究.技术总结报告,”青岛海洋大学,2000.
    [106] Johnson J. T.,“A Study of the Four-path Model for Scattering from an Objectabove a Half Space,” Microwave Opt. Technol. Lett.,2001, Vol.30, pp.130-134.
    [107] Pino M. R. et al.,“The generalized forward-backward method for analyzing thescattering from targets on ocean-like rough surfaces,” IEEE Trans. AntennasPropagat.,1999, Vol.47, pp.961-968.
    [108] Li L. et al.,“MLFMA analysis of scattering from multiple targets in the presenceof a half-space,” IEEE Trans. Antennas Propagat.,2003, Vol.51, pp.810-819.
    [109]苗英,万国宾,张立鹏,“复杂电磁散射目标的计算机建模,”计算机工程与设计,2006, Vol.27, pp.75-82.
    [110] Li K., Lu Y. L.,“Electromagnetic Field Genetated by a Horizontal Electric DipoleNear the Surface of a Planar Perfect Conductor Coated With a Uniaxial Layer,”IEEE Trans. on Antennas and Propagation,2005, Vol.53, pp3191-3200.
    [111]曹群生,“任意形状目标的多分辨时域(MRTD)散射特性分析,”南京航空航天大学学报,2006,Vol.38, pp.655-659.
    [112]胡俊,王晓峰,聂在平和肖运辉,“三维目标电磁散射的自适应积分方法,”电波科学学报,2007, Vol.22, pp.614-618.
    [113]李中新,金亚秋,“低掠角入射海面与船目标复合建模的双站散射,”电波科学学报,2001, Vol.16, pp.57-60.
    [114] Liu P., Jin Y. Q., Numerical simulation of bistatic scattering from a target atlow altitude above rough sea surface under an E M-Wave incidence at lowgrazing angle by using the finite element method, IEEE Trans. on Geoscienceand Reomte Sensing, May2004, Vo1.52, pp.1205-1220.
    [115]刘鹏,金业秋,“动态起伏海面低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟,”中国科学(G辑),2004, Vol.34, pp.265-278.
    [116]朱国强等,“平板日标与随机粗糙面对电磁波的复合散射,”武汉大学学报,2000, Vol.46, pp.99-103.
    [117]康士峰,王显德,“粗糙面与目标电磁散射统计特性分析,”微波学报,September2004, Vol.20, pp.43-46.
    [118]许小剑,姜丹,李晓飞,“时变海面舰船动态雷达特征信号模型,”系统该工程与电子技术,2011, Vol.33, pp.42-47.
    [119] Chen H., Zhang M., Zhao Y. W., and Luo W.,“An efficient slope-deterministicfacet model for SAR imagery simulation of marine scene,” IEEE Trans. onAntennas and Propagation,2010, Vol.58, pp3751-3756.
    [120] Pierson, W. J. Jr and Moskowitz L.,“A proposed spectral form for fullydeveloped wind seas based on the similarity theory of S. A. Kitaigorodaskii,”Journal of Geophysical Research,1964, Vol.69(24), pp.5181-5190.
    [121] Longuest-Higgins, M. S., Cartwright, D. E. and Smith, N. D.,“Observations ofthe directional spectrum of sea waves using the motion of a floating buoy,”Ocean Spectra, Prentice Hall, Englewood Cliffs,1963, pp.111-136.
    [122] Wright, J. W.,“A new model for sea clutter,” IEEE Trans. Antennas Propag.,1968, Vol. AP-16, pp.217-223.
    [123]吴克群,沈继刚等译,罗宾逊等著,“卫星海洋学,”北京:海洋出版社,1989.
    [124]候世昌,马锡冠等译, Ulaby, F. T., Moore R. K., Fung A. K.著,“微波遥感(第一、第二卷),”科学出版社,1988.
    [125] Alpers, W. R.,“Theory of radar imaging of internal waves,” Nature,1985, Vol.3(14), pp.245-247.
    [126] Peter B., Rubino A., Alpers W., et al.,“Internal Waves in the Strait of MessinaStudied by a Numerical Model and Synthetic Aperture Radar Images from theERS1/2Satellites,” J. Phys. Oceanogr.,1997, Vol.27, pp.648–663.
    [127] Valenzuela, G. R.,“Theories for the interaction of electromagnetic and oceanicwaves–A review,” Boundary-Layer Meteorology,1978, Vol.13, pp.61-85.
    [128] Barrick, D. E.,“Wind dependence of Quasi-Specular Microwave Sea Scatter,”IEEE Trans. Antennas Propag.,1974, Vol. AP-22, pp.135-136.
    [129] Voronovich, A. G. and Zavorotni.V. U.,“Theoretical model for scattering of radarsignals in Ku-and C-bands from a rough sea surface with breaking waves,” Wavein Random Media,2001, Vol.11, pp.247-269.
    [130] Bass, F. G., Fuks I. M., Kalmykov A. I. et al.,“very high frequency radio wavescattering by a disturbed sea surfaces,2, Scattering from an actual sea surface,”IEEE Trans. Antennas Propag.,1968, Vol.AP-16, pp.560-568.
    [131] M.K.奥奇著,“不规则海浪随机分析和概率预报,”海洋出版社,1985.
    [132] Fung A K, Lee K,“A semi-empirical sea-spectrum model for scatteringcoefficient estimation,” IEEE J. Oceanic Engineering,1982, Vol. OE-7(4),pp.166-176.
    [133] Hasselmann D. E., Dunckei M. and Ewing J. A.,“Directional wave spectralobserved during JONSWAP,” Journal of Physical Oceanography,1973, Vol.10,pp.1264-1280.
    [134] Mitsuyasu H., Tasai F., Suhara T. et al.,“Observations of the directionalspectrum of ocean wave using a clover leaf buoy,” Journal of PhysicalOceanography,1975, Vol.5, pp.750-760.
    [135](美)F. T.乌拉比,穆尔(Moore, R. K.)等著;黄培康,汪一飞译,“微波遥感.第二卷,雷达遥感和面目标的散射、辐射理论,”北京:科学出版社,1987.
    [136]张永红,张继贤,林宗坚,“合成孔径雷达成像处理的数学原理,”遥感信息,2000, Vol.4, pp.13-15.
    [137]保铮,“雷达成像技术,”北京:国防工业出版社,2005.
    [138] Ranney R. K., Runge H., Bamler R. et al.,“Precision SAR Processing UsingChirp Scaling,” IEEE Trans. Geoscience and Remote Sensing, July1994, Vol.32(4), pp.786-799.
    [139] Papoulis A.,“Systems and Transforms with Application in optics,” McGraw-Hilll,New York,1968.
    [140] Neo Y. L., Wong F. H. and Cumming I. G.,“Processing of Azimuth-InvariantBistatic SAR Data Using the Range Doppler Algorithm,” IEEE Trans. Geosci.Remote Sensing,2008, Vol.46, pp.14-21.
    [141] Wong F. H. and Yeo T. S.,“New applications of non-linear chirp scaling in SARdata processing,” IEEE Trans. Geosci. Remote Sens.,2001., Vol.39, pp.946–953
    [142] Qiu X. L., Hu D. H. and Ding C. B.,“Non-linear chirp scaling algorithm forone-stationary bistatic SAR,” in Proc.1stAsian PacificConf. Synthetic ApertureRadar, Huang shan, China, Nov.5–92007, pp.111–114.
    [143] Neo Y. L., Wong F. H., and Cumming I. G.,“A two-dimensional spectrum forbistatic SAR processing using series reversion,” IEEE Geosci. RemoteSens. Lett.,Jan.2007, Vol.4, pp.93–96.
    [144] Wong F. H., Cumming I. G., and Neo Y. L.,“Focusing Bistatic SAR Data Usingthe Nonlinear Chirp Scaling Algorithm,” IEEE Transactions on Geoscience andRemote Sensing,2008, Vol.46, pp.2493-2505.
    [145] Gordon W. B.,“Far-Field Approximations to the Kirchhoff-HelmholtzRepresentations of Scattered Fields,” IEEE Trans Antennas Propagat.,1975, Vol.23, pp.590-592.
    [146] Michaeli, A.“Equivalent edge currents for arbitrary aspects of observation,”IEEE Trans. Antennas Propagat.,1984, Vol. AP-32, pp.252-258.
    [147] Wu, Z. S. and Zhang M.,“Improved Equivalent Edge Currents by Modified EdgeRepresentation and Their Application in EM Scattering,” ACTA ELECTRONICASINICA. Vol.26, Sep.1998.
    [148] Alpers W. R., Rurnach C. L.,“The effect of orbital Motions on SyntheticAperture Radar Imagery of Ocean Waves,” IEEE Trans Antennas Propagat.,1979, Vol. AP.-27, pp.685-690.
    [149] Zhang M., Zhao Y. W., Chen H. et al.,“SAR imaging simulation for compositemodel of ship on dynamic ocean scene,” Progress In Electromagnetics Research,2011, Vol.113,395-412.
    [150] Kudryavtsev V., Hauser D., and Caudal G. et al.,“A semimpirical model of thenormalized radar cross-section of the sea surface-1. Background model,” J.Geophys. Res.,2003, Vol.108, pp.8054-8077.
    [151] Bruninng C., Alpers W., Hasselmann K.,“Monte-Carlo Simulation Studies of theNonlinear Imaging of a Two Dimensional Surface Wave Field by a SAR,”International Journal of Remote Sensing,1990, Vol.11, pp.1695-1727.
    [152] Yu, C. L.“Radar cross section computation and visualization by shooting andbounching ray (SBR) technique,” IEEE Trans. Antennas Propagat.,1992, Vol.3,1323-1326.
    [153] Kim, B. C., Park K. K. and Kim H. T.,“Efficient RCS Prediction Method UsingAngular Division Algorithm,” J. of Electromagn. Waves and Appl.,2009, Vol.23,pp.65-74(10).
    [154] Corona, P. G. Ferrara,“An improved physical optics model for the evaluation ofthe field backscattering by triangular trihedral corner reflectors,” Electrotechnicalconference, May.1996, Vol.1, pp.534-537.
    [155] Zhang, P. F. and Gong S. X.,“Improvement on the forwardbackward iterativephysical optics algorithm applied to computing the RCS of large open-endedcavities,” J. of Electromagn. Waves and Appl.,2007, Vol.21, pp.457-469.
    [156] Dong, C. Z., Wang C., Wei X. et al.,“EM Scattering from Complex Targets abovea Slightly Rough Surface,” Progress In Electromagnetic Research Symposium,2007, Vol.3, pp.685-688.
    [157] Zhang, Y., Yang Y. E., Braunisch H. et al.,"Electromagnetic wave interaction ofconducting object with rough surface by hubrid SPM/MOM technique," ProgressIn Electromagnetics Research, PIER.22,315-335,1999.
    [158] Shtager, E. A.“An estimation of sea surface influence on radar reflectivity ofships,” IEEE Trans Antennas Propagat.,1999, Vol.47, pp.1623-1627.
    [159] Vachon P. W.,“Ship detection by RADARSAT SAR: Validation of detectionModel Predictions,” Canadian Journal of Remote Sensing,1997, Vol.23, pp.48-59.
    [160] Richard B., Philipp H.,“TOPICAL REVIEW: Synthetic aperture radarinterferometry,” Inverse Problems,1998, Vol14, pp. R1-R54.
    [161] Moccia A, Rufino G, and D’Errico M, et al.“BISSAT: A bistatic SAR for earthobservation,” Phase A Study——Final Report, ASI Research contract I/R/213/00,2001.
    [162] Martin M, Klupar P, and Kilberg S, et al.“Techsat21and revolutionizing spacemissions using microsatellites,”15th Am. Inst. of Aeronaut. and Astronaut. Conf.on Small Satellites2001, Utah, USA,2001, SSC01-1-3.
    [163] Massonnet D.“Capabilities and limitations of the interferometric cartwheel,”IEEE Trans. on Geoscience and Reomte Sensing,2001, Vol.39(3), pp.506-520.
    [164]刘建平,梁甸农,“星载双/多站SAR系统地面分辨特性影响分析,”信号处理,2006, Vol.22(3), pp.307-311.
    [165]张勇胜,梁甸农,董臻,“星载寄生式SAR系统频率同步分析,”国防科技大学学报,2006, Vol.28(2), pp.85-110.
    [166]李宁,何峰,梁甸农,“双站SAR距离徙动算法,”现代电子技术,2007, Vol.5,pp.38-40.
    [167]朱振波,汤子跃,蒋兴舟,“机载双站合成孔径雷达Chirp Scaling成像算法,”电子与信息学报,2006, Vol.28(6), pp.977-981.
    [168]徐德伦,于定勇,“随机海浪理论,”高等教育出版社,2001.
    [169] Ishimaru A.,“Wave Propagation and Scattering In Random Media,” New York:Academic Press,1978.
    [170] Fung, A. K. and Lee K.,“A semi-empirical sea-spectrum model for scatteringcoefficient estimation,” IEEE J. Oceanic Engineering,1982, Vol. OE-7(4), pp.166-176.
    [171] Harger R O,“Synthetic Aperture Radar System: Theory and Design,” New York:Academic,1970.
    [172] Franceschetti G,“SAR processing techniques,” in Remote Sensing ReferenceBook, D. Sloggett, Ed. Chichester, U.K.: Ellis Horwood,1995.
    [173] Bucci O M, Massa G. D,“The truncation error in the application of samplingseries to electromagnetic problems,” IEEE Trans. Antennas Propagat.,1988, Vol.36(7), pp.941–949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700