用户名: 密码: 验证码:
褐煤中微生物筛选及胶红酵母对细粒煤的表面改性作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究开发作用力强、选择性好和无毒的浮选药剂是当前细粒煤洗选研究的重要方向之一。本研究以褐煤为分离源,采用传统微生物分离法,筛选分离到一株能有效改变细粒煤表面特性的菌株KDY21,菌落形态、生理生化特征和分子序列片段分析等结果表明菌株为胶红酵母(Rhodotorula mucilaginosa),经培养条件优化后菌体量增加了32%.生长动力学设计分析以CSTR进行培养时菌体细胞产率为1.5g/(L·h).以4种不同变质程度的细粒煤为主要研究对象,通过对菌株KDY21作用前后煤样的Zeta电位、接触角及菌体吸附量测定分析,菌株KDY21处理后可显著提高实验煤样的浮选效果。影响煤样对菌体吸附量的因素依次为pH值>煤样粒度>接触时间>菌液浓度,其中pH值决定了细胞与煤表面带电性的差异。另外,利用扩展DLVO理论探讨了胶红酵母KDY21对细粒煤分散体系稳定性作用的机理,揭示了在不同条件下菌株KDY21分别通过静电吸附和疏水相互作用等改变了细粒煤表而特性的同时,实现了对其选择性浮选或絮凝。
One of the important directions of the research on coal washing is developing the non-toxic flotation reagents with strong force and high selectivity. In this paper, some microorganisms with suface mldification to fine coals were screened by traditional microorganism separation methods from the lignite, and one of them designated KDY21was the best. Colony morphology, physiological and biochemical characteristics and some molecular sequence fragments showed that the strain KDY21was Rhodotorula mucilaginosa. Through the optimization culture conditition the harvest yield of strain KDY21was increased by32%. The KDY21cell production rate cultured with CSTR was1.5g/(L-h) after designing its growth dynamics. Then the surface modification to fine coals by KDY21was tested for the4kinds of different coalification range fine coals. Through the Zeta potential and contact angle measurement it was proved that using the KDY21could heighten the floatation rate greatly through changing the surface characteristics of coal. Cell adsorbing capacity on the coal surface was measured and the results showed that the order of influence factors was pH> coal particle size> contact time> concentration of bacilli. The pH determined the charging difference between cell and surface of coal. In addition, the mechanism of Rhodotorula mucilaginosa KDY21effects on the stability of fine coal disperse system had been discussed by using extended DLVO theory. All these results indicated that the modified flotation and flocculation rate of fine coal particles were improved using the strain KDY21adhered onto the fine coal surface through the electrostatic interactions and the hydrophobic interactions in different conditions.
引文
1. BP Statistical Review of World Energy[R], http://bp.com/statisticalreview.
    2.工庆一.中国煤炭工业的数字化解读[J].中国煤炭2012, 38 (1): 17-22.
    3. IEA. Coal Information 2010 [R],2010.
    4.国务院办公厅转发发展改革委等部门关于加快推行能源管理促进节能服务产业发展意见的通知.国办发(2011)25号2010.4.
    5.陈昌和,王淑娟,禚玉群,等.煤的清洁利用技术的现状与发展[J].物理,2010, 39(5): 301-306.
    6.刘炯天.关于我国煤炭能源低碳发展的思考[J].中国矿业大学学报(社会科学版),2011, 1: 5-12.
    7.陈贵锋.“十二五”期间我国洁净煤技术发展值得关注的方向[J].中国能源,2011, 33(8): 5-7.
    8.李彪,沙杰.煤炭燃前脱硫方法及其应用现状[J].矿山机械,2010, 38(20): 9-12.
    9. Ayhan Demirbas. Demineralization and desulfurization of coals via column froth and different methods[J]. Energy Conversion and Management,2002(43):885-895.
    10. Isabel Cristina Cardona, Marco Antonio Ma rquez. Biodesulfurization of two Colombian coals with native microorganisms[J]. Fuel Processing Technology,2009,90:1099-1106.
    11.张友军.国内外选煤技术与装备的现状及发展趋势[J].选煤技术,2011,1: 70-72.
    12.王建设,陈仲元,李惠民,等.煤炭综合利用系统分析与评价[J].发展论坛,2006, 4: 38-39.
    13.陈乐乐,陈彦羽,徐永鑫.我国煤炭资源综合利用的问题与对策分析[J].科技创新导报,2010, 15: 76-77.
    14.吴春来.21世纪我国煤炭综合利用趋势浅析[J].煤化工,2000,11: 3-5.
    15.李亚萍,沈阴娟,陈建中,等.煤炭浮选药剂评述[J].选煤技术,2006, 5: 83-88.
    16.朱玉霜、朱建光.浮选药剂的化学原理[M]、武汉:中南工业大学出版社,1996
    17.谢广元.选矿学[M].徐州:中国矿业大学出版社,2001.
    18.朱建光.1999年浮选药剂的进展[J]. 国外金属矿选矿,2001,(3): 16-21.
    19.王湘英.浮选药剂的应用现状及发展趋势[J].湖南有色金属,2000,(1):9-12.
    20.吴大为.浮游选煤技术[M].徐州:中国矿业大学出版社,2004.
    21.廖寅飞,安茂燕,夏文成.煤油乳化捕收剂在细粒煤浮选中的研究[J].洁净煤技术,2010, 16(2): 17-19.
    22.张希梅.浮选药剂BET在选煤工业中的应用[J].应用能源技术,2004, (4): 5-7.
    23. Bonner C M, Aplan F F. The influence of reagent dosage on the floatability of pyrite during coal flotation[J]. Sci. Technol,1993,28:747-764.
    24.胡军,康文泽.浮选药剂BET与煤和黄铁矿作用机理[J].比京科技大学学报,2004, (4): 349-352.
    25.张闿.浮选药剂的组合使用[M].北京:冶金土业出版社,1994.
    26. A W Banford, Z Aktas. The effect of reagent addition strategy on the performance of coal flotation[J]. Minerals Engineering,2004,17:745-760.
    27.赵本军.浮选过程中捕收剂和起泡剂的综合作用[J].江苏煤炭,2004, (2): 59-60.
    28.施秀屏.新型MZ系列高效煤用捕收剂的研究[J].煤炭科学技术,1995, (4): 39-42
    29.徐初阳.高效复合选煤浮选药剂的研究[J].煤炭科学技术,2003, (6): 11-13.
    30. Aktas Z, Woodburn E T. The effect of non-ionic reagent adsorption on the froth structure and flotation performance of two low rank British coals[J]. Powder Technol,1995,83:149-158.
    31.孔小红,康文泽.煤用复合药剂浮选效果研究[J].广州化工,2011,39(6): 50-52.
    32.丁兆阳,张智,滕婷婷.微细粒煤分选特性及其浮选技术进展[J].山东煤炭科技,2008, (6): 65-66.
    33.张秀梅,郭德.难浮煤浮选促进剂的研究[J].煤炭工程,2005, 1:47-48.
    34.李干佐,房秀敏.农而活性剂在能源和选矿工业中的应用[M].北京:中国轻工业出版社,2002.45-50.
    35.沈笑君,刘元晖.表面活性剂在煤浮选中应用研究[J].中国矿业,2009, 18(8): 82-87.
    36.陈红.非离子表面活性剂在煤浮选中的应用[J].煤炭技术,2000, 19(4):1-2
    37.徐海宏,李满.表面话性剂对煤浮选的促进作用分析[J].煤炭技术,2001, (1): 27-28.
    38.解维伟,朱书全,夏中磊,等.煤用乳化浮选药剂研究[J].中国煤炭,2007, 33(7): 59-63.
    39.周弘文,亓欣,刘丙顺,等.煤用乳化捕收剂的浮选效[J].煤质技术,2007, 4: 52-54.
    40.黄汉富,杨颋,李国洲,等,乳化煤焦油在细粒煤浮选中的作用[J].选煤技术,2007, (6): 10-12.
    41.汪来友,王凯利,张吉学,等.炼焦煤选煤厂的浮选药剂选择[J].煤炭加工与综合利用,2009, (5): 1-4.
    42. Zheng Yan, Ye Zhilong, Fang Xuliang, et al. Production and characteristics of a bioflocculant produced by Bacillus sp. F19[J]. Bioresource Technology,2008,99:7686-7691.
    43. Ross W. Smith, Mauno Miettinen, Microorganisms in flotation and flocculation:Future technology or laboratory curiosity? [J]. Minerals Engineering,2006,19:548-553.
    44. Daniels, S. L., The adsorption of microorganisms onto solid surfaces:a review, Dev. in Indust. Microbiol.,13, 211-253,1972.
    45.杨慧芬,张强,王化军.微生物选矿药剂的应用研究现状及发展方向[J].矿产综合利用,2001,1:32-35.
    46. Daniels, S. L., Mechanisms involved in sorption of solid surfaces, Adsorption of microorganisms to surfaces, eds. Britton, G. and Marshall K C, John Wiley and Sons,7-58,1980.
    47.李学亚,叶茜.微生物冶金技术及其应用[J],矿业工程,2006,4(2): 49-51.
    48.杨海麟,康文亮,张玲,等.生物浸出工艺工业化进展[J].现代矿业,2010, 3: 1-4
    49.魏德州.资源微生物技术[M].冶金工业出版社,1996.5.
    50.撒布利克.杰智,S. K.尼科尔.煤浮选技术的最新进展.十二届国际选煤会议论文集,1995. 3: 357-364.
    51.陈顺方,桑正林.生物技术在矿业中的应用[J].湿法冶金,1999, 2: 1-4.
    52.陈雪莉,马喜军.煤的生物浮选脱硫技术研究及发展[J].煤质技术,1999, 5: 24-26.
    53.王军,钟康年.细菌对硫化矿可浮性影响的研究[J].国外金属矿选矿,1996, (5): 4-10.
    54.张明旭.煤泥水处理[M].徐州:中国矿业大学出版社,2000.
    55.苟鹏,叶向德,吕永涛,等.煤泥水的水质特性及处理技术[J].工业水处理,2009, 29(1): 53-57.
    56.夏淑波.煤泥水的特性与絮凝剂的应用[J].山东煤炭科技,2008,6:10-11
    57.张波,李侠.对煤泥水处理技术现状的综述[J].科技信息,2010,12: 519-521.
    58.徐初阳,王少会.絮凝剂和凝剂在泥水处理中的复配作用[J].矿冶工程,2004, 24(3): 41-43
    59.郭世名,郭风梅.凝聚剂与絮凝剂在杏花选煤厂煤泥水处理中的应用研究[J].煤炭技术,2008.27(2):109-111.
    60.杨履渭.微生物学及检验技术[M].广州:广东科学技术出版社,1992.4.
    61.袁康贵,彭琼,肖美华.可降解焦化废水中难降解有机物的活性细菌的培养[J].武汉工业学院学报,2009,128(11):20-23
    62.栗忠浩.焦化废水处理技术的应用与研究[J].本钢技术,2009, 4: 23-26.
    63.周海军,卢永,严莲荷.粉末固定化白腐菌处理焦化废水的研究[J].工业水处理.2008, 28(1): 54-56.
    64.尹江华.固定化高效微生物生物滤池处理焦化废水试验[J].陕西建筑.2009, 170: 48-50,53.
    65.魏晓金,李静,何绪文.微生物絮凝剂的絮凝条件及焦化废水净化研究[J].中国工程科学. 2009, 11(2):88-91.
    66.周德庆.微生物学教程[M].北京:高等教育出版社,2001:21-51.
    67. R. W. Smith et al, Mineral Bioprocessing, An overview, Mineral Bioprocessing, pp.3-17,1991.
    68. E.Amini, T.R.Hosseini, M.Oliazadeh, and M.Kolahdoozan. Application of Acidithiobacillus Ferrooxidans in coal flotation[J]. International Journal of Coal Preparation and Utilization,2009,29:279-288.
    69. El Zeky, M., Attia, Y.A. Coal slurries desulfurization by flotation using thiophilic bacteria for pyrite depression[M]. Coal Preparation,1987,5:15-37.
    70. Attia, Y.A., El Zeky, M., Ismail, M.,1993. Enhanced separation of pyrite from oxidized coal by froth flotation using surface modification[J]. International Journal of Mineral Processing 37,61-71.
    71. Miettinen, R., Ra"tto", M., Leppinen, J., Smith, R.W.,2003a. Biobeneficiation with bacteria, Internal report, VTT, Outokumpu, Finland.
    72. Miettinen, R., Ra'tto", M., Leppinen, J., Smith, R.W.,2003b. Flocculation of apatite, calcite and quartz using bacteria, Internal report, VTT, Outokumpu, Finland.
    73. Deo, N., Natarajan, K.A., Somasundaran, P.,2001. Mechanism of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz[J]. International Journal of Mineral Processing 62,27-39.
    74. Santhiya, D., Subramanian, S., Natarajan, K.A., Rao, K.H., Hanumantha, K., Forssberg, K.S.E.,2001. Bio-modulation of galena and sphalerite surfaces using Thiobacillus thiooxidans[J]. International Journal of Minereral Processing 62,121-141.
    75. Natarajan, K.A., Deo, N.,2001. Role of bacterial interaction and bioreagents in iron ore flotation[J]. International Journal of Mineral Processing 62,143-157.
    76. Sharma, P.K., Rao, K.H., Hanumantha, K., Forssberg, K.S.E., Natarajan, K.A.,2001. Surface chemical characterization of Paenibacillus polymyxa before and after adaptation to sulfide minerals[J]. International Journal of Mineral Processing 62,3-25.
    77. Rao, M.K.Y., Natarajan, K.A., Somasundaran, P.,1992. Effect of biotreatment with Thiobacillus ferooxidans on the floatability of sphalerite and galena[J]. Minerals and Metallurgical Processing 9,95-100.
    78. Rao, M.K.Y., Natarajan, K.A., Somasundaran, P.,1991. Effect of bacterial conditioning of sphalerite and galena with Thiobacillus ferooxidans on their floatability[J]. In:Smith, R.W., Misra, M. (Eds.), Mineral Bioprocessing. TMS, Warrendale, PA, pp.105-120.
    79. S. K. Kawatra and T. C. Eisele, Pyrite Recovery Mechanisms in Coal Flotation[M]. Int. J. Miner. Process. Vol.50, pp.187-201 (1996).
    80. R. Sripriya, P. V. T. Rao, and B. Roy Choundhury, Optimisation of Operating Variables of Fine Coal Flotation Using a Combination of Modified Flotation Parameters and Statistical Techniques[J]. International Journal of Mineral Processing, Vol.68, pp.109-127 (2003).
    81. M. Tabatabae, A. R. Shahverdi, M. Oliazadeh, and M. Sanati, Desulfurization of Tabas Coal by Thiobacillus Ferrooxidans[J]. Mineral Engineering, Vol.9, pp.1001-1005 (1996).
    82. J. P. Barnwal, A. K. Majumder, and B. Govindarajan, Modelling of Coal Floatation in a Batch and Continuous Cell Operation: Part 1-Kinetic Approach, Coal Preparation, Vol.26, pp.123-136 (2006).
    83. N. Ohmura, K. Kitamura, and H. Saiki, Mechanism of Microbial Flotation using Thiobacillus Ferrooxidans for Pyrite Suppression, Biotechnology& Bioengineering, Vol.30, pp.1-8 (1992).
    84. T. Nagaoka, N. Ohmura, and H. Saiki, Desulfurization of Coal by Microbial Flotation in a Semi Continuous System, Minerals & Metallurgical Processing, Vol.16, pp.13-18 (1999).
    85. N. S. Weerasekara, F. J. Garcia Frutos, J. Cara, and F. C. Lockwood, Mathematical Modelling of Demineralisation of High Sulphur Coal by Bioleaching. Mineral Engineering, Vol,21. pp.234-240 (2008).
    86. Y. A. Attia, M. Elzeyky, and M. Ismail, Enhanced Separation of Pyrite from Oxidized Coal by Froth Flotation using Biosurface Modification, International Journal of Mineral Processing, Vol.37, pp.61-71 (1993).
    87. A. M. Raichur, X. H. Wang, and B. K. Parekh. Estimation of Surface Free Energy of Pyrite by Contact Angle Measurements, Minerals Engineering, Vol.14,pp.65-75 (2001).
    88. Ross W. Smith, Mauno Miettinen. Microorganisms in flotation and flocculation:Future technology or laboratory curiosity? [J]. Minerals Engineering,2006,19:548-553.
    89. A.M. Raichur. M.Misra, K.Bukka, R.W.Smith. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei[J]. Colloids and Surfaces B:Bio interfaces,1996,8:13-24.
    90.张东晨,张明旭,陈清如,等.草分枝杆菌选择性絮凝脱除煤中黄铁矿硫的研究[J].煤炭学报,2004, 29(5):585-589.
    91. Raichur, A.M., Misra, M., Smith, R.W.,1995a. Differential adhesion of hydrophobic bacteria onto coal and associated minerals[J]. Coal Preparation 16,51-63.
    92. Raichur, A., Misra, M., Smith, R.W,,1995b. The potential for selective flocculation of coal from pyrite using a hydrophobic bacterium[J]. In:Mehrotra, S.P., Shekhar, R. (Eds.), Mineral Processing, Recent Advances and Future Trends. Allied Publ. Ltd., pp.686-693.
    93. Smith, R.W., Misra, M., Chen, S.,1993. Adsorption of a hydrophobic bacterium onto hematite:implications in the froth flotation of hematite[J]. Journal of the Society for Industrial Microbiology 11,63-67.
    94. Zheng, X., Smith, R.W., Mehta, R.K., Misra, M., Raichur, A.M.,1998. Anionic flotation of apatite from dolomite modified by the presence of bacteria[J]. Minerals and Metallurgical Processing 15,52-56.
    95. Raichur, A.M.,1996. Selective flocculation of and separation of fine coal from ash and pyrite using a hydrophobic bacterium[J]. Ph.D. Thesis, University of Nevada, Reno, pp.171.
    96. Schneider, I.A.H., Misra, M., Smith, R.W. Bioflocculation of hematite suspensions with products from yeast cell rupture[J]. Development in Chemical Engineering and Mineral Processing 4,1994:248-252.
    97.陈灿,王建龙.酿酒酵母吸附Pb(Ⅱ)的表面特性研究[J].环境科学学报,2011,31(8):1587-1593.
    98. Chen C., Wang J L.2010. Removel of heavy metal ions by waste biomass of Saccharomyces cerevisiae[J]. Journal of Environmental Engineering-ASCE,136(1):95-102.
    99. Chen C., Wang J L.2008b. Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEMEDX and XAFS[J], Applied Microbiology and Biotechnology,79(2): 293-299.
    100.张明旭.利用微生物调整表面强化煤炭中细粒黄铁矿的脱硫技术[J].国外金属矿选矿,1997, (8):46-52.
    101.王志新,佟永贺.微生物絮凝剂的研究进展及应用[J].内蒙古环境科学.2008, 20(5): 31-35.
    102.王卫平,朱凤香,陈晓,等.微生物絮凝剂的研究进展及其应用前景[J].安徽农学通报,2009, 15(19):45-48.
    103.潘素娟.复合型生物絮凝剂絮凝特性及絮体分形特征研究[J].西北工业大学,2004.
    104.郑怀礼.生物絮凝剂与絮凝技术(第1版)[M].北京:化学工业出版社,2004: 6-7
    105. H.Salehizadeh, S.A. Shojaosadati. Extracellular biopolymeric flocculants, recent trends and biotechnological importance[J]. Biotechnology Adcances 19(2001):371-385.
    106. H Ucheyiay, A Ozkan. Hydrophobic flocculation characteristics of calcite and effects of some inorganic dispersants[J]. Indian Journal of Chemical Technology, Vol.13, September 2006, pp.448-454.
    107. Siqing Xia, Zhiqiang Zhang, Xuejiang Wang, etc. Production and characterization of a bioflocculant by Proteus mirabilis TJ-1[J]. Bioresource Technology 99(2008):6520-6527.
    108. Britt-Marie Wilen, Kristian Keiding, Per Halkjar Nielsen. Flocculation of acticated sludge flocs by stimulation of the aerobic biological activity[J]. Water Research 38(2004):3909-3919.
    109.吴学风,张东晨,陈章宝.白腐真菌作为煤用微生物絮凝剂的试验研究[J].选煤技术.2006,1:10-13.
    110. S.P. Vijayalakshmi, A.M. Raichur. The utility of Bacillus subtilis as a bioflocculant for fine coal[J]. Colloids and Surfaces B:2003,29:265-275.
    111.迟熠.复合型生物絮凝剂(CBF)絮凝特性研究[D].哈尔滨工业大学,2007.
    112.王志.生物高分子絮凝剂G5的制备与絮凝机理研究[D].湖南大学,2009.
    113.布坎南R E,吉本斯N E.伯杰细菌鉴定手册(第8版)[M].北京:科学出版社,1984.
    114. J. A.巴尼特.酵母菌的特征与鉴定手册[M].青岛:青岛海洋大学出版社,1991.
    115.张纪忠.微生物分类学[M].上海复旦大学出版社,1990.
    116.邢福国.酵母基因组的提取[J].食品科学,2007,28(3):210-211.
    117.戚以政,夏杰.生物反应工程[M].化学工业出版社,2004:7-25.
    118. Muganda S, Zanin M, Drano S R. Influence of particle size and contact angle on the flotation of chalcopyrite in a laboratory batch flotation cell[J]. International Journal of Mineral Processing,2011,98:150-162.
    119.桂夏辉,刘炯天,陶秀祥,等.难浮煤泥浮选速度试验研究[J].煤炭学报,2011,36(11):1895-1900.
    120.赵奎霞,朱书全,赵华章,等.聚硅氯化铝絮凝剂的中聚合态特征[J].中国矿业大学学报,2006, 35(1):109-113.
    121.王兰,唐静,赵璇.微生物絮凝剂絮凝机理的研究方法[J].环境工程学报,2011, 5(3): 481-488.
    122.杨卉艳,李文英.煤的微生物改性方面及改性产物分析和应用[J].煤化工,2005, 2: 12-15.
    123.郝明芳,卢建军,李凡,等.微生物法对煤进行改性的研究进展[J].煤炭转化,2002, 25(1): 23-27.
    124.何杰.煤的表而结构与润湿性[J].选煤技术,2000, 5:13-15.
    125.黄波.界面分选技术[M].北京:煤炭工业出版社,2008.
    126.朱步瑶,赵振国.界而化学基础[M].北京:化学工业出版社,2001:209-215.
    127. E.I. Vargha-butler, D.R. Absolom, H.A. Hamza. Characterization of coal by contact angle and surface-tension measurements [J]. Surfactant Science Serice (Interfacial Phenomuna Coal Technology),1982,32:33-84.
    128. R.H. Hunter. Zeta-potential in colloid science, principles and applications[M]. London:Academic Press,1982: 239-246.
    129. S.Mori, H. Okamoto, T. Hara et al. An improved method of determining the zeta-potential of mineral particles by micro-electrophoresis, Fine Particles Processing, Somasundaran, P., ed., Society of Mining Engineers of AIME. New York,1980:632-651.
    130. B.Siffert, T.Hamieh. Effect of mineral impurities on the charge and surface potential of coal[J]. Colloids and Surfaces,1989,35(1):27-40.
    131.Ahimou F, Denis F A. Touhami A, et al. Probing microbial cell surface charges by atomic force microscopy[J].Langmuir,2002,18(25):9937-9941.
    132. Naeem A, Woertz J R, Fein J B. Experimental measurement of proton, Cd, Pb. Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae[J]. Environmental Science and Technology,2006,40(18): 5724-5729.
    133.陶有俊,刘谦Daniel TAO等.纳米泡提高细粒煤浮选效果的研究[J].中国矿业大学学报.2009, 38(6):820-823.
    134.翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.
    135.徐宝成,刘建学,易军鹏,等.红外光谱技术在微生物研究中的应用进展[J].中国酿造,2007, 3: 8-10.
    136.吴海.傅立叶变换红外光谱技术对微生物研究的探索实验[J].中国资源综合利用,2009, 5: 23-25.
    137.陆峰,卢伟,肖振宇,等.耐药型白念珠菌的红外光谱判别方法的初步研究[J].分析化学,2003,31(12):15-32.
    138.邱冠周,胡岳华,王淀佐.颗粒问相互作用与细粒浮选[M].湖南:中南工业大学出版社,1993: 21-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700