用户名: 密码: 验证码:
焦化废水处理过程苯系物、苯胺类、重金属污染物的存在及去除特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水是一种典型的有机工业废水,其原水不仅含有大量的难降解有机污染物,如苯系物、多环芳烃、多氯联苯等,还含有重金属、SCN-、CN-等无机组分。焦化废水处理技术基本上以COD、NH3-N、SS、油类等常规指标来衡量其处理。但是,焦化废水经过处理后,其排放的环境效应已经不能单纯用这些传统的常规指标衡量,那些含量低、毒性大的污染物更应该引起环境工作者的关注。最新颁布并且已经实施的《炼焦化学工业污染物排放标准》中将苯、多环芳烃等POPs列入了控制排放名单。而如果要控制焦化废水中这些高毒性污染物的排放,首先要明确这些污染物在焦化废水处理过程的去除特征,这对于进一步研究控制高毒性污染物的处理技术具有重要的参考价值。
     参照我国优先控制污染物名单,本课题分别选择6种苯系物(BTEX)、19种苯胺类污染物(Anilines)和8种重金属作为焦化废水中高毒性非极性有机污染物、极性有机污染物和无机污染物的代表,以焦化废水三相生物流化床A/O/O和A/O/H/O工艺处理工程为平台,利用气相色谱(Gas Chromatography)、气相色谱-质谱(Gas Chromatography-Mass Spectrometry)和原子吸收(AtomicAdsorption Spectrometry)对工程处理过程中水相和污泥相中的3类典型污染物进行分析,研究了典型污染物在焦化废水处理过程中的去除特征。
     焦化废水中6种苯系物的含量为15.9-257μg.L~(-1),其中苯为苯系物中含量最高物种,两期焦化废水中的苯系物各化合物含量比例类似。作为焦化废水中非极性有机污染物的代表,苯系物经过三相生物流化床A/O/O和A/O/H/O工艺处理后,去除率均在86.5%以上。苯的去除率为苯系物中最低者,在两种工艺中的去除率分别为86.5%和88.4%,二甲苯的去除率最高,证明支链的存在有利于苯系物的去除。在工艺过程中,苯系物的主要去除阶段为好氧工艺段,缺氧或者厌氧条件下,生物工艺段对苯系物去除能力有限。焦化废水出水中仍然存在6种苯系物,其浓度为0.581-21.1μg.L~(-1),但是其含量远低于新颁布的排放标准。研究发现,苯系物的去除是两个因素共同作用的结果,即是生物降解与污泥吸附。由于污泥的良好吸附作用,苯系物在污泥相和水相间的分配系数Kd较高,甚至可以高达2000以上,而且Kd与辛醇水系数Kow呈较好的线性关系。相关性研究表明,苯系物间在水相、泥相的相关关系分别显著。
     焦化废水中19种苯胺类污染物中苯胺为含量最高者,在两期焦化废水中含量分别为31234μg.L~(-1)和59078μg.L~(-1)。苯胺类污染物在两期焦化废水原水中的组成和含量存在比较明显的差异,证明原煤和工艺的不同对苯胺类污染物的生成具有重要的影响。作为极性有机污染物的代表,苯胺类污染物经过三相生物流化床A/O/O和A/O/H/O组合工艺处理后,苯胺类总去除率大于99%。外排水中主要的苯胺类污染物为苯胺,含量分别为8.56μg.L~(-1)和6.01μg.L~(-1)。污泥相中苯胺类污染物含量较低,大部分低于线性范围下限或检出限。据此可以判断,苯胺类污染物的主要去除途径为生物降解,也表明焦化废水中极性有机污染物的生物降解较非极性有机污染物为易。
     焦化废水中的Cd、Cr、Hg、Cu、Ni、Zn、Pb和As等8种重金属含量为0.104-81.5μg.L~(-1)。重金属作为无机污染物的代表,重金属在经过三相生物流化床A/O/O和A/O/H/O工艺处理后,出水中浓度明显降低。重金属的去除主要是通过污泥吸附途径,对重金属在污泥中的形态分析发现,不同的重金属在同一工艺段中的形态分布特征,以及相同形态的重金属在不同工艺段中的分布特征都具有较大不同。利用SPSS数学统计软件对重金属的形态分布特征数据进行聚类分析发现,重金属本身特性和工艺条件是其形态分布特征的主要决定因素。
Coking wastewater is a kind of typical industrial organic wastewater, whichcontains not only amounts of refractory organic contaminants such as BTEX, PAHsand PCBs but inorganic pollutants such as heavy metal, SCN~(-1)and CN~(-1). To today,COD、NH3-N、SS and total oil are generally employed to assess the treatmenttechnology for coking wastewater. The traditional indicators are not efficient toforcast the environmental effects for the discharge of wastewater, and in fact that thecontaminants with low concentration and high toxic should be in the center of concern.These high toxic contaminants could be concentrated in organism and theircarcinogenicity-mutagenicity-teratogenicity effect is a serious threat for organism inenvironment once discharged into environment. Benzene and PAHs were listed in thenewly implemented emission control regulations. Therefore, it is crital to investigatethe removal characteristic of these high toxic contaminants in coking wastewaterduring treatment process in order to remove these contaminants more efficently.
     In this work, referred to the priority controlled contaminants list in our country,6BTEX,19anilines and8heavy metals were selected as typical nonpolar organic,polar organic and inorganic contaminant in coking wastewater, respectively. Twocoking wastewater treatment plants based on three phases biological fluidized bedA/O/O and A/O/H/O process, were selected as model plants. The three typicalcontaminants in water and sludge were analyzed by gas chromatography, gaschromatography-mass spectrometry and atomic adsorption spectrometry to investigatetheir removal characteristic during the treatment procedure.
     The content of BTEX in the coking wastewater was15.9-257μg.L~(-1), andbenzene was the dominant compound. For BTEX, the proportion was similar fot thethe two investigated plants. As the representative of nonpolar organic contaminant incoking wastewater, BTEX was all effectively removed through the treatment by threephase biological fluidized bed A/O/O and A/O/H/O process. The BTEX removal ratewas higher than85%, and for some compounds of BTEX the removal rate was indeedhigher than95%. The benzene removal rate was the lowest among BTEX which were 86.5%and88.4%for the two plants. It is proved that the alkyl accelates thebiodegradation of BTEX by the higher removal rate of xylene.The removal rate ofBTEX for aerobic process was observably higher than that for anaerobic process, andthe aerobic process was the main process for BTEX removal. There were BTEX in thedischarged coking wastewater, although the concentration was much lower thanemission control regulations. According to the study, it was found that the BTEXremoval was caused by biodegradation and adsorption on sludge. Thepartition coefficients of BTEX between sludge and water were high and some of thosewere even up to2000due to the high adsorption ability of the sludge. The partitioncoefficients were well linear with the Kow of BTEX. The relativity of BTEX in waterand sludge phase was distincted revealed by the relativity investigation.
     The concentration of aniline was the highest one among anilines in the two rawcoking wastewater, which was up to31234μg.L~(-1)and59078μg.L~(-1), respectively. Thedifferences of concentration and buildup of anilines in the two raw coking wastewaterproved that the coal and technics were very important for the production of anlines.As the representative of polar organic contaminant in coking wastewater, very higheven higher than99%removal rate of anlines was achieved through the treatment bythree phase biological fluidized bed A/O/O and A/O/H/O process. The dominantanilines in the discharged coking wastewater was aniline which concentration was8.56μg.L~(-1)and6.01μg.L~(-1), respectively. It was low down to the detection limit forthe concent of anilines in sludge and it was speculated that biodegradation was themain removal way for anilines. The polar organic contaminant was much easierbiodegradated than non polar organic contaminant in coking wastewater.
     There are Cd、Cr、Hg、Cu、Ni、Zn、Pb and As in raw coking wastewater andwhich concentrations were0.104-81.5μg.L~(-1). As the representative of inorganiccontaminant in coking wastewater, the concent of heavy metals in the dischargedcoking wastewater was much lower than that in raw coking wastewater but theremoval rates were much lower than that of BTEX and anilines, through the sametreatment by three phase biological fluidized bed A/O/O and A/O/H/O process. Theheavy metals could not be biodegradated by activated sludge, and the removal in water phase was mainly achieved by adsorption to sludge. It was found that thedistribution characteristic differed greatly for different heavy metals in the sameprocess, and the distribution characteristic for the same heavy metal in differentprocess also showed much deviation. For the two different treatment plants, notabledifferences for distribution characteristic were found for the same heavy metals.Further SPSS clustering analysis proved that the characteristic of heavy metal and thecondition of different process were the two main determinant factors for heavy metaldistribution characteristic.
引文
[1]章非娟.工业水污染控制[M].上海:同济大学出版社2000.
    [2]任源,韦朝海,吴超飞等.焦化废水水质组成及其环境学与微生物学特性分析[J].环境科学学报,2007,27(7):1094-1100.
    [3]国家环境保护总局,水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [4]孔令东,姜成春,郝天文.焦化废水中有机污染物的GC-MS法测定[J].给水排水,1994,4:48-50.
    [5]韦朝海,贺明和.焦化废水污染特征及其控制过程与策略分析[J].环境科学学报,2007,27(7):1083-1092.
    [6] Kikyl G. M.. Complete physico-chemical treatment for coke plant effluents[J]. WaterResearch,2002,36(5):1127-1134.
    [7] Santos A., Yustos P., Quintanilla A., et al. Evolution of toxicity upon wet catalyticoxidation of phenol[J]. Environ. Sci. Technol.,2004,38(1):133-138.
    [8] Strniste G., Martinez E., Martinez A. M., et al. Photoinduced reactions of benzo(a)pyrenewith DNA in vitro[J]. Cancer Res.,1980,40:245-252.
    [9] Shi H. P., Shan B. R.. A case with acute sulfureted hydrogen poisoning treated bymethylene blue[J]. Zhong Hua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2011,29(5):398-394.
    [10] Couturier Y., Barbotin M., Bobin P., et al. Cases of toxic lung caused by ammonia vaporsand sulfureted hydrogen[J]. Bull Soc. Med. Afr. Noire Lang Fr.,1971,16(2):250-257.
    [11] Redman A., Santore R.. Bioavailability of cyanide and metal-cyanide mixtures to aquaticlife[J]. Environ. Toxicol. Chem.,2012,16(2):251-258.
    [12] Pandolfo T. J., Cope W. G., Young G. B., et al. Acute effects of road salts and associatedcyanide compounds on the early life stages of the unionid mussel Villosa iris[J]. Environ.Toxicol. Chem.,2012,16(2):276-283.
    [13] Belani K. G., Singh H., Beebe D. S., et al. Cyanide toxicity in juvenile pigs and itsreversal by a new prodrug, sulfanegen sodium[J]. Anesth. Analg.,2012,114(5):956-61.
    [14]赵飞,惠晓梅,郭栋生.阳离子交换树脂吸附焦化废水中氨氮影响因素研究[J].水处理技术,2011,37(11):34-37.
    [15]陈新丽.混凝-气浮法处理焦化废水的试验研究[M].武汉:武汉科技大学2005.
    [16]何君礼.超微细气泡曝气柱应用于焦化生产中的可行性探讨[J].冶金环境保护,2002,4:1-3.
    [17]杨义燕,党广悦.络合萃取法处理工业含酚废水[J].环境科学学报,1995,16(2):35-38.
    [18]葛宜掌.协同-络合萃取法回收含酚废水中的酚类[J].环境化学,1996,15(2):112-117.
    [19] Yuan X. Y., Guo D. S.. The removal of COD from coking wastewater using extractionreplacement-biodegradation coupling[J]. Desalination,2012,289:45-50.
    [20]傅敏.活性炭纤维改性及对焦化废水中有机物吸附作用的研究[M].重庆,重庆大学,2004.
    [21]张小璇,任源,韦朝海,等.焦化废水生物处理尾水中残余有机污染物的活性炭吸附及其机理[J].环境科学学报,2007,27(7):1272-1281.
    [22]史晓燕.活性炭吸附处理焦化废水的研究[D].华中科技大学,2003.
    [23] Zhang M. H., Zeng Q. L., Bai X., et al. Adsorption of organic pollutants from cokingwastewater by activated coke[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2010,362:140-146.
    [24] Guo D. S., He B. B., Yuan X. Y.. Different solvents for the regeneration of the exhaustedactivated carbon used in the treatment of coking wastewater[J]. Journal of HazardousMaterials,2011,186:1788-1793.
    [25]邵红,姜超,李辉,等.壳聚糖改性膨润土处理焦化废水的实验研究[J].生态环境学报,2010,19(5):1040-1043.
    [26]吴健,辛平.焦化废水深度处理的工业实验[J].燃料与化工,1996,27(6):318-319.
    [27]徐革联.利用生物与吸附性物质联合处理焦化废水的研究[J].煤炭加工和综合利用,2000,4:27-29.
    [28]刘鹤年.厌氧/好氧生物脱氮-絮凝法处理焦化废水[J].化工环保,1995,15(6):343-346.
    [29]邢素青.化学强化絮凝法处理焦化废水的研究[D].太原理工大学,2006.
    [30]黄晓鸣.锰矿石氧化-磷酸铵镁沉淀处理焦化废水[D]].合肥工业大学,2009.
    [31] Lai P., Wang C., Ni J. R., et al. Advanced treatment of coking wastewater by coagulationand zero-valent iron processes[J]. Journal of Hazardous Materials,2007,147:232-239.
    [32]谢成,晏波,韦朝海,等.焦化废水Fenton氧化预处理过程中主要有机污染物的去除[J].环境科学学报,2007,27(7):1101-1106.
    [33] Chu L. B., Wang J., Dong J.,et al. Treatment of coking wastewater by an advancedFenton oxidation process using iron powder and hydrogen peroxide[J]. Chemosphere,2012,86:409-414.
    [34]李海涛,李玉平,张安洋,等.新型非均相电-Fenton技术深度处理焦化废水[J].环境科学,2011,32(1):171-178.
    [35] Zhu X. B., Tian J., Liu R., et al. Optimization of Fenton and electro-Fenton oxidation ofbiologically treated coking wastewater using response surface methodology[J].Separation and Purification Technology,2011,81:444-450.
    [36] Petrier C, Francony L. M., Francony A.. Sonochemical degradation of phenol in diluteaqueous solutions: Comparison of the reaction rates at20and487kHz[J]. J. Phys.Chem.,1994,98(41):10514-10526.
    [37]宁平,徐质,黄东宾,等.超声辐照-活性污泥联合处理焦化废水[J].环境科学,2003,24(3):184-185.
    [38]谭江月.双频超声辐照处理焦化废水的研究[J].水处理技术,2012,38(1):122-136.
    [39]谭江月.双频超声空化降解焦化废水中氨氮的研究[J].环境科学与技术,2012,35(2):182-185.
    [40]付子旋.微波催化氧化焦化废水的实验研究[D].南京理工大学,2006.
    [41]曲晓萍.微波辐射深度处理焦化废水的研究[D].华中科技大学,2005.
    [42]肖俊霞,吴超飞,韦朝海,等.焦化废水外排水的TiO2光催化氧化深度处理及有机物组分分析[J].环境科学研究,2009,22(9):1049-1055.
    [43]胡玲,梁文懂,马毅,等.光催化降膜反应器深度处理焦化废水研究[J].水处理技术,2011,37(2):110-113.
    [44]姚珂.纳米TiO2薄膜及Ti-MCM-41光催化处理焦化废水的研究[D].太原理工大学,2008.
    [45]王蕊.负载型二氧化钛光催化预处理焦化废水的研究[D].南京工业大学,2006.
    [46]高敏江,李素芹,王习东,等.纳米TiO2/Fe3O4光催化剂的制备及其在焦化废水处理中的初步应用研究[J].水处理技术,2010,36(9):73-77.
    [47]王海玥.混凝/铁炭内电解处理焦化废水的研究[D].武汉科技大学,2009.
    [48]李飞飞.铁炭内电解技术和混凝法深度处理焦化废水的研究[D].湖南大学,2009.
    [49]朱乐辉,裴浩言,邱俊.铁碳微电解/H2O2混凝法处理焦化废水的试验研究[J].水处理技术,2010,36(8):117-120.
    [50]陈洪林.低温焦化废水铁炭微电解-AO的研究[J].环境科学与技术,2011,34(8):5-8.
    [51] Wang B., Cong X., Ma H. Z.. Electrochemical Oxidation of Refractory Organics in theCoking Wastewater and Chemical Oxygen Demand (COD) Removal under ExtremelyMild Conditions[J]. Ind. Eng. Chem. Res.,2008,47:8478-8483.
    [52] Zhu X. P., Ning J., Lai P.. Advanced treatment of biologically pretreated cokingwastewater by electrochemical oxidation using boron-doped diamond electrodes[J].Water Research,2009,43:4347-4355.
    [53] Liang Z. H., Shi L., Guo W. Q., et al. The Kinetics for Electrochemical Removal ofAmmonia in Coking Wastewater[J]. Chinese Journal of Chemical Engineering,2011,19(4):570-574.
    [54] Lv Y. L., Wu Y., Shan M. J., et al. Denitrification of coking wastewater withmicro-electrolysis[J]. Journal of Environmental Sciences,2011,23:128-131.
    [55]桂玉明.用臭氧法处理焦化废水的研究[D].辽宁科技大学,2008.
    [56]宁靓.焦化废水生化处理后有机物的臭氧氧化降解与转化[J].中国给水排水,2011,27(21):72-75.
    [57]雷霆,赵文涛,黄霞,等.混凝联合O3、O3/UV深度处理焦化废水的研究[J].中国给水排水,2010,26(5):100-103.
    [58]陈良才.臭氧/生物活性炭工艺深度处理焦化废水中试[J].中国给水排水,2010,26(5),109-111.
    [59]陈新宇.催化超临界水氧化技术处理焦化废水的应用研究[D].天津大学,2007.
    [60]龙淼.高压脉冲放电处理焦化废水的研究[D].华中科技大学,2006.
    [61] Han L. H.. Catalytic wet air oxidation of high-strength organic coking wastewater[J].Asia-Pac. J. Chem. Eng.,2009,4:624-627.
    [62] Zhang M., Jin T. H., Qian Y., et al. Comparison between anaerobic-anoxic-oxic andanoxic-oxic system for coke plantwasterwater treatment[J]. Journal of EnvironmentEngineering,1997,9:876-883.
    [63] Li Y. M., Wang G. G., Zhao J. F., et al. Treatment of coke plant wastewater by biofilmsystems for removal of organic compounds and nitrogen[J]. Chemosphere,2003,52:997-1005.
    [64]王绍文,等.焦化废水无害化处理与回用技术[M].北京:冶金工业出版社,2005.
    [65]刘廷志.高效微生物处理焦化废水[J].中国给水排水,2005,21(4):79-82.
    [66] Irvine R. L.. Sequencing batch biological reactors an overview[J]. J. Wat. Pollut. Control.Fed.,1979,51(2):235-243.
    [67] Irvine R. L., Bhamrah A. S.. Sequencing batch treatment of wastewater in rural areas[J].J. Wat. Pollut. Control.Fed.,1979,51(2):244-254.
    [68]周建强. BAF投加C、P源深度处理焦化废水去除COD的可行性研究[D].太原理工大学,2010.
    [69]王鑫焱. BAF工艺处理焦化废水的实验研究[D].太原理工大学,2007.
    [70]申世峰. UASB-固定化活性污泥处理焦化废水研究[D].南京理工大学,2009.
    [71]赵文涛,黄霞,李笃中,等.无排泥条件下的膜-生物反应器系统处理焦化废水可行性研究[J].环境科学,2009,30(11):3316-3323.
    [72]张诗华. A2/O2生物膜工艺处理焦化废水研究[J].中国给水排水,2009,25(21):5-12.
    [73] Lai P., Zeng H. Z., Zeng M., et al. Study on treatment of coking wastewater by biofilmreactors combined with zero-valent iron process[J]. Journal of Hazardous Materials,2009,162:1423-1429.
    [74]侯兰玉.固定化微生物新工艺处理焦化废水研究[D].太原理工大学,2008.
    [75] Wang F., He Y., Chen G., et al. Enhanced phenol degradation in coking wastewater byimmobilized laccase on magnetic mesoporous silica nanoparticles in a magneticallystabilized fluidized bed[J]. Bioresource Technology,2012,110:120-124.
    [76] Lu Y., Yang L., WangY., et al. Biodegradation of phenolic compounds from cokingwastewater by immobilized white rot fungus Phanerochaete chrysosporium[J]. Journal ofHazardous Materials,2009,165:1091-1097.
    [77] Yu Z. T., Wang M. W.. With resin-acid-degrading bacteria enhances resin acid removal insequencing batch reactors treating pulp mill effluents[J]. Water Research,2001,35:883-890.
    [78] Wang J. L., Wang L. B., Han L. P., et al. Bioaugmentation as a tool to enhance theremoval of refractory compound in coke plant wastewater[J]. Process Biochem.,2002,37:831-836.
    [79]李咏梅.投菌法处理焦化废水的试验研究[J].同济大学学报,2003,31(8):986-989.
    [80]王璟,孙先锋.应用生物强化技术处理焦化废水难降解有机物[J].城市环境与城市生态,2000,13(6):12-14.
    [81]韦朝海,贺明和,吴超飞,等.生物三相流化床A/O2组合工艺在焦化废水处理中的工程应用[J].环境科学学报,2007,27(7):1107-1112.
    [82] Paul M. S., Martin H. K.. Biological Fluided-bed Treatment of WastewaterfromByproduct Coking Operations: Full-Scale Case History[J]. Water Environ. Res.,1999,71(1):5-9.
    [83] Patiroop P., Tom Donnelly. Fate of Estrogens during the Biological Treatment ofSynthetic Wastewater in a Nitrite-Accumulating Sequencing Batch Reactor[J]. Environ.Sci. Technol.,2008,42:6141-6147.
    [84] Mozo I., Lesage N.. Fate of hazardous aromatic substances in membrane bioreactors[J].Water Research,2011,45:4551-4561.
    [85] Yang S. F., Wu C. J.. Fate of sulfonamide antibiotics in contact with activated sludge eSorption and biodegradation[J]. Water Research,2012,46:1301-1308.
    [86] Maruyama Y. S. T.. Fate of natural estrogens in batch mixing experiments usingmunicipal sewage and activated sludge[J]. Water Research,2006,40:1061-1069.
    [87] Jarvie H. P., King S. M.. Fate of Silica Nanoparticles in Simulated Primary WastewaterTreatment[J]. Environ. Sci. Technol.,2009,43:8622-8628.
    [88] Padhye L., Mitch W. A.. Occurrence and Fate of Nitrosamines and Their Precursors inMunicipal Sludge and Anaerobic Digestion Systems[J]. Environ. Sci. Technol.,2009,43:3087-3093.
    [89] Merete G., Marijan A.. Effects-directed analysis of organic toxicants in wastewatereffluent from Zagreb, Croatia[J]. Chemosphere,2007,67:108-120.
    [90] Won J. S., Sun K. S.. Assessment of fates of estrogens in wastewater and sludge fromvarious types of wastewater treatment plants[J]. Chemosphere,2011,82:1448-1453.
    [91] Li B.. Mass flows and removal of antibiotics in two municipal wastewater treatmentplants[J]. Chemosphere,2011,83:1284-1289.
    [92] Remy B., Celia M. M.. Trace metal speciation and fluxes within a major Frenchwastewater treatment plant: Impact of the successive treatments stages[J]. Chemosphere,2006,65:2419-2426.
    [93] Chipasa K. B.. Accumulation and fate of selected heavy metals in a biologicalwastewater treatment system[J]. Waste Management,2003,23:135-143.
    [94] Wang C., Ma H. T.. Distribution of extractable fractions of heavy metals in sludge duringthe wastewater treatment process[J]. Journal of Hazardous Materials,2006,137:1277-1283.
    [95] AAlvarez E. A., Sanchez J.C. J.. Heavy metal extractable forms in sludge fromwastewater treatment plants[J]. Chemosphere,2002,47:765-775.
    [96] Alonso E., Santos A., Aparicio I.. Fractionation of heavy metals in sludge from anaerobicwastewater stabilization ponds in southern Spain[J]. Waste Management,2006,26:1270-1276.
    [97] Chanpiwat P., Kim K. W.. Metal content variation in wastewater and biosludge fromBangkok's central wastewater treatment plants[J]. Microchemical Journal,2010, In press.
    [98] Wang J. M., Allen H. E.. Modeling heavy metal uptake by sludge particulates in thepresence of dissolved organic matter[J]. Water Research,2003,37:4835-4842.
    [99]任源,韦朝海,吴超飞,等.生物流化床A/O2工艺处理焦化废水过程中有机组分的GC/MS分析[J].环境科学学报,2006,26(11):1758-1791.
    [100]何苗.焦化废水中芳香族有机物及杂环化合物资活性污泥法处理中的去除特性[J].中国给水排水,1997,13(1):14-17.
    [101] Xin M. C.. Qualitative and quantitative determination of halogenated derivatives inwastewater from coking plant[J]. J. Sep. Sci.,2003,26:1067-1071.
    [102]张伟.焦化废水水质分析及酚类污染物在生物流化床中的降解特性[D].中国科学院研究生院,2009.
    [103] Zhang W. H., Wei C. H., Chai X. S., et al. The behaviors and fate of polycyclic aromatichydrocarbons (PAHs) in a coking wastewater treatment plant[J]. Chemosphere,2012, Inpress.
    [104] Ling M. D., Luque C. P. C.. Ultrasound assistance to liquid-liquid extraction: Adebatable analytical tool[J]. Anal. Chim. Acta,2007,583:2-9.
    [105] Farajzadeh M. A., Zorita S.. Optimization and application of homogeneous liquid-liquidextraction in preconcentration of copper (II) in a ternary solvent system[J]. Journal ofHazardous Materials,2009,161:1535-1543.
    [106] Anthemidis A. N., Farastelis C. G.. On-line liquid-liquid extraction system using a newphase separator for flame atomic absorption spectrometric determination of ultra-tracecadmium in natural waters[J]. Talanta,2004,62:437-443.
    [107]张倩,张超杰,周琪,等. SPE-HPLC/MS联用法测定地表水中的PFOA及PFOS含量[J].四川环境,2006,25(4):10-28.
    [108]李竺,陈玲,郜洪文,等. SPE-PDA/FLD串联HPLC法测定水样中痕量多环芳烃[J].环境化学,2006,25(4):503-507.
    [109]陈明,任仁,王子健,等.城市污水处理厂水样中有机氯农药残留分析[J].环境科学与技术,2006,28:37-39.
    [110]赵建伟,黄廷林.高效液相色谱法测定饮用水中的微囊藻毒素RR和LR[J].中国环境监测,2006,22(3):12-14.
    [111]刘玉春,徐维海,余莉莉,等.固相萃取液相色谱-质谱/质谱联用测定河水中大环内酯类抗生素[J].分析测试学报,2006,25(2):1-5.
    [112]李丽莎,杨湘霞,汪莉.高效液相色谱法检测桶装饮用水中双酚A[J].实用预防医学,2006,13(2):429.
    [113]李竺,陈玲,郜洪文,等.固相萃取!高效液相色谱法测定环境水样中的三嗪类化合物[J].色谱,2006,24(3):267-270.
    [114]廖艳,余煜棉,赖子尼,等.固相萃取-气相色谱法检测水中的邻苯二甲酸酯[J].化工环保,2006,26(3):235-238.
    [115]周晓珍.固相萃取技术富集水中的多环芳烃[J].江西化工,2006,2:48-49.
    [116]任仁,陈明,林兴桃,等.印钞行业废水中邻苯二甲酸酯类化合物残留分析[J].中国环境监测,2006,22(1):18-20.
    [117]胡睿,王琳玲,陆晓华.固相萃取-气相色谱法测定水中的酚类污染物[J].环境科学与技术,2005,28(1):56-65.
    [118]郭伟,何孟常,杨志峰,等.水和沉积物中石油类污染物的定量分析和质量控制[J].环境化学,2006,25(5):651-652.
    [119]吴春先,聂果,王广成,等.高效液相色谱法测定水中多杀菌素的残留量[J].农药,2006,45(3):191-193.
    [120] Guo L.. Development of multiwalled carbon nanotubes based micro-solid-phaseextraction for the determination of trace levels of sixteen polycyclic aromatichydrocarbons in environmental water samples[J]. J. Chromatogr. A,2011,1218:9321-9327.
    [121] Zhou Q. X., Bai H. H.. Preconcentration sensitive determination of pyrethroidinsecticides in environmental water samples with solid phase extraction with SiO2microspheres cartridge prior to high performance liquid chromatography[J]. J.Chromatogr. A,2010,1217,5021-5025.
    [122] Chen B., Huang Y. M.. Cigarette filters as adsorbents of solid-phase extraction fordetermination of fluoroquinolone antibiotics in environmental water samples coupledwith high-performance liquid chromatography[J]. Talanta,2012,88:237-243.
    [123] Luo X. B., Tu X. M.. Novel molecularly imprinted polymer using1-(-methylacrylate)-3-methylimidazolium bromide as functional monomer for simultaneousextraction and determination of water-soluble acid dyes in wastewater and soft drink bysolid phase extraction and high performance liquid chromatography[J]. J. Chromatogr. A,2011,1218:1115-1121.
    [124] Qi P. P., Jin J..2,4-Dimethylphenol imprinted polymers as a solid-phase extractionsorbent for class-selective extraction of phenolic compounds from environmentalwater[J]. Talanta,2010,81:1630-1635.
    [125] Yin Y. M., Wang X. F.. Dummy molecularly imprinted polymers on silica particles forselective solid-phase extraction of tetrabromobisphenol A from water samples[J]. J.Chromatogr. A,2012,1220:7-13.
    [126] Mehdini A., Jabbari Ali. Rapid magnetic solid phase extraction with in situderivatization of methylmercury in seawater by Fe3O4/polyaniline nanoparticle[J]. J.Chromatogr. A,2011,1218:4269-4274.
    [127] Sadeghi S., Azhdari H., Arabi H., et al. Surface modified magnetic Fe3O4nanoparticlesas a selective sorbent for solid phase extraction of uranyl ions from water samples[J].Journal of Hazardous Materials,2012,215:208-216.
    [128] Momplaisir G. M., Edward M. H.. Development of a solid phase extraction method foragricultural pesticides in large-volume water samples[J]. Talanta,2010,81:1380-1386.
    [129] Rodil R., Basaglia G. Determination of synthetic phenolic antioxidants and theirmetabolites in water samples by downscaled solid-phase extraction, silylation and gaschromatography-mass spectrometry[J]. J. Chromatogr. A,2010,1217:6428-6435.
    [130] Lin S. L., Fu M. R.. Quantitative determination of perchlorate in bottled water and teawith online solid phase extraction high-performance liquid chromatography coupled totandem mass spectrometry[J]. J. Chromatogr. A,2012,1246:40-47.
    [131]彭丹祺,孙同华,贾金平,等.活性炭固相微萃取/气相色谱联用测定海水中酞酸酯[J].分析化学,2009,37(5):715-717.
    [132]寇立娟,梁春实,魏树龙,等.固相微萃取-气相色谱-质谱联用测定水中痕量2-甲基异冰片和土臭素[J].分析化学,2011,39(12):1932-1933.
    [133] Ali S. Y., Rounaghi G.. Determination of non-steroidal anti-inflammatory drugs in watersamples by solid-phase microextraction based sol-gel technique using poly(ethyleneglycol) grafted multi-walled carbon nanotubes coated fiber[J]. Anal. Chim. Acta,2012,720:134-141.
    [134] Racamonde I., Rodil R.. Determination of9-tetrahydrocannabinol and11-nor-9-carboxy-9-tetrahydrocannabinol in water samples by solid-phasemicroextraction with on-fiber derivatization and gas chromatography-massspectrometry[J]. J. Chromatogr. A,2012,1245:167-174.
    [135] Araujo L., Villa N.. Determination of anti-inflammatory drugs in water samples, by insitu derivatization, solid phase microextraction and gas chromatography-massspectrometry[J]. Talanta,2008,75:111-115.
    [136] Mohammadi A., Alizadeh N.. Headspace solid-phase microextraction using adodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry for thesimultaneous determination of atrazine and ametryn in soil and water samples[J]. Talanta,2009,78:1107-1114.
    [137] Companioni-Damas E. Y., Galceran M.T.. Analysis of linear and cyclic methylsiloxanesin water by headspace-solid phase microextraction and gas chromatography-massspectrometry[J]. Talanta,2012,89:63-69.
    [138] Cervera M. I., Lopez F. J., Hernandez F.. Determination of volatile organic compoundsin water by head space-solid-phase microextraction gas chromatography coupled totandem mass spectrometry with triple quadrupole analyzer[J]. Anal. Chim. Acta,2011,704:87-97.
    [139] Ma X. X., Yuan D. X.. Determination of endocrine-disrupting compounds in water bycarbon nanotubes solid-phase microextraction fiber coupled online with highperformance liquid chromatography[J]. Talanta,2011,85:2212-2217.
    [140] Gao Z. Q., Liu B. Z.. Nano-structured polyaniline-ionic liquid composite film coatedsteel wire for headspace solid-phase microextraction of organochlorine pesticides inwater[J]. J. Chromatogr. A,2011,1218:6285-6291.
    [141] Budziak D., Carasek E.. Application of NiTi alloy coated with ZrO2as a new fiber forsolid-phase microextraction for determination of halophenols in water samples[J]. Anal.Chim. Acta,2007,598:254-260.
    [142] Pederson-bjergaard S.. Liquid-liquid-liquid microextraction for sample preparation ofbiological fluids prior to capillary eletrophoresis[J]. Anal. Chem.,1999,71(13):2650-2656.
    [143] Jiang X., Zhang J.. Dynamic hollow fiber-supported headspace liquid-phasemicroextraction[J]. J. Chromatogr. A,2005,1087(1-2):289-294.
    [144] Varanusupakul P., Pulpoka B. In situ derivatization and hollow fiber membranemicroextraction for gas chromatographic determination of haloacetic acids in water [J].Anal. Chim. Acta,2007,598(1):82-86.
    [145] Jiang X., Lee H. K.. Dynamic liquid-liquid-liquid microextraction with automatedmovement of the acceptor phase[J]. Anal. Chem.,2005,77(27):1689-1695.
    [146] Gjelstad A., Rasissem K. E.. Microextraction across supported liquid membranes forcedby pH gradients and electrical fields[J]. J. Chromatogr. A,2007:1157(1-2):38-45.
    [147] Rezaei F., Pajand A.. Development of a dispersive liquid-liquid microextraction methodfor determination of polychlorinated biphenyls in water[J]. Journal of HazardousMaterials,2008,158(2-3):621-627.
    [148] Yazdi A. S., Yazdinejad S. R.. Separation and determination of amitriptylin andnortriptyline by dispersive liquid-liquid microextraction combined with gaschromatography flame ionization detection[J]. Talanta,2008,75(5):1293-1299.
    [149] Farahani H., Dinarvand R.. Development of dispersive liquid-liquid microextractionwith gas chromatography/mass spectrometry as a simple, rapid and highly sensitivemethod for the determination of phthalate esters in water samples[J]. J. Chromatogr. A,2007,1172(2):105-112.
    [150] Berijani S., Anbia M.. Dispersive liquid-liquid microextraction combined with gaschromatography-flame photometric detection: very simple, rapid and sensitive methodfor the determination of organophosphorus pesticides in water[J]. J. Chromatogr. A,2006,1123(1):1-9.
    [151] Fattahi N., Hosseini M. R M.. Determination of chlorophenols in water samples usingsimultaneous dispersive liquid-liquid microextraction and derivatization followed by gaschromatography-electron-capture detection[J]. J. Chromatogr. A,2007,1157(1-2):23-29.
    [152] Fattahi N., Assadi Y.. Solid-phase extraction combined with dispersive liquid-liquidmicroextraction-ultra preconcentration of chlorophenols in aqueous samples[J]. J.Chromatogr. A,2007,1169(1-2):63-69.
    [153] Pena M. T., Mejuto M. C.. Development of an ionic liquid based dispersive liquid-liquidmicroextraction method for the analysis of polycyclic aromatic hydrocarbons in watersamples[J]. J. Chromatogr. A,2009,1216:6356-6364.
    [154] Li S., Gao H., Zhang J., et al. Determination of insecticides in water using in situ halideexchange reaction-assisted ionic liquid dispersive liquid-liquid microextraction followedby high-performance liquid chromatography[J]. J. Sep. Sci.,2011,34(22):3178-3185.
    [155] Xu X., Su R., Zhao X., et al. Ionic liquid-based microwave-assisted dispersiveliquid-liquid microextraction and derivatization of sulfonamides in river water, honey,milk, and animal plasma[J]. Anal. Chim. Acta,2011,707(1-2):92-97.
    [156] He L., Zhang K., Wang C., Luo X., et al. Effective indirect enrichment anddetermination of nitrite ion in water and biological samples using ionic liquid-dispersiveliquid-liquid microextraction combined with high-performance liquid chromatography[J].J. Chromatogr. A,2011,1218(23):3595-3600.
    [157] Zhang H., Chen X., Jiang X.. Determination of phthalate esters in water samples byionic liquid cold-induced aggregation dispersive liquid-liquid microextraction coupledwith high-performance liquid chromatography[J]. Anal. Chim. Acta,2011,689(1):137-142.
    [158] Escudero L. B., Berton P., Martinis E. M., et al. Dispersive liquid-liquid microextractionand preconcentration of thallium species in water samples by two ionic liquids applied asion-pairing reagent and extractant phase[J]. Talanta,2012,88:277-283.
    [159] Yao C., Li T., Twu P., et al. Selective extraction of emerging contaminants from watersamples by dispersive liquid-liquid microextraction using functionalized ionic liquids[J].J. Chromatogr. A,2011,1218(12):1556-1566.
    [160] Moral A., Rubio S.. Determination of benzimidazolic fungicides in fruits and vegetablesby supramolecular solvent-based microextraction/liquid chromatography/fluorescencedetection[J]. Anal. Chim. Acta,2009,650:207-213.
    [161] Leong M., Fuh M. R.. Low toxic dispersive liquid-liquid microextraction by usinghalosolvents for extraction of polycyclic aromatic hydrocarbons in water samples[J]. J.Chromatogr. A,2010,1217(34):5455-5461.
    [162] Wang X. W., Ouyang G. F.. One-step extraction and derivatization liquid-phasemicroextraction for the determination of chlorophenols by gas chromatography-massspectrometry[J]. J. Chromatogr. A,2009,1216:6267-6273.
    [163] Caldas S. S., Primel E. G.. Validation of method for determination of different classes ofpesticides in aqueous samples by dispersive liquid-liquid microextraction with liquidchromatography-tandem mass spectrometric detection[J]. Anal. Chim. Acta,2010,665:55-62.
    [164] Tsai W. C.. Dispersive liquid-liquid microextraction with little solvent consumptioncombined with gas chromatography-mass spectrometry for the pretreatment oforganochlorine pesticides in aqueous samples[J]. J. Chromatogr. A,2009,1216:5171-5175.
    [165] Dai L. P., Matsadiq G.. Dispersive liquid-liquid microextraction based on thesolidification of floating organic droplet for the determination of polychlorinatedbiphenyls in aqueous samples[J]. Anal. Chim. Acta,2010,674:201-205.
    [166] Leong M., Huang S. D.. Dispersive liquid-liquid microextraction method based onsolidification of floating organic drop for extraction of organochlorine pesticides in watersamples[J]. J. Chromatogr. A,2009,1216:7645-7650.
    [167] Huang S. D.. Determination of the steroid hormone levels in water samples bydispersive liquid-liquid microextraction with solidification of a floating organic dropfollowed by high-performance liquid chromatography[J]. Anal. Chim. Acta,2010,662:39-43.
    [168] Hong J. Y., Ting W.. Solidification of floating organic drop with high performanceliquid chromatography for determination of decabrominated diphenyl ether in surficialsediments[J]. Chinese J. Anal. Chem.,2010,38(1):62-66.
    [169] Pena M. T., Vecino-Bello X., Casais M. C., et al. Optimization of a dispersiveliquid-liquid microextraction method for the analysis of benzotriazoles andbenzothiazoles in water samples[J]. Anal. Bioanal. Chem.,2012,402(4):1679-1695.
    [170] Diao C. P., Wei C. H.. Rapid determination of anilines in water samples by dispersiveliquid-liquid microextraction based on solidification of floating organic drop prior to gaschromatography-mass spectrometry[J]. Anal. Bioanal. Chem.,2012,403(3):877-884.
    [171] Lemos V. A., Santos L. O., Silva E. S., et al. Spectrophotometric determination ofmercury in water samples after preconcentration using dispersive liquid-liquidmicroextraction[J]. J. Int.,2012,95(1):227-231.
    [172] Liu W. L., Ko Y. C., Huang B. H., et al. Determination of perfluorocarboxylic acids inwater by ion-pair dispersive liquid-liquid microextraction and gaschromatography-tandem mass spectrometry with injection port derivatization[J]. Anal.Chim. Acta,2012,726:28-34.
    [173] Kamarei F., Ebrahimzadeh H., Asgharinezhad A. A.. Optimization of simultaneousderivatization and extraction of aliphatic amines in water samples with dispersiveliquid-liquid microextraction followed by HPLC[J]. J. Sep. Sci.,2011,34(19):2719-2725.
    [174] Zgola-Grzeskowiak A., Grzeskowiak T.. Solid-phase extraction combined withdispersive liquid-liquid microextraction, fast derivatisation and high performance liquidchromatography-tandem mass spectrometry analysis for trace determination ofshort-chained dodecyl alcohol ethoxylates and dodecyl alcohol in environmental watersamples[J]. J. Chromatogr. A,2012, In Press.
    [175] Samadi S., Sereshti H., Assadi Y.. Ultra-preconcentration and determination of thirteenorganophosphorus pesticides in water samples using solid-phase extraction followed bydispersive liquid-liquid microextraction and gas chromatography with flame photometricdetection[J]. J. Chromatogr. A,2012,1219:61-65.
    [176] Li P., Hu B., Li X.. Zirconia coated stir bar sorptive extraction combined with largevolume sample stacking capillary electrophoresis-indirect ultraviolet detection for thedetermination of chemical warfare agent degradation products in water samples[J]. J.Chromatogr. A,2012,1247:49-56.
    [177] Bratkowska D., Fontanals N., Cormack P. A., et al. Preparation of a polar monolithicstir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polarpharmaceuticals from complex water samples[J]. J. Chromatogr. A,2012,1225:1-7.
    [178] David M. D., Seiber J. N.. Comparison of extraction techniques, including supercriticalfluid, high-pressure solvent, and soxhlet, for organophosphorus hydraulic fluids fromsoil[J]. Anal. Chem.,1996,68(17):3038-3044.
    [179] Zuloaga O., Etxebarria N., Fernandez L. A., et al. Optimization and comparison ofMAE, ASE and Soxhlet extraction for the determination of HCH isomers in soilsamples[J]. Fresenius J. Anal. Chem.,2000,367(8):733-737.
    [180] Hwang S., Cutright T. J.. Preliminary evaluation of PAH sorptive changes in soil bySoxhlet extraction[J]. Environ. Int.,2004,30(2):151-158.
    [181] Helaleh M. I., Tanaka K., Fujii S., et al. GC/MS determination of phenolic compoundsin soil samples using Soxhlet extraction and derivatization techniques[J]. Anal. Sci.,2001,17(10):1225-1227.
    [182] Zuloaga O., Etxebarria N., Fernandez L. A., et al. Optimisation and comparison ofmicrowave-assisted extraction and Soxhlet extraction for the determination ofpolychlorinated biphenyls in soil samples using an experimental design approach[J].Talanta,1999,50(2):345-357.
    [183] Wang P., Zhang Q., Wang Y., et al. Evaluation of Soxhlet extraction, accelerated solventextraction and microwave-assisted extraction for the determination of polychlorinatedbiphenyls and polybrominated diphenyl ethers in soil and fish samples[J]. Anal. Chim.Acta,2010,663(1):43-48.
    [184] Davidso C. M., Delevoye G.. Effect of ultrasonic agitation on the release of copper, iron,manganese and zinc from soil and sediment using the BCR three-stage sequentialextraction[J]. J. Environ. Monit.,2001,3(4):398-403.
    [185] Martinez-Parreno M., Llorca-Porcel J., Valor I.. Analysis of51persistent organicpollutants in soil by means of ultrasonic solvent extraction and stir bar sorptiveextraction GC-MS[J]. J. Sep. Sci.,2008,31(20):3620-3629.
    [186] Sanchez-Brunete C., Miguel E., Tadeo J. L.. Determination of polybrominated diphenylethers in soil by ultrasonic assisted extraction and gas chromatography massspectrometry[J]. Talanta,2006,70(5):1051-1056.
    [187] Sanchez-Brunete C., Miguel E., Tadeo J. L.. Determination of tetrabromobisphenol-A,tetrachlorobisphenol-A and bisphenol-A in soil by ultrasonic assisted extraction and gaschromatography-mass spectrometry[J]. J. Chromatogr. A2009,1216(29):5497-5503.
    [188] Sanchez-Brunete C., Miguel E., Albero B., et al. Determination of cyclic and linearsiloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography-massspectrometry[J]. J. Chromatogr. A,2010,1217(45):7024-7030.
    [189] Ozcan S., Tor A., Aydin M. E.. Application of miniaturised ultrasonic extraction to theanalysis of organochlorine pesticides in soil[J]. Anal. Chim. Acta,2009,640(1-2),52-57.
    [190] Llorca-Porcel J., Martinez-Parreno M., Martinez-Soriano E., et al. Analysis ofchlorophenols, bisphenol-A,4-tert-octylphenol and4-nonylphenols in soil by means ofultrasonic solvent extraction and stir bar sorptive extraction with in situ derivatisation[J].J. Chromatogr. A,2009,1216(32):5955-5961.
    [191] He S., Chen Q., Sun Y., et al. Determination of tobramycin in soil by HPLC withultrasonic-assisted extraction and solid-phase extraction[J]. J. Chromatogr. B,2011,879(13-14):901-907.
    [192] Hung J. M., Liu H. C., Hu C. S., et al. Bioavailability evaluation of naphthalene in soilusing persulfate oxidation and ultrasonic extraction method[J]. J. Environ. Biol.2011,32(3):277-282.
    [193] Chitescu C. L., Oosterink E., Jong J., et al. Ultrasonic or accelerated solvent extractionfollowed by U-HPLC-high mass accuracy MS for screening of pharmaceuticals andfungicides in soil and plant samples[J]. Talanta,2012,88:653-62.
    [194] Edwar F. M., Ronnie L.. Parameters affecting microwave-assisted extraction oforganophosphorus pesticides from agricultural soil[J]. J. Chromatogr. A,2007,1169:40-46.
    [195] Ann K. M. B., Carina E.. Optimized microwave extraction for trace detection of2,4,6-trinitrotoluene in soil samples[J]. Chemosphere,2008,71:1701-1708.
    [196] Pena M. T., Mejuto M. C., Cela R.. Optimization of the matrix solid-phase dispersionsample preparation rocedure for analysis of polycyclic aromatic hydrocarbons in soils:omparison with microwave-assisted extraction[J]. J. Chromatogr. A,2007,1165:32-38.
    [197] Abdelmonaim A. E. B.. Combined microwave-assisted extraction and continuoussolid-phase extraction prior to gas chromatography–mass spectrometry determination ofpharmaceuticals, personal care products and hormones in soils, sediments and sludge[J].Science of the Total Environment,2012,419:208-215.
    [198]胡正君,史亚利,蔡亚岐.加速溶剂萃取气相色谱质谱法测定污泥、底泥及土壤样品中的合成麝香[J].分析化学,2010,38(6):885-888.
    [199]黄东勤,王盛才,陈一清,等.加速溶剂萃取-高效液相色谱法测定土壤中16种多环芳烃[J].中国环境监测,2008,24(3):26-30.
    [200]杨琳,温裕云,弓振斌.加速溶剂萃取-液相色谱-串级质谱法测定近岸及河口沉积物中的拟除虫菊酯农药[J].分析化学,2010,38(7):968-972.
    [201] Antoinette M. R., Andrew M. F. Accelerated solvent-based extraction and enrichment ofselected plasticisers and4-nonylphenol, and extraction of tin from organotin sources insediments, sludges and leachate soils[J]. Analytica Chimica Acta,2009,634:197-204.
    [202] Wang W. T., Lu X. X.. Extraction of polycyclic aromatic hydrocarbons andorganochlorine pesticides from soils: A comparison between Soxhlet extraction,microwave-assisted extraction and accelerated solvent extraction techniques[J]. Anal.Chim. Acta,2007,602:211-222.
    [203] Carmen L. C., Jacob J.. Ultrasonic or accelerated solvent extraction followed byU-HPLC-high mass accuracy MS for screening of pharmaceuticals and fungicides in soiland plant samples[J]. Talanta,2012,88:653-662.
    [204] Wang P., Wang Y. W.. Evaluation of Soxhlet extraction, accelerated solvent extractionand microwave-assisted extraction for the determination of polychlorinated biphenylsand polybrominated diphenyl ethers in soil and fish samples[J]. Analytica Chimica Acta,2010,663:43-48.
    [205]魏复盛.水和废水检测分析方法[M].中国环境科学出版社.北京,2002.
    [206] Cunha S. C., Fenrnandes J. O., Oliveira, et al. Fast analysis of multiple pesticideresidues in apple juice using dispersive liquid-liquid microextraction andmultidimensional gas chromatography-mass spectrometr[J]. J. Chromatogr. A,2009,1216:8835-8844.
    [207] Caldas S. S., Costa F. P., Primel E. G.. Validation of method for determination ofdifferent classes of pesticides in aqueous samples by dispersive liquid-liquidmicroextraction with liquid chromatography-tandem mass spectrometry detection[J].Anal. Chim. Acta,2010,665:55-62.
    [208] David M G., Juan M. B. S. Dispersive liquid–liquid microextraction using a low densityextraction solvent for the determination of17N-methylcarbamates by micellarelectrokinetic chromatography–electrospray–mass spectrometry employing a volatilesurfactant[J]. J. Chromatogr. A,2012,1247:26-34.
    [209] Carro A. M., Racamonde I.. Dispersive liquid-liquid microextraction coupled withprogrammed temperature vaporization-large volume injection-gaschromatography-tandem mass spectrometry for multiclass pesticides in water[J]. J.Chromatogr. A,2012, In press.
    [210] Rezaee M., Hosseini M. R.M.. Determination of organic compounds in water usingdispersive liquid-liquid microextraction[J]. J. Chromatogr. A,2006,1116:1-9.
    [211] Fattahi N., Hosseini M. R. M.. Determination of chlorophenols in water samples usingsimultaneous dispersive liquid–liquid microextraction and derivatization followed by gaschromatography-electron-capture detection[J]. J. Chromatogr. A,2007,1157:23-29.
    [212] Wang Y. H., Li Y. Q., Feng J. F., et al. Polyaniline-based fiber for headspace solid-phasemicroextraction of substituted benzenes determination in aqueous samples[J]. Anal.Chim. Acta,2008,619:202-208.
    [213] Zhou Q. X., Pang L., Xiao J. P.. Trace determination of dichlorodiphenyltrichloroethaneand its main metabolites in environmental water samples with dispersive liquid-liquidmicroextraction in combination with high performance liquid chromatography andultraviolet detector[J]. J. Chromatogr. A,2009,1216:6680-6684.
    [214] Liang P., Zhao E., Li F.. Dispersive liquid-liquid microextraction preconcentration ofpalladium in water samples and determination by graphite furnace atomic absorptionspectrometry[J]. Talanta,2009,77:1854-1857.
    [215]戴树桂.环境化学[M].北京.高等教育出版社.1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700