用户名: 密码: 验证码:
含硼高炉钛渣粘性特征与结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高炉渣对高炉冶炼的顺利进行具有决定性的作用,尤其是对于钒钛磁铁矿高炉冶炼过程。含钛高炉渣由于含有一定量的TiO_2,导致炉渣的性能与普通炉渣相比,有明显的变化,如炉渣粘度变大、稳定性变差、脱硫性能变坏等等。为了有效改善含钛高炉渣的性能,有效手段之一是调整炉渣的成分。攀钢曾经在冶炼高钛渣时加入一定量的CaF_2,大大改善了流动性能,但是氟化物的加入,会腐蚀高炉炉衬和设备,氟的挥发和酸化又会污染环境、危害人的身体健康,因此,在大力提倡绿色清洁冶金的时代,寻找具有良好粘性特征的中、高钛渣成分成为钒钛磁铁矿成功冶炼的关键之一。研究表明,B_2O_3在渣中具有显著的助熔功效,可以作为氟的替代品,因此如何充分利用硼对中、高钛炉渣的各种功能和作用,使其能够有效改善炉渣的流动性能、满足高炉生产的需要,成为冶金工作者关注的重要问题。
     本论文以西南地区钢铁厂实际高炉渣为基础,结合企业炉料结构现状,重点考察了含硼不同成分炉渣的粘度、熔化性温度等特性和矿相结构,在实验研究含硼高炉钛渣粘性特征与矿物组成和利用热力学计算模型理论分析炉渣结构的基础上,探讨了硼、钛等组分对高炉钛渣性能和微结构的影响,得到了不同成分下钛渣的流动特性与矿相组成的关系,建立了炉渣粘度的预测模型。研究结果对于加大高炉冶炼过程中钒钛矿配入比例,提高攀西地区钒钛矿资源的有效利用、改善中、高钛高炉渣的性能以及丰富钒钛磁铁矿理论具有一定的理论和现实意义。
     论文首先对无硼含钛高炉渣的粘性特征进行了实验研究和理论分析。研究结果发现:①当渣中TiO_2在18.65%~26.45%之间变动时,其粘度—温度曲线均表现出“短渣”特性。高温下TiO_2含量和温度对渣的粘度影响不明显。随着温度的降低,炉渣的粘度呈现快速增大趋势,尤其是低于转折点温度后,粘度急剧增加,很快增到4.0Pa.s以上。且渣中TiO_2含量越高,该渣样转折点对应的温度越高,粘度增加的越快。各渣样的粘度与温度之间的关系符合Arrhenius方程。②当渣中CaO/SiO_2比值在1.06~1.20之间变化时,粘度—温度曲线也表现出“短渣”特性。随着渣中CaO/SiO_2比的增加,粘度变化很小,说明高温下钛渣的粘度与炉渣碱度的关系不大。但是,当温度低于1360℃时,温度和CaO/SiO_2比对炉渣粘度的影响非常明显。且渣中CaO/SiO_2比值越高,该渣样转折点对应的温度越高。③当渣中MgO在8.65%~11.62%范围内变动时,钛渣的粘度和熔化性温度随MgO的含量增加而增大。但是含量超过9.64%后,增加的幅度迅速变缓。
     通过对含硼钛渣的粘性特征进行实验研究,并与无硼钛渣的性能进行比较,发现:①含硼高钛渣同样具有短渣特性,渣中TiO_2在23.48%~27.28%范围内,B_2O_3在1%~4%范围内变化时,高温下(高于转折点温度),无硼高炉钛渣和含硼高炉钛渣的粘度差别很小,但是在其他成分相同的情况下,含硼钛渣的转折点温度大大低于无硼高炉钛渣。这说明渣中增加B_2O_3含量可以有效降低炉渣的转折点温度,添加量越多,作用越明显,对于渣铁的顺利分离、化学反应动力学条件的改善,高炉冶炼周期的缩短起到至关重要的作用,为实现高炉稳定、顺行、高产、优质、低耗奠定良好基础。②当B_2O_3含量较低时,TiO_2含量增加会增大炉渣的粘度,且越来越明显,说明越来越多的TiO_2对炉渣性能的影响与B_2O_3的影响相比较,逐渐占据主导地位;而当TiO_2含量较高时,随B_2O_3含量的增加,粘度迅速降低,说明B_2O_3的助熔作用明显。此外,随TiO_2含量的增加,炉渣的转折点温度升高,且TiO_2含量越高,提升的幅度越大。TiO_2含量相同时,渣中添加的B_2O_3越多,熔化性温度降低得越快。③碱度的增加会使炉渣的粘度逐渐增大,且粘度曲线越来越密,说明高碱度增大粘度的作用显著,B_2O_3的加入,使炉渣粘度越来越低,有效地改善了炉渣的流动性,尤其是对于低碱度的炉渣。④高炉钒钛矿冶炼过程中添加适量B_2O_3替代CaF_2,改善钛渣的流动性能完全可行,有利于延长高炉的寿命、改善外界环境。
     利用NBO/T和Q参数分析了硼对炉渣结构的影响,并根据实验结果对NBO/T参数的计算公式进行了修正。结合对无硼钛渣和含硼钛渣的流动性和熔化性的测试分析,通过XRD、SEM等方法对这两类钛渣的矿物组成进行了研究。①随着B_2O_3含量的增加,熔渣结构单元的类别和数量发生变化,网络化程度降低,从而粘度减小。②无硼高炉钛渣析出的主要是CaO·SiO_2·TiO_2或CaO·TiO_2等矿相,低钛渣以黄长石类矿物为主,中、高钛渣以钙钛矿类矿物居多。而含硼高炉钛渣析出的矿相中会含有一定量的CaO·B_2O_3,MgO·B_2O_3等硼酸盐矿相,使钙钛矿的析出数量减少,且B_2O_3添加量越多,效果越明显。本研究中因为加入的B_2O_3数量较少,所以生成的含硼矿相不多。③生成的钙钛矿等高熔点矿物的数量越多,炉渣的粘度和熔化性温度越高。渣中B_2O_3含量的增多,析晶率降低,钙钛矿等矿物数量减少,因而炉渣的粘度和熔化性温度降低。添加的数量的越多,作用越显著。在分子-离子共存理论的基础上建立了CaO-SiO_2-TiO_2-Al_2O_3-MgO-B_2O_3六元渣系的热力学计算模型,对含硼炉渣结构进行了理论分析。认为:在此六元渣系中,CaO和SiO_2主要可能形式存在是Ca_2SiO_4,MgO的主要可能存在形式为CaMgSiO_4,CaO和TiO_2主要可能形式存在是CaTiO_3、Ca_3Ti_2O_7,而CaO和B_2O_3主要可能形式存在为Ca_2B_2O_5和Ca_3B_2O_6。这与对炉渣进行矿相分析得出的结论相符。此外,进一步计算了熔渣混合自由焓和自由能随渣系组成的变化规律,随着渣中B_2O_3组分含量的增大,熔渣的混合自由焓和自由能同样呈降低趋势,但渣中TiO_2含量同时增加时二者的降低速度小于渣中碱度同时增大时引起的混合自由焓和自由能的变化速度,这说明渣中CaO、B_2O_3组分增多后,更容易发生反应,生成更多的硼酸钙等盐类。
     在本研究的实验数据和阿累尼乌斯公式的基础上,对粘度预测模型中参数A和B进行了修正。通过比较本研究中粘度的实测值与计算值,效果尚可,但仍需进一步优化完善。
     本论文的主要创新性研究成果:
     ①进行了含硼高炉钛渣流动性能和熔化性能研究,研究结果对于高炉进行高配比钒钛磁铁矿冶炼具有较好的指导意义;
     ②对NBO/T参数的计算公式进行了修正,充分考虑了各种酸性、碱性氧化物(如CaO、MgO和Al_2O_3等)对熔渣聚合程度的不同影响,从而能很好地反应熔渣粘度值的变化趋势;
     ③采用SEM、XRD等手段分析了无硼和含硼炉渣的矿相组成,明确了炉渣性能与矿相组成的关系,并通过在分子离子理论基础上建立的熔渣热力学计算模型对炉渣结构进行探讨分析,对调控高炉特殊矿冶炼过程具有较好的理论指导作用。
It is of great importance to the effect of blast furnace slag on blast furnaceironmaking process, particularly process of smelting titanomagnetite bearing vanadiumores. In comparison with blast furnace slag with titanium free, the properties of titaniumslag are quite different for containing certain TiO_2. For example, viscosity of slagincreases, stabilization lowers, desulfurization performance is poor and so on. One ofthe most effective instruments for improving performance of Ti bearing blast furnaceslag is to adjust the composition of the slag. The fluid property of high titania slag fromPangang is much improved by adding certain CaF_2to the slag. However, fluoride cancorrode furnace wall and equipment, and volatiles and acidizing of the fluorine canmake evironment pollutant, endanger a person's health. Therefore, the key of smeltingtitanomagnetite bearing vanadium ores successfully is to find a right slag compositionpossessing good viscosity characteristic. According to research, B_2O_3is helpful tomelting of slag and it can be used as a substitute for CaF_2. Hence, major concerns for allthe metallurgical workers are to effectively improve the fluid property to meet the needof production by making full use of the function of boron on titanium Slag.
     Based on Ti-bearing blast furnace slag from the southwestern steel plant of China,integrate with the current status of charge structure, the properties such as viscosity,break temperature and mineralogical constitution of different BF slag were mainlyinvestigated. The effects of boron, titanium and other compositions on performance andmicrostructure of titanium Slag were discussed. And the relationships of the fluidproperty and mineralogical constitution of different titanium Slag were achieved.Moreover, the predicting model among viscosity, temperature and composition oftitanium slag with boron was built based on Arrhenius equation. The results providedimportant references for increasing the ratio of vanadium–titanium ores, improving theproperties of titanium slag, rising the effectiveness in the use of titanomagnetite bearingvanadium ores and enriching the theory of titanomagnetite bearing vanadium ores.
     In this study, the fluid properties of normal titanium slag were investigated firstly.The results are:①The short-slag behaviors of viscosity–temperature curves of slags areobserved during the cooling process when TiO_2content in slag varies between18.65%and26.45%. TiO_2content in slag and temperature have no obvious influence on the slagviscosity under high temperature. The viscosity rapidly increases with decreasingtemperature. Especially below the break temperature, viscosities rises rapidly up to 4.0Pa.s. The higher TiO_2content in slag, the higher the break temperature is, the quickerthe slag viscosities increase. The relationship of viscosity and temperature accords withArrhenius equation.②The short-slag behaviors of viscosity–temperature curves ofslags are observed too during the cooling process when CaO/SiO_2varies between1.06and1.20. The slag viscosities alter little with temperature at high temperature. However,the influences of temperature and CaO/SiO_2ratio on the viscosity are very markedbelow1360℃. Moreover, the higher CaO/SiO_2ratio is, the higher break temperature ofthe slag is.③the viscosity and break temperature of titanium slag increase with MgOconten when MgO content varies between8.65%and11.62%. But the increase slowsquickly after MgO content in slag acceeds9.64%.
     According to the experimental study of the viscosity chatacteristic of titanium slagwith boron, and comparison between titanium slag with boron or free, the results are:①adding B_2O_3into slag can effectively decrease the break temperature when TiO_2contentis in the range of23.48%~27.38%and B_2O_3content is in the range of1%~4%. MoreB_2O_3in slag, less viscosity is, Which is vitally important to separate slag–iron, improvereaction kinetics conditions and short the smelting time of production.②the normaleffect of higher and higher TiO_2content on slag viscosity gradually triumph over theside effect of lower B_2O_3content when TiO_2content and B_2O_3content in slagsimultaneously varied. In contrast, viscosity decreases rapidlly with B_2O_3content whenTiO_2content is higher. TiO_2can lead to the increase of break temperature and more TiO_2content results in more increase. Adding more B_2O_3into slag causes more decrease ofbreak temperature at a fixation of TiO_2content.③As previously mentioned, slagviscosity can increase with basicity and more basicity leads to more obvious changes.However, the viscosity drops even lower with more and more B_2O_3content, which isadvantage to the slag fluidity.④We substitute B_2O_3for CaF_2to improve the slagproperty is feasible, which is good to prolong the life of BF wall and imoroveenvironment.
     The influence of boron on slag structure was analized by NBO/T and Q parameterand calculation formula of NBO/T parameter was corrected based on the experimentalresults. Then mineralogical constitution of normal titanium slag and titanium slag withboron were analyzed by XRD and SEM etc.①the kind and amount of mocrostructuralunit of slag changed, which reduced the extent of networking, thus viscosity decreased.②Minerals deposited from normal titanium slag are mainly CaO·SiO_2·TiO_2, CaO·TiO_2and so on. Minerals in low Ti bearing slag are mainly melilites and those in middle,high Ti bearing slag are mainly perovskite, However, Minerals in titanium slag with boron include some borates such as CaO·B_2O_3,MgO·B_2O_3etc and amount of perovskitein the slag reduced. More B_2O_3, better effect. In this study borates in slag is not more forless B_2O_3addition.③more perovskite and other high melting point minerals, higherslag viscosity and break temperature. More B_2O_3in slag, less perovskite and otherminerals with high melting temperature. So viscosity and break temperature decreased.
     Thermodynamic calculation model of CaO-SiO_2-TiO_2-Al_2O_3-MgO-B_2O_3system isbuilt up with experimental data based on coexistence theory. The slag structure isdiscussed in theory. Results appear below: CaO and SiO_2probably exist as Ca_2SiO_4,and MgO May exist in the form of CaMgSiO_4, and CaO and TiO_2expect as CaTiO_3、Ca_3Ti_2O_7,and CaO和B_2O_3May exist in the form of Ca_2B_2O_5和Ca_3B_2O_6, which areconsistent with results from Mineral phase analysis. In addition, the changes of Freeenthalpy and Free energy with components are calculated. They reduce with B_2O_3concentration. However, Free enthalpy and Free energy with TiO_2and B_2O_3concentration Changes faster than those with basicity and B_2O_3concentration, which iseasy to react into more Calcium borate when more CaO and B_2O_3are added into slag.
     According to experimental data from the study and Arrhenius formula, parametersA and B in the predicting model were given revision. The results were good throughcomparision between calculated and measured viscosities of boron-free and boronbearing blast furnace titanium slag using the present model. However, the model shouldbe further perfected in the future.
     The innovative research works are as follows:
     ①The effects of boron and titanium on the fluidity of titanium slag were obtainedby experiment.
     ②The caculation formular of NBO/T was corrected to reflect the changing trendof slag viscosity based on considering the influence of various acid and alkalineoxide(CaO, MgO and Al_2O_3etc) on polymerization of slag.
     ③The relationship between slag performance and slag structure is clarifiedaccording to mineralogical constitution and theoretical analyses by thermodynamiccaculation model to redirect smelting special ores in blast furnace by SEM and XRD.
引文
[1]白晨光.含钛高炉渣的若干物理化学问题研究[D].重庆:重庆大学,2003.
    [2]曲彦平,邵桂春,葛景岩,杜鹤桂,范大钊.含MnO高炉型钛渣粘度的研究[J].沈阳工业大学学报.1997,(1):78-82.
    [3]兰杰,姜周华,黄宗泽等. CaO-Al2O3-CaF2-SiO2-MgO五元精炼渣系的起泡性能[J].钢铁研究学报.1999,11(2):14-18.
    [4] GAO Yanhong, BIAN Lingtao. Desulfurization of CaO-SiO2-BaO-CaF2-Al2O3-MgORefining Slag[J]. Journal of Iron and Steel Research, International.2005,12(5):1-3.
    [5]王喜庆.高炉冶炼钒钛磁铁矿(第1版)[M].北京:冶金工业出版社,1994.
    [6]杨绍利.钛铁矿熔炼钛渣与生铁技术(第1版)[M].北京:冶金工业出社,2006.
    [7]毛红霞.含钛高炉渣的流变特性及其泡沫化的研究[D].重庆:重庆大学,2006.
    [8]郭兴忠,李劲明,文光远.中钛型高炉渣的冶金性能[J].钢铁钒钛.2000,21(1):1-6.
    [9]魏庆成.冶金热力学[M].重庆:重庆大学出版社,1996.
    [10]黄希祜.钢铁冶金原理(第3版)[M].北京:冶金工业出版社,2002.
    [11] Chuiko N M. Determination of activies for slag components in consideration of ions andundecomposed compounds[J]. SSSR.Otdelenie Tekn.1958,(11):7-14.
    [12] Chuiko N M. Determination of oxides activies for metallurgical slag[J]. Metall. and Fuels.1959,(1):29-36.
    [13] Chuiko N M. On the structural theory of metallurgical slags[J]. Ferrous Met..1959,(5):3-10.
    [14] Chuiko N M.Distribution of phosphorus between liquid iron and slags in consideration ofionic and covalent bonds in compounds of slag[J]. Metall. And Fuels.1960,(2):26-36.
    [15] Чуйко Н М. Ктёории строения шлаковы Расплавов[J]. И З В. АНСССР. Металльы.1976,(3):6-13.
    [16]张鉴.冶金熔体的计算热力学[M].北京:冶金工业出版社,1998.
    [17] Shankar, M. Go¨rnerup, A. K. Lahiri, S.Seetharaman[J]. Met. Trans. B.2006,37B:941.
    [18] L. B. McRae, E. Pothast, P. R. Jochenst, D. D. Howat. J. SAIMM.1969,69:577.
    [19] K. Nomura, B. Ozturk, R. J. Fruehan. Met. Trans. B.1991,37B:783.
    [20] Y.Zhang, R.J.Fruehan. Effect of the bubble size and chemical reactions on slag foaming[J].Metallurgical and Materials Transactions B.1995,26B(5):803-812.
    [21]马家源.高炉冶炼钒钦磁铁矿理论与实践[M].北京:冶金工业出版社,2000.
    [22] Jena B.C., Dresler W, Reilly I.G.. Extraction of titanium, vanadium and iron fromtitanomagnetite deposits at Pipestone Lake[J]. Minerals Engineering.1995,8(7):159-168.
    [23] Morsi I.M., Yehia A, Francis A. A. Alkali reductive roasting of ilmenite ore[J]. CanadianMetallurgical Quarterly.1996,35(l):31-37.
    [24] Chemet T. Applied mineralogical studies on Australian sand ilmenite coneentuate with specialreference to its behaviour in the sulPhate Proeess[J]. Minerals Engineering.1999,12(5):485-495.
    [25] Ja Yong Choi, Hae Geon Lee, Jeong sik Kim. Dissolution rate of A12O3into moltenCaO-SiO2-A12O3slags[J]. ISIJ International.2000,42(8):852-856.
    [26] Atsum Ono, H. U. Ross.Optimum slag composition for the blast furnace smelting oftitaniferous ores[J]. Canadian Metallurgical Quarterly.1963,2(3):259-279.
    [27] Mikhailov, Belykova. Ural Met.,1939,(6):7-9.
    [28] Noritaka Saito, Naoto Hori, Kunihiko Nakashima, Katsumi Mori. Viscosity of blast furnaceslags[J]. Metallurgical and Materials Transactions B.2003,34B:509-516.
    [29] Shankar, M. Gorneruo, A. K. Lahiri and S.Seetharaman. Experimental investigation of theviscosities in CaO-SiO2-MgO-Al2O3and CaO-SiO2-MgO-Al2O3-TiO2slags[J]. Metallurgicaland Materials Transactions B.2007,38B:911-915.
    [30] Hyunsik Park, Jun-Young Park, Gi Hyun Kim, and Il Sohn. Effect of TiO2on the viscosityand slag structure in blast furnace type slags[J]. Steel Research Int.2012,83(2):150-156.
    [31] Sohn, W. Wang, H. Matsuura, F. Tsukihashi, D.J.Min. Influence of TiO2on the viscousbehavior of calcium silicate melts containing17mass%Al2O3and10mass%MgO[J]. ISIJInternational,2012,52(1):158-160.
    [32]郭兴忠,文光远,张丙怀.中钛型高炉渣冶金性能的研究[J].四处冶金.2000,(3):18-22.
    [33]裴生谦,李洋,李书明.高炉中钛冶炼炉渣性能研究[J].河北冶金.2011,(8):20-24.
    [34] Y.H.Gao, Z.Y.Liang, Q.C.Liu, L.T.Bian. Effect of TiO2on the Slag Properties forCaO-SiO2-MgO-Al2O3-TiO2System[J]. Asian Journal of Chemistry.2012,24(11):5337-5340.
    [35]张晓冬,祁海龙,李文英.承钢炼铁喷煤技术进步[J].炼铁技术通讯.2009,(1):19-21.
    [36]张振峰,吕庆,李福民.高A12O3钒钛炉渣熔化性能的实验研究[J].东北大学学报(自然科学版).2007,28(10):1414-1416.
    [37]卢铁忠,闰云涛,高影.承钢高炉冶炼钒钛矿30年综述[J].承钢技术.1995:2-8.
    [38]姚廷利,马锡民.承钢1260m3高炉钒钛矿强化冶炼实践[J].炼铁.2008,27(2):37-40.
    [39]刘建明.高钛高炉渣泡沫化原因及影响因素的研究[D].重庆:重庆大学,1986.
    [40]白晨光.含钛高炉渣的若干物理化学问题研究[D].重庆:重庆大学,2003.
    [41]苏允隆,吴俐俊,宋灿阳.马钢冶炼含钛矿炉渣性能的研究[J].钢铁钒钛.2002,23(3):9-16.
    [42]桂珍盛,陈琦,王万高.成钢高炉冶炼钒钛矿试验[J].四川冶金.1995,2:26-30.
    [43]袁强,杨治权.攀成钢3号高炉增大钒钛矿用量冶炼实践[J].炼铁.2006,25(5):22-25.
    [44]唐成润.高钛型高炉渣冶金物化性质及其带铁机理的研究[D].重庆:重庆大学,1988.
    [45]付卫国,谢洪恩.攀钢高炉钒钛磁铁矿冶炼的技术进步[J].钢铁.2008,43(10):21-24.
    [46]贾娟鱼.含钛炉渣TiO2的作用浓度及炉渣粘度研究[D].重庆:重庆大学,2003.
    [47]束奇峰,胡晓军,侯新梅,周国治.高炉渣流动性的计算研究[J].中国稀土学报.2010,28:131-135.
    [48] Masashi NAKAMOTO, Yasuhiro TSUGAWA, Akihito KIYOSE, Jonhoo LEE and ToshihiroTANAKA. Effect of TiO2on the viscosity of molten slag in SiO2-CaO-MgO system[J].高温学会志.2006,32(1):74-77.
    [49]贾娟鱼,白晨光,邱贵宝,陈登福,范志刚.含TiO2三元渣系粘度计算模型[J].重庆大学学报.2002,25(12):39-41.
    [50] J. Y. JIA, C. G. BAI, G. B. QIU, D. F. CHEN, and Y. XU. Calculation models on the viscosityof CaO-SiO2-TiO2slag system[J]. The South African Institute of Mining and Metallurgy.2004,137-139.
    [51] Shan REN, Jianliang ZHANG, Liushun WU, Weijian LIU, Yanan BAI, Xiangdong XING,Buxin SU, Dewen KONG. Influence of B2O3on viscosity of high Ti-bearing blast furnaceslag[J]. ISIJ International.2012,52(6):984-991.
    [52]饶东生.硅酸盐物理化学[M].北京:冶金工业出版社,1996.
    [53]西北轻工业学院编著.玻璃工艺学[M].北京:轻工业出版社,2006.
    [54]文玲,张金柱.含钛高炉渣性能的研究进展[J].钢铁研究学报.2011,23(5):1-3.
    [55]谢冬生,毛裕文,郭昭信,朱元凯.高炉钛渣高温还原变粘规律[J].钢铁钒钛.1985,(6):16-22.
    [56]姚国良.高炉冶炼低硅低硫铁的炉渣性能研究[J].河北冶金.1992,(3):7-10.
    [57]马家源,孙希文,刁日升.高炉冶炼钒钛磁铁矿理论与实践[M].北京:冶金工业出版社,2000.
    [58] Martin E, BEll H B. Activities in the System MnO–TiO2at1500℃[J]. Trans. Inst. Min.Metall..1974,83: C193-C196.
    [59] Fine H A, Arac S. Effect Of Minor Constituents on Liquidus Temperature of Synthetic BlastFurnace Slags[J]. Ironmaking Steelmaking,1980,7(4):160-166.
    [60] Sommerville I D, BEll H B. The Behavior of Titania in Metallurgical Slags[J]. Can. Metall.Quart.,1982,21(2):145–155.
    [61]刘磊.酒钢高炉炉渣冶金性能的研究[D].河北:河北理工大学,2008.
    [62]贺道中.高炉高钛渣冶金物化性能的研究[J].湖南冶金.1994,(5):3-6.
    [63]白晨光,文光远.高钛型高炉渣表面粘度的研究[J].重庆大学学报(自然科学版).1995,(3):80-85.
    [64]乔瑞庆,杜鹤桂. TiO2对含氟熔渣粘度和熔化性温度的影响[J].钢铁研究学报.1998,10(4):1-4.
    [65]傅念新,张勇维等.化学成分对高钛高炉渣钙钛矿相析出行为的影响[J].矿冶工程,1997,(4):36.
    [66]文光远.铁冶金学[D].重庆:重庆大学出版社,1993.
    [67]岸忠男.熔融型モ-ルドパゥダ-とその制造技术[J].制铁研究,1987,324:10-16.
    [68]王谦.连铸含铝钢Al2O3夹杂与结晶器保护渣的作用[J].四川冶金,1991,(3):40-42.
    [69]川本正辛ほか.高速连铸用パゥダ-の特性设计[J].铁と钢,1994,(3):219-224.
    [70]谢兵.连铸结晶器保护渣相关基础理论的研究及其应用实践[D].重庆:重庆大学,2004.
    [71]李桂荣,王宏明等.含B2O3无氟连铸保护渣物理性能的研究[J].特殊钢.2005,26(3):12-14.
    [72]马田一ほか.连铸モ-ルドパウダ-消耗量におよぼすパウダ-性状の影响[J].铁と钢.1983,154(12):319-324.
    [73] I R.Lee. Development of Mould Powder for High Speed Continuous Casting[A]. Conferenceon Continuous Casting of Steel and Developing Countries[C]. Beijing,1994.
    [74]崔传孟,徐秀光,张显鹏,王魁汉,韩维儒. B2O3-MgO-SiO2-A12O3-CaO系渣组成对熔体物性的影响[J].金属学报,1996,32(6):637-641.
    [75]朱立光,唐国章,万爱珍,金山同.高速连铸保护渣粘度特性的研究[J].钢铁.2000,35(11):23-25.
    [76]李金锡,张鉴. CaO-MgO-CaF2-Al2O3-SiO2五元渣系粘度的计算模型[J].北京科技大学学报.2000,22(4):316-319.
    [77] MYSEN, B.O. Structure and Properties of Silicate Melts[A]. Elsevier, Amsterdam,1988.
    [78] K.C. Mills, L. Yuan, and R.T. Jones. Estimating the physical properties of slags[J]. TheJournal of the Southern African Institute of Mining and Metallurgy.2011,111:649-658.
    [79]何生平.无氟和低氟连铸保护渣研究[D].重庆:重庆大学,2010.
    [80] B.O. Mysen: Earth Science Reviews.1990,27:281.
    [81] ME Fleet. X-ray diffraction and spectroscopic studies on the structure of silicate glasses[A].in short course on silicate melts edit[C]. Mineralogical Soc. Canada,1986,35.
    [82] Ling ZHANG, SUN, S., and JAHANSHAHI, S. Viscosity of Melts Containing Iron Oxide inthe CaO-MgO-MnO-FeO-Fe2O3-SiO2System[J]. Metallurgical and Materials TransactionsB,1998,29:177-195.
    [83] KAPOOR, M.L. and FROHBERG, M.G.. Chemical Metallurgy of Iron and Steel[A]. Iron andSteel Institute[C], London,1971,17-21.
    [84] GAYE, H and WELFRINGER, J.. Modelling of the Thermodynamic Properties of ComplexMetallurgical Slags[A]. Proceedings of the2ndInternational Symposium on MetallurgicalSlags and Fluxes. Fine, H.A. and Gaskell, D.R.(eds.)[C]. The Metallurgical Society of AIME,Warrendale, PA,1984,357-373.
    [85] A.D.Pelton, G.Eriksson, M.Bander. Proc. of3th Int..Conf.on Molten Slags and Fluxes[C],Glasgow, U.K.,1988,6:66.
    [86] H.Gaye,J.Welfringer. Proc.of2th Intem.Symp.On Metallurgical Slags and Fluxes[C], LakeTahoe, Nevada,1984,11:257.
    [87]唐续龙,郭敏,王习东,张作泰,张梅.基于修正的(NBO/T)比值的粘度模型[J].北京科技大学学报.2010,32(12):1542-1546.
    [88]毛裕文.冶金熔体[M].北京:冶金工业出版社,1994.
    [89] McMillan P, Pirious B. J. Non-Cryst. Solid.1983,55:221-242.
    [90] Wu Yong-quan, HUANG Shi-ping, et al. Tans. Nonferrous Met. Soc.2002,12:1218.
    [91] E.Salje,Thermodynamics of sodium feldspar I[J]. Experimental results and numericalcalculations.Phys.Chem.Minerals.1985,12:99-107.
    [92]潘峰,喻学惠,莫宣学,尤静林,王晨,陈辉等.铝硅酸盐Raman活性分子振动解析[J].光谱学与光谱分析.2006,26(10):1871-1875.
    [93]王斌,陈集,饶小桐.现代分析测试方法[M].北京:石油工业出版社,2008.
    [94]王斌,程晓哲,韩可喜.酸溶性钛渣酸解性能研究[J].钢铁钒钛.2009,30(2):6-11.
    [95]德国钢铁工程师协会主编.王俭,彭育强,毛裕文译.渣图集[M].北京:冶金工业出版社,1989.
    [96]张培新,隋智通,赵建华. TiO2和ZrO2在B2O3-MgO-SiO2系晶化过程中的作用[J].材料研究学报.1998,12(3):303-306.
    [97] Zaitsev A I, Mogutnov B M. A new viewpoint on the structure of molten slags[J]. Stal (InRussian),1994,(9):17-22.
    [98] Nürnberg G. Schlackenatlas. Düsseldorf, Stahleisen M B H,1981:112-119.
    [99] Carter P T, Macfarlane T G..J. Iron and Steel Inst..1957,195(1):54-68.
    [100]大森康男,三本木贡治. CaO-SiO2-Al2O3系矿渣のCaOの活量[J].日本金属志学会志,1961,25(2):139-143.
    [101]泽村企好. CaO-SiO2二元矿渣のCaOの活量つて[J].鉄と鋼,1961,57(14):1873-1878.
    [102] Sharma R A, Richardson F D. The solubility of calcium sulphide and activities in lime-silicamelts[J]. J. Iron and Steel Inst.,1962,200(5):373-379.
    [103]张子青,周继程,田彦文. CaO-B2O3和CaO-SiO2-MgO熔渣中CaO的活度[A].全国第五届冶金过程物理化学年会论文集(上册)[C],1984:254-263.
    [104]陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社.1984.
    [105] Ernest M.Levin, Carl R.Robbins and Howard F.McMurdie. Phase Diagrams forCeramists[M].Columbus, Ohio.1969
    [106]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社.1993.
    [107]叶大伦.实用无机热力学数据手册[M].北京:冶金工业出版社.1981.
    [108] Turdogan,魏季和,傅杰译.高温工艺物理化学[M].北京:冶金工业出版社.1988.
    [109] Barin I.et al. Thermochemical Properties of Inorganic Substances[J].ISIJ International.1977:128.
    [110]刘焕明,杜红,杨祖磐.高炉型熔渣中TiO2的活度[J].金属学报.1992,28(2): B45-B47.
    [111] PV Riboud, Y Roux, LD Lucas and H Gaye: Fachber. Hutten prax[J]. Metallweiterverarb.198119:859-869.
    [112] T.Iida, H.Sakai,Y.Kita and K.Shigeno, ISIJ International, Supplement.2000,40: S110-S114.
    [113] K.C.Mills. Influence of Structure on the Physico-chemical Properties of Slags[J]. ISIJInternational.1993,33(1):148-155.
    [114] H.S.Ray, S. Pal. Ironmaking and Steelmaking.2004,31:125-130.
    [115]唐启义,冯明光. DPS数据处理系统[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700