用户名: 密码: 验证码:
泥质活性炭的制备及污泥热解动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着污水处理厂数量的增加和国家排放标准的严格化,污水处理厂产生的污泥越来越多,由于污水污泥的含水率高等特点,采用传统的卫生填埋、农用、投海等处理方法都存在不同的弊端。因此污水污泥的处理已成为全球关注的问题。热解法作为最有潜力的热化学处理技术具有许多优点。利用城市污水处理厂污泥制备活性炭就是利用热解原理进行污泥资源化利用的新方法。
     以西安市污水处理厂未消化脱水污泥为原料制备了泥质活性炭。得出了制备工艺参数对泥质活性炭外貌特性、化学组成、孔结构特性的影响规律,并分别深入探讨了干燥污泥和活化污泥热解过程中活化能及指前因子的变化规律,在DTG曲线峰值前后分别采用不同的机理函数描述其热解机理,得出干燥污泥和经不同浓度活化剂活化后污泥的分阶段热解反应动力学模型,为实际工业化生产提供了试验数据参考。用制备的泥质活性炭应用于含铬废水的处理,分析了不同吸附条件对污染物去除率的影响规律,评价了泥质活性炭对含铬废水的去除效果。通过动态吸附实验及再生实验对含铬废水进行重复吸附,效果良好。并分析了泥质活性炭的应用前景及生产成本。
     以西安市污水处理厂未消化脱水污泥为原料,采用氯化锌炭化活化法制备了泥质活性炭。研究了氯化锌浓度、活化温度、活化时间、液固比对评价指标碘值和亚甲基蓝值的影响规律,以最终综合分值为控制指标确定了泥质活性炭的最佳制备条件,即活化剂浓度4mol·L~(-1)、活化温度550℃、活化时间60min、液固比为2.5:1,制备出来的活性炭碘值大于358.68mg·g~(-1),亚甲基蓝吸附值大于45.90mg·g~(-1),得出了各因素按影响大小排序为:活化温度>活化剂浓度>活化时间>液固比。泥质活性炭比表面积为227m2·g~(-1),平均孔径为0.71nm,微孔比表面积所占比例51.44%,中大孔比表面积所占比例48.56%。总孔孔容为100.89ml/g,微孔孔容63.50ml/g,中孔孔容37.39ml/g,微孔孔容所占比例为62.94%,中大孔孔容所占比例为37.06%。通过电镜扫描(SEM)、热重分析(TG)、红外光谱分析(FT-IR)、氮气吸附等手段表征了泥质活性炭的特性,分析了工艺参数对泥质活性炭外貌特征、化学组成、孔结构和吸附性能的影响规律。
     通过氮气吸附仪对制备的泥质活性炭进行测定,得到的吸附等温线属于Ⅱ型吸附等温线,应用BET多分子层吸附理论模型拟合泥质活性炭上氮气吸附等温线的BET直线方程,得出常数C为414.869,因为C>2时,所以吸附等温线是Ⅱ型,这与实验所得的吸附等温线结果是一致的。吸附─脱附等温线的滞后环均为A类滞后环,制备的泥质活性炭的孔结构可能是两端开口的均匀圆管状孔或不规则筒形、菱形、方形、均匀珠串形孔等。
     利用热重(TG)分析仪,采用非等温技术对城市污水处理厂干燥污泥热和活化污泥的热解特性及动力学模型系统地进行了研究,得出干燥污泥和活化污泥不同的热解机理模型。分别探索了在热重分析时干燥污泥和活化污泥升温速率对污泥热解转化率和转化速率的影响。结合Flynn-Wall-Ozawa法,Kissinger法,Satava-Sestak法和Coats-Redfern法对干燥污泥热解进行了动力学分析,确定了干燥污泥热解反应的动力学三因子,确定了干燥污泥热解最概然机理函数。干燥污泥热解过程的表观活化能为90~110kJ·mol~(-1),指前因子为1.32×109~3.55×109min~(-1)。
     通过双外推法确定了干燥污泥热解最概然机理函数。因为污泥热解过程中不能采用单一的机理模型来描述整个热解过程,所以在DTG曲线峰值前后分别采用不同的热解机理模型来描述污泥热解反应,DTG峰值前后体系处于原始状态的Eα→0值分别为102.17kJ·mol~(-1)和88.17kJ·mol~(-1)。DTG曲线峰值前最概然机理函数为No.3G-B方程,属三维扩散、球形对称机理,DTG曲线峰值前干燥污泥热解过程的表观活化能Eβ→0=107.44KJ·mol~(-1),lnAβ→0=12.64;DTG曲线峰值后最概然机理函数为No.13Avrami-Erofeev方程(n=3),热解机理为随机成核和随后生长机理,DTG曲线峰值后干燥污泥热解过程的表观活化能Eβ→0=88.34KJ·min~(-1), lnAβ→0=14.25。
     对活化污泥DTG曲线峰值前后分别采用不同机理函数描述其热解机理,采用双外推法确定了不同浓度的活化剂活化后污泥的最概然热解机理函数。对于制备泥质活性炭常用的不同浓度活化剂活化后污泥的热解机理模型进行了研究,得出四阶段热解机理模型。经3mol·L~(-1)活化剂活化后污泥的四阶段热解机理依次为二维扩散、圆柱形对称机理,lnAβ→0=8.4529;1.5级化学反应机理,lnAβ→0=3.6824;3级化学反应机理,lnAβ→0=23.019;成核、生长机理(n=1/3),lnAβ→0=-4.5689。经4mol·L~(-1)活化剂活化后污泥的四阶段热解机理依次为2级化学反应,lnAβ→0=0.0232;成核和生长(n=3),lnAβ→0=28.395;3级化学反应, lnAβ→0=30.643;三维扩散机理,lnAβ→0=7.5558。经5mol·L~(-1)活化剂活化后污泥的四阶段热解机理依次为Mampel-Power法则(n=1/3),lnAβ→0=4.3671;3级化学反应,lnAβ→0=3.9417;2级化学反应,lnAβ→0=19.103;Mampel-Power法则(n=3/2),lnAβ→0=17.133。
     研究了泥质活性炭对含Cr(Ⅵ)废水的吸附性能,考察了泥质活性炭对含Cr(Ⅵ)废水的吸附动力学行为。研究了以泥质活性炭投加量、pH值、Cr(Ⅵ)浓度、吸附时间对含Cr(Ⅵ)废水去除率的影响规律,通过正交试验确定了影响Cr(Ⅵ)吸附的四个因素中按影响大小排序为:泥质活性炭投加量>pH值>Cr(Ⅵ)初始浓度>吸附时间。确定了泥质活性炭对含Cr(Ⅵ)废水最佳吸附条件为:吸附时间10min,Cr6+初始质量浓度10mg/L,泥质活性炭投加量5g/L,溶液pH=1,在此吸附条件下,泥质活性炭对含Cr(Ⅵ)废水吸附率高于99.6%。泥质活性炭对含Cr(Ⅵ)废水的去除率不亚于商品活性炭,而且每克活性炭能吸附的Cr(Ⅵ)量大于商品活性炭。分别用伪一级动力学方程、伪二级动力学方程、修正伪一级动力学方程和颗粒内扩散模型进行拟合,发现泥质活性炭对Cr(Ⅵ)废水的吸附过程更符合伪二级反应动力学模型。
     用污水处理厂污泥制备活性炭是一种污泥资源化技术,可达到“减量化、资源化、无害化”的目的,在吸附含重金属废水等方面具有广阔的应用前景,是一种廉价的水处理吸附剂。为污水处理厂污泥的资源化利用找到了一种可行的经济的处置方法。
With the increasing of waste water treatment plant and discharge standards weremore and more stern, more and more sewage sludge were produced. In consideration ofthe fact that the sewage sludge with high moisture content was hard to be disposed,Sanitary landfills, sludge farm application and ocean disposal et al existed problems.Sewage sludge treatment and disposal had become a focused issue in global. Pyrolysiswas one kind of effective techniques in sewage sludge treatment, which had a lot ofadvantages comparing with normal method. Preparation of sewage sludge-basedactivated carbon was a new method of utilization sewage sludge.
     The sewage sludge-based activated carbons were prepared through chemicalactivating by zinc chloride (ZnCl2) as activating agent. And the affecting factors ofsewage sludge-based activated carbons are also discussed. The effect of affecting factorssuch as activation temperature, activation time, activator concentrations and liquid-solidratio was systematically studied. Effect of procedure parameters on the pore structure andabsorbability of sewage sludge-based activated carbon were also discussed.
     The sewage sludge-based activated carbons were prepared through chemicalactivating by zinc chloride (ZnCl2) as activating agent. And the affecting factors ofsewage sludge-based activated carbons are also discussed. The effect of affecting factorssuch as activation temperature, activation time, activator concentrations and liquidliquid-solid ratio was systematically studied. Comprehensive factor score was regarded asevaluating index, the optimum preparation parameters were obtained as follows:activation temperature was550℃, activation time was60minutes, activator concentrations4mol.L~(-1)liquid-solid ratio2.5:1, and the iodine adsorption capacity was358.68mg.g~(-1),and the methylene blue adsorption reached45.9mg.g~(-1).The effects ofvarious factors on properties of activated carbon are in the following descending order:activation time> activation time> activator concentrations>liquid-solid ratio. Sewagesludge-based activated carbons were studied by SEM, and mainly Mesoporous in nature.
     The thermal decomposition kinetics of dry sewage sludge was investigated bymeans of non-isothermal TG at different heating rates of5K·min~(-1),10K·min~(-1),15K·min~(-1),20K·min~(-1)and30K·min~(-1). The non-isothermal kinetic parameters andmechanical functions were analyzed by means of Flynn-Wall-Ozawa equation andCoats-Redfern equation. Before and after DTG peak, Flynn-Wall-Ozawa andCoats-Redfern were used to determine the kinetic parameters. Before and after DTG peak,Eα→0=102.17kJ·mol~(-1),88.17kJ·mol~(-1)respectively. Before DTG peak, the most probablekinetic function was No.3G-B Equation, and the corresponding mechanism wascontrolled by Three-Dimensional Diffusion (cylindrical symmetry).The apparentactivation energy and the pre-exponential constant(A) were Eβ→0=107.44KJ·mol~(-1),lnAβ→0=12.64respectively. After DTG peak, the most probable kinetic function was No.13Avrami-Erofeev Equation (n=3), and the corresponding mechanism was controlled byrandom nuclear producing and growing process. The apparent activation energy and thepre-exponential constant (A) were Eβ→0=88.34KJ·mol~(-1), lnAβ→0=14.25respectively.
     The thermal decomposition kinetics of activated sewage sludge was investigated bymeans of non-isothermal TG at different heating rates of5K·min~(-1),15K·min~(-1),20K·min~(-1),30K·min~(-1)and50K·min~(-1). The non-isothermal kinetic parameters andmechanical functions were analyzed by means of Flynn-Wall-Ozawa equation andCoats-Redfern equation. Four step pyrolysis models of sewage sludge activated by3mol·L~(-1)were as follow, two dimensional diffusion equation, cylindrical symmetrymechanism, lnAβ→0=8.4529; chemical reaction mechanism, the reaction orders forchemical reaction was1.5, lnAβ→0=3.6824; chemical reaction mechanism, the reactionorders for chemical reaction was3, lnAβ→0=23.019; Nucleation and growth mechanism,n=1/3, lnAβ→0=-4.5689. Four step pyrolysis models of sewage sludge activated by4mol·L~(-1)were as follow, chemical reaction mechanism, the reaction orders for chemicalreaction was2, lnAβ→0=0.0232;nucleation and growth mechanism,(n=3), lnAβ→0=28.395;chemical reaction mechanism, the reaction orders for chemical reactionwas3,lnAβ→0=30.643; two dimensional diffusion equation,lnAβ→0=7.5558.Four steppyrolysis models of sewage sludge activated by5mol·L~(-1)were as follow,Mampel-Powerlaw(n=1/3),lnAβ→0=4.3671;chemical reaction mechanism, the reaction orders forchemical reaction was3, lnAβ→0=3.9417;chemical reaction mechanism, the reactionorders for chemical reaction was2,lnAβ→0=19.103;Mampel-Power law(n=3/2),lnAβ→0=17.133。
     The sorption action of sewage sludge-based activated carbon absorbing waste watercontaining Cr (VI) has been studied in this paper. sludge activated carbon was preparedby pyrolysis process using excess sewage sludge as raw material and ZnCl2as activatingagent. The optimum conditions for Cr(Ⅵ)adsorption using the prepared sewagesludge-based activated carbon are as follows:adsorption time10min,Cr(Ⅵ)initial massconcentration10mg/L,activated carbon dosage5g/L,solution pH2.Under theseconditions the removal rate of Cr(Ⅵ) higher than99.6%.Factors affecting the adsorbability of sewage sludge-based activated carbons on waste water containing Cr(VI)decreased in the order of activated carbon dosage>pH>Cr(Ⅵ)initial massconcentration>adsorption time. The adsorption of Cr (Ⅵ) follows the Pseudosecond-order kinetic model.
     Preparations of sewage sludge-based activated carbon, as a kind of reduction,recycle and safe treatment was a new method of utilization sewage sludge. This showedthe extensive application of treatment of wastewater containing heavy metals in thefuture. Sewage sludge-based activated carbon was a cheap adsorbent. A possibleutilization method of sewage sludge was introduced.
引文
[1]何品晶,顾国维,李笃中,编著.城市污泥处理与利用[M].北京:科学出版社,2003.
    [2]李季,吴为中.国内外污水处理厂污泥产生,处理及处置分析[M].污泥处理处置技术与装备国际研讨会论文集.2007.
    [3]张光明,张信芳.城市污泥资源化技术进展[M].北京:化学工业出版社,2006,2.
    [4]雷乐成,汪大翚.湿式氧化法处理高浓度活性染料废水[J].中国环境科学,1999,19(1):42-46.
    [5]邵瑞华,司全印,房平.超临界水氧化法处理固体废物的研究进展[J].化工环保,2008,28(2):122-126.
    [6]昝元峰,王树众,林宗虎等.超临界水氧化工艺处理城市污泥[J].中国给水排水,2004,20(9):9-12.
    [7]昝元峰,王树众,张钦明,等.污泥的超临界水氧化动力学研究[J].西安交通大学学报,2005,39(1):104-107.
    [8] Goto M, Nada T,Ogata A. Supercritical water oxidation for the destruction of municipal excesssludge and alcohol distillery wastewater of molasses [J]. J Supercritical Fluids,1998,13(3):277-282.
    [9]张清敏,陈卫平,胡国臣等.污泥有效利用研究进展[J].农业环境保护,2000,19(1):58-61
    [10]钟恒文,二宫加奈.生污泥的Fenton氧化处理[J].中国给水排水,2003,19(8):46-47.
    [11]杨晓奕,蒋展鹏.湿式氧化处理剩余污泥的研究[J].中国给水排水,2003,29(4):50-54.
    [12]杨晓奕,蒋展鹏,毛鹏生.湿式氧化—两相厌氧消化处理剩余污泥[J].中国给水排水,2003,19(4):48-51.
    [13]王治军,王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学,2005,26(1):68-71.
    [14]王治军,王伟,高殿森,等.高温和中温ASBR处理热水解污泥的对比[J].环境科学,2005,26(2):88-92.
    [15] W eemesM, Grootaerd H, Simoens F, et a.l Anaerobic digestion of ozonized bio solids[J]. WaterRes,2000,34(8):2330-2336.
    [16] Tiehm A, Nickel K, Neis U. The use of ultra sound to accelerate the anaerobic digestion ofsewage sludge [J]. WaSciTech,1997,36(11):121-128.
    [17]程洁红,张善发,陈华等.自热式高温好氧消化的污泥稳定中试[J].中国给水排水,2005,21(11):18-22.
    [18] Yue Han, Shihwu Sung, Richard R. Dague. Tempera-ture-phased anaerobic digestion ofwastewater sludges [J].W at SciTech,1997,6-7(36):367-374.
    [19] SongYoungchae, Sang-joKwon, Jung-huiWoo. Mesophil-ic and thermophilic co-phaseanaerobic digestion compared with single-stage mesophilic and thermophilic digestion ofsewage sludge [J]. Water Res,2004,(38):1653-1662.
    [20] Lay J J,Lee Y J,Noike T.Feasibility of biological hydrogen production from organic fraction ofmunicipal solid waste [J].Water Res.,1999,33(11):2579-2586.
    [21]蔡木林,刘俊新.利用废水和固体废弃物中有机质发酵产氢研究进展[J].环境污染治理技术与设备,2004,5(6):1-5.
    [22]任南琪,李建政,林明,等.产氢发酵细菌产氢机理探讨[J].太阳能学报,2002,23(1):124-127.
    [23] Cheng S S, Bang M D, Chang S M, et al. Studies on the feasibility of hydrogen productionhydolyzed sludge by anaerobic microorganisms[R].Taiwan: The25th Wastewater TechnologyConference,2000.
    [24] Wang C C, Chang C W, Chu C P, et al. Producing hydrogen from waste water sludge byClostridium biofermentans[J].Biotech,2003,(102):83–92.
    [25]郑幸雄,林秋裕,李季眉,等.厌氧生物产氢机制及程序控制之技术研发概论[J].工业污染防治,2001,79(2):173-193.
    [26] OkazawaK., M.HenmiandK.Sota. Energy saving in sewage sludge incineration with indirectheat drying [C]. Processing of1986National Waste Processing Conference. Denver, ASME,1986.177-191.
    [27] BayerB.and M.Kutubuddin.Temperature conversion of sludge and waste to oil[C]. K.JthomeKozmiendsy, Eds. Proceedings of the International Recycling Congress.Berlin: EFVerlag,1978.314-318.
    [28] Campbell H.W.Sewage SludgeTreatment and Use: NewDevelopment[C].London: ElsevierApplied Science,1989:281-290.
    [29] Bridle T.R., I.Hammerton andC.K.Hertle.Control of heavy metals and orga nochlorin essuingthe oil from sewage process [J].Wat.Sci.Tech.,1990,22(12):249-258.
    [30] FrostR.C, A.M.Bruce.Alternative uses for sewage sludge [J].Oxford: Pergamon Press,1991.323-341.
    [31]何品晶,顾国维,邵立明,等.污水污泥低温热解处理技术研究[J].中国环境科学,1996,16(4):254-257.
    [32]欧国荣,陈奇洲.生活水污泥油化试验研究[J].环境污染与防治,1996,18(4):20-21.
    [33]何品晶,邵立明,陈正夫,等.污水厂污泥低温热化学转化过程机理研究[J].中国环境科学,1998,18(1):39-42.
    [34]胡光埙,洪云希.城市污泥合成燃料的应用研究[J].中国给水排水,1996,12(2):13-15.
    [35]张增强,薛澄泽.城市污水污泥的堆肥化与资源化[J].环境保护,1997(7):12-15.
    [36]易红星,王建龙,李书军.我国污泥农用资源化的处置方法[J].石河子大学学报:自然科学版,2004,22(3):273-276.
    [37]唐俊,郑晓春,李学德,等.污泥对生菜、萝卜产量及有害物质积累的影响[J].安徽农业科学,2007,35(5):1409-1410.
    [38]蔡全英,莫测辉,吴启堂.城市污泥及其堆肥对盆栽通菜和萝卜产量的影响[J].农业环境科学学报,2003,22(1):52-55.
    [39] WU Qi-tang,HEI L,WONG JWC,et al.Co-cropping for phyto-separation of zinc and potassiumfrom sewage sludge[J].Chemosphere,2007,68:1954-1960.
    [40]张桥.未消化城市污泥与稻草堆肥处理研究[D].华南农业大学硕士论文,2002.
    [41]陈同斌,李艳霞,金燕,等.城市污泥复合肥的肥效及其对小麦重金属吸收的影响[J].生态学报,2002,22(5):644-648.
    [42]黄启飞,高定,黄泽春,等.鼓风对城市污泥好氧堆肥温度变化的影响[J].生态学报,2002,22(5):742-746.
    [43]张光明,张信芳,张盼月.城市污泥资源化技术进展[M].北京:化学工业出版社,2006
    [44]聂锦旭,肖贤明.污水厂污泥堆肥及制作化肥技术研究与应用[J].环境污染治理技术与设备,2006,7(8):117-120.
    [45]吴启堂主编.环境生物修复技术[M].北京:化学工业出版社,2007.
    [46]张迎春,吕万崇.浅谈市政污泥的资源化利用和无害化处理[J].山西建筑,2007(7):19.
    [47]刘红梅,熊文美.城市污水处理厂污泥资源化利用途径探讨[J].环境保护科学,2007,33(4):81-83.
    [48] TENCG H, TIEN S, HSL LY. Preparation of activated carbon from bituminous coal withphosphoric acid activation [J]. Carbon,1998,36(9):1387.
    [49]张引枝,樊彦贞.添加剂种类对活性炭纤维中孔结构的影响[J].炭素技术,1997,(4):11-14.
    [50]张襄楷,季会明,范晓丹.微波法制备污泥活性炭及其脱色性能的研究[J].炭素,2008,134(2):40-43.
    [51] Rio S, Faur-Brasquet C, Coq L, et al. Production and characterization of adsorbent materialsfrom an industrial waste [J]. Adsorption,2005,11:793-798.
    [52] Tay J H, Chen X G, Jeyaseelan S, et al. Optimising the preparation of activated carbon fromdigested sewage sludge and coconut husk [J].Chemosphere,2001,44(1):45-51.
    [53] Z. Al-Qodah, R. Shawabkah. Production and characterization of granular activated carbon fromactivated sludge [J]. Brazilian Journal of Chemical Engineering,2009,26(1):127-136.
    [54] Martin M J, Serra E, Ros A, et al. Carbonaceous adsorbents from sewage sludge and theirapplication in a combined activated sludge powdered activated carbon treatment [J].Carbon,2004,42(7):1383-1388.
    [55]范晓丹,张襄楷,杨虹莹,等.污泥活性炭的制备及其脱色性能[J].化工进展;2007,26(12):1804-1807.
    [56]任爱玲,王启山,贺君.城市污水处理厂污泥制活性炭的研究[J].环境科学,2004,Supp.1:48-51.
    [57]余兰兰,钟秦.活性炭污泥吸附剂的制备研究[J].环境化学,2005,24(4):401-403.
    [58]尹炳奎.污泥活性炭吸附剂材料的制备及其在废水处理中的应用[D].上海:上海交通大学,2007.
    [59]邵瑞华,房平,司全印.微波辐照下掺锰污泥活性炭的制备研究(英文)[J].陕西科技大学学报(自然科学版),2010,28(6):13-18.
    [60] J.A.Menéndez, M. Inguanzo, J. J. Pis.Microwave-induced pyrolysis of sewage sludge [J]. WaterResearch,2002,36:3261-3264.
    [61]蔺丽丽,蒋文举,金燕,等.微波法制备污泥活性炭研究[J].环境工程学报,2007,1(4):199-202.
    [62]杨丽君,蒋文举.微波法污水厂污泥制备活性炭的研究[J].环境污染治理技术与设备,2006,7(11):92-94.
    [63]杨丽君.微波法污水厂污泥制活性炭及其性能研究[D].四川大学,2005.
    [64]张斌.微波法污泥含碳吸附剂的制备与应用研究[D].昆明:昆明理工大学,2006:63-64.
    [65]张襄楷.微波法制备污泥活性炭及其脱色性能的研究[J].炭素,2008(2):40-43.
    [66]吴文炳.微波制备污泥质活性炭吸附剂及其再生研究[J].应用化工,2011,(6):975-977.
    [67]方琳,赵娟,田禹.微波法制备污泥吸附剂的性能优化研究[J].25(15):109-112.
    [68] Kamegawa K,. Yoshida K,.Preparation and Characterization of Swelling Porous CarbonBeads[J].Carbon,1997,35(5):631-639.
    [69] Rio S.,Faur Brasquet C.,Lecq L.,et al.Production and Characterization of Adsorbent Materialsfrom An Industrial Waste[J].Adsorption,2005,11:793-798.
    [70] Rio S.,Faur Brasquet C.,Coq L.L.,et al.Experimental Design Methodology for the Preparationof Carbonaceous Sorbents from Sewage Sludge by Chemical Activation application to Air andWater Treatments[J].Chemosphere,2005,58:423-437.
    [71] Otero M.,Rozada F.,Calvo L.F.,et al.Elimination of Organic Water Pollutants Using AdsorbentsObtained from Sewage Sludge[J].Dyes and Pigments,2003,57:55-65.
    [72] Rozada F.,Otero M.,Moran A.,et al.Adsorption of Heavy Metalson to Sewage Sludge derivedMaterials[J].Bio resource Technology,2008,99:6332-6338.
    [73]刘春华,曾经,夏畅斌.城市污水厂污泥改性物对Hg(Ⅱ)吸附的研究[J].材料保护,2007,40(5):58-60.
    [74] Yunbo Z.Effects of Metallic Derivatives in Adsorbent Derived from Sewage Sludge onAdsorption of Sulfur Dioxide[J].J.Cent South.Univ.Technol,2004,11(1):55-58.
    [75]余兰兰,郑凯,苏力宏,等.污水厂剩余污泥制备烟气脱硫吸附剂[J].应用化学,2007,24(9):1045-1049.
    [76] Yu Lanlan, Zhong Qin. Preparation of Adsorbents Made from Sewage Sludge for Adsorption ofOrganic Materials from Wastewater[J].Journal of Hazardous Materials,2006,137(1):359-366.
    [77]沈曾敏,张文辉,张学军,等.活性碳材料的制备与应用[M].北京:化学工业出版社,2008.
    [78]李永民,余兰兰,余宏伟,等.剩余污泥制备吸附剂及其脱硫机理[J].大庆石油学院学报,2007,31(2):59-61.
    [79]尹炳奎.污泥活性炭吸附剂材料的制备及其在废水处理中的应用[D].上海:上海交通大学硕士学位论文,2007:13-16.
    [80] Lillo-Rodenas M. A.,Ros A.,Fuente E.,et al. Further Insightsinto the Activation Process ofSewage Sludge-based Precursors byAlkaline Hydroxides [J]. Chemical EngineeringJournal,2008,142:168-174.
    [81]任爱玲,王启山,贺君.城市污水处理厂污泥制活性炭的研究[J].环境科学,2004,25(6):58-51.
    [82]陈亚,陈建林,刘龙茂,等.城市污水污泥热解动力学研究[J].河南科学2009,27(6).-727-730.
    [83]娄瑞,武书彬,谭扬.脱墨污泥热分解特性及其热解动力学浅析[J]中国造纸学报.2009(1):76-80.
    [84]冉景煜,王裕明.混合工业污泥热解及动力学特性实验研究[J].工程热物理学报.2009(3):509-512.
    [85]刘龙茂,陈建林,李娣,等.污泥的热解动力学实验研究[J].环境保护科学.2008,34(5):33-35.
    [86]王子曦,李桂菊,张晓镭.制革污泥热解动力学研究[J].中国皮革.2008(3):34-38.
    [87]魏立安,涂丽丽,高标.城市污水处理厂污泥热解机理[J].南昌航空大学学报(自然科学版).2007,21(4):66-69.
    [88]魏立安高标.城市污水污泥热解特性实验研究[J].节能,2007,26(6):4-6.
    [89]韩晓强陈晓平.分布活化能模型在污泥热解特性研究中的应用[J]燃烧科学与技术.2006,12(2):147-150.
    [90]陈江,杨金福,蔡泓林,等.污泥的热解特性实验研究[J].浙江工业大学学报.2005,33(3):315-318.
    [91]陈爽,郭庆杰,王志奇,等.含油污泥热解动力学研究[J].中国石油大学学报(自然科学版).2007,31(4):116-120.
    [92]陈爽,刘会娥,郭庆杰.含油污泥热解特性和动力学研究[J]石油炼制与化工.2007,38(7):50-53.
    [93]刘文铁,王淑彦,陆慧林,等.污泥的热解动力学及机理研究[J]热能动力工程.2006,21(5):529-531.
    [94]王联,魏立安,李海滨,等.剩余污泥的热解反应动力学研究[J]江西科学,2006,24(3):296-299.
    [95]王红,周浩生.应用TGA-FTIR研究污泥与煤的热解规律[J].华中理工大学学报.1999,27(9):38-40.
    [96]何品晶,邵立明.城市污水厂污泥低温热解动力学模型研究[J].环境科学学报.2001,21(2):148-151.
    [97]蒋旭光,池涌.污泥的热解动力学特性研究[J].环境科学学报,1999,19(2):221-224.
    [98]于娟,章明川.生物质热解特性的热重分析[J].上海交通大学学报,2002,36(10):1475-1478.
    [99]奉华,张衍国.城市污水污泥的热解特性[J].清华大学学报(自然科学版).2001,41(10):90-92.
    [100]刘亮,李录平,周孑民,等.污泥燃烧的热重实验研究[J].电站系统工程.2006,22(1):11-12.
    [101]陈江,黄立维,顾巧浓.造纸污泥热解特性及动力学研究[J].环境科学与技术.2006,29(1):87-88.
    [102]陈曼,金保升,贾相如.城市污水污泥的热解动力学特性研究[J].能源研究与利用.2005(3):31-34.
    [103]贾相如,金保升,王清华.污水污泥着火和燃烧特性研究[J].锅炉技术.2007,38(4):61-67.
    [104]谭雷,李辉,夏苇,等.污泥燃烧动力学特性的研究[J].武汉科技大学学报(自然科学版).2010,33(2):210-213.
    [105]岳晓明,张双全,董明建,等.城市污泥燃烧特性及动力学研究[J].中国矿业大学学报.2009,38(5):741-744.
    [106]邵敬爱,陈汉平,戴贤明,等.香港城市污泥热解特性实验[J].华中科技大学学报:自然科学版.2009(5).-120-124
    [107] F. Rozada. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bedsystems [J].Bioresource Technology,2003,87:221–230.
    [108] Netpradit S.Thiravetyan P.Towprayoon S. Application of ‘waste’metal hydroxide sludge foradsorption of azo reactive dyes. Water Research [J].2003,37(4):763-772.
    [109] Maria J Martin. Adriana Artola. M Dolors Balaguer. et al. Activated carbons developed fromsurplus sewage sludge for the removal of dyes from dilute aqueous solutions[J].2003,94(3):231-239.
    [110] Otero M, Rozada F, Calvo L F. Elimination of organic water Pollutants using adsorbentsobtained from sewage sludge [J]. Dyes and Pigments,2003,57:55-65.
    [111] Otero M, Rozada F, Calvo LF, et al. Kinetic and equilibrium modeling of the methylene blueremoval from solution by adsorbent materials produced from sewage sludge [J]. BiochemicalEngineering Journal,2003,15(1):59-68.
    [112] A.K.Jain, Suhas A.Bhatnagar Methyl phenols removal from water by low cost[J].Journal ofColloid and Interface Science.2002,251(1):(39-45)
    [113] N Graham, XG Chen, S Jayaseelan. The potential application of activated carbon from sewagesludge to organic dyes removal [J]. Water Science&Technology.2001,43(2):245–252.
    [114] Calvo L F, Otero M, Moran A, et al. upgrading sewage sludges for adsorbent preparation bydifferent treatments [J]. Bioresource Technology,2001,80(2):143-148.
    [115]解建坤,岳钦艳,于慧,等.污泥活性炭对活性艳红K-2BP染料的吸附特性研究[J].山东大学学报(理学版),2007,42(3):64-70.
    [116]岳钦艳,解建坤,高宝玉,等.污泥活性炭对染料的吸附动力学研究[J].环境科学学报,2007,27(9):1431-1438.
    [117]尹炳奎,朱石清,朱南文.生物质活性炭的制备及其染料废水中的应用[J].环境污染与防治,2006,28(8):608-611.
    [118]尹炳奎,朱石清,朱南文.化学活化法制备生物质活性炭及其应用研究[J].中国给水排水,2006,22(15):88-90.
    [119]朱石清,尹炳奎,朱南文.污泥改性活性炭技术的研究及其应用进展[J].中国给水排水,2006,22(24):19-22.
    [120]余兰兰,钟秦.由活性污泥制备的活性炭吸附剂的性质及应用[J].大庆石油学院学报,2005,29(5):64-66.
    [121]卞华松,张仲燕,刘芝玲.有机污泥改制含炭吸附剂工艺及应用[J].环境科学,1999,20(6):56-59.
    [122] Chen X,Joyascclan S,Graham N.Physical and chemcal properties study of the activated carbonmade from sewage sludge[J].Waste Management,2002,22(7):755~760.
    [123]陈坚.污泥活性炭的制备及其对铅镉的吸附研究[D].广州:中山大学,2004.
    [124]张德见,魏先勋,曾光明,等.基于非线性拟合的污泥衍生吸附剂对铅离子等温吸附特性研究[J].离子交换与吸附,2003,19(6):1-6.
    [125]张德见.污泥衍生吸附剂的制备及其对Pb2+、Cu2+、SO2的吸附研究[D].湖南:湖南大学,2004.
    [126]夏畅斌,刘春华,曾经,等.污泥制备活性炭对Pb(II)和Ni(II)的吸附和回收利用[J].材料保护,2006,39(12):57-61.
    [127]刘春华,曾经,夏畅斌,等.城市污水厂污泥改性物对Hg(Ⅱ)吸附的研究[J].材料保护,2007,40(5):58-60.
    [128]赵芝清,徐天有,张彦,等.污泥活性炭吸附含Cr(Ⅵ)废水的试验研究[J].工业用水与废水.2009,40(1):77-79.
    [129]庄明龙,柴立元,闵小波,唐宁,龙腾发,等.改性污泥处理含铍废水的吸附特性研究[J].应用化工,2005,(01).
    [130] Andrey Bagreev, Svetlana Bashkova, David C. Locke, et al. Sewage sludge-derived materialsas efficient adsorbents for removal of hydrogen sulfide [J]. Environ Sci Technol,2001,35(7):1537-1543.
    [131] Lau DD. Development of adsorbent from waste materials for air pollution control [D].Singapore: Nanyang Technological University,1994.
    [132] Svetlana Bashkova, Andrey Bagreev, David C. Locke, et al. Adsorption of SO2on sewagesludge-derived materials [J]. Environ. Sci. Technol.,2001,35(15):3263-3269.
    [133] Andrey B.Teresa J.H2S adsorbent/oxidation on materials obtained using sulfuric acidactivation of sewage sludge-derived fertilizer [J].Journal of colloid and interfacescience,2002,252(1):188-194.
    [134] Yunbo Z. Effects of metallic derivatives in adsorbent derived from sewage sludge onadsorption of sulfur dioxide[J].J.Cent.South.Univ.Technol,2004,11(1):5-8.
    [135]彭金辉.微波辐照再生味精厂中废活性炭[J].林产化学与工业,1998,18(2):89-90.
    [136]时运铭,段书德.木质粉状活性炭的微波加热再生研究[J].河北化工,2002(6):31-32.
    [137]陈玲桂,黄龙,周键,等.活性炭微波再生及其在焦化废水处理中的应用[J].广州化工,2009,37(7):138-139.
    [138]吴慧英,施周,陈积义,等.微波辐照再生载苯酚活性炭的实验研究[J].环境科学研究,2008,21(6):201-205.
    [139]卜龙利,王晓昌,陆露.活性炭的微波净化与再生及其吸附性能研究[J].西安建筑科技大学学报(自然科学版),2008,40(3):413-417.
    [140]刘天成,宁平,王亚明,等.微波再生载硫活性炭的动力学研究[J].云南民族大学学报(自然科学版),2007,16(2):175-177.
    [141]刘晓海,马祥元,彭金辉,等.废活性炭微波再生新工艺的研究[J].环境污染治理技术与设备,7(8):76-79.
    [142]傅大放,邹宗柏,曹鹏.活性炭的微波辐照再生试验[J].中国给水排水,1997,13(5):7-9.
    [143]刘英华.城市污水处理厂污泥制备活性炭的研究[D].南京理工大学,2008.
    [144]陈永,主编.多孔材料制备与表征[M].中国科技大学出版社,2010.
    [145] Ismadji S., Bhatia S. K., Characterization of activated carbons using liquid phase adsorption[J].Carbon,2001,39(8):1237-1250.
    [146]陈宗淇.胶体与界面化学[M].北京:高等教育出版社,2001.
    [147](日)近藤精一,(日)石川达雄,(日)安部郁夫著,李国希译.吸附科学[M].北京:化学工业出版社,2006.
    [148]章燕豪,编著.吸附作用[M].上海市:上海科学技术文献出版社:1989.
    [149]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [150] Brunauer S, Deming L S, Deming W E, et al. On a theory of the van der Waals adsorption ofgases [J].J. Am. Chem. Soc.,1940,62(7):1723–1732.
    [151] De Boer J H. The Structures and Properties of Porous Materials [M]. London: Butterworth,1958.
    [152] P.A.Gauden,A.P.Terzyk,G.Ryehlicki,et al.Estimating the Pore size distribution of activatedcarbons from adsorption data of different adsorbates by various methods[J].Journal of Colloidand Interface Science,2004,273(1):39-63.
    [153] B.Rand.On the empirical nature of the Dubinin-Radushkevich equation of adsorption[J].Journal of Colloid and lnterface science,1976,56(2):337-346.
    [154] Werther J, Ogada T. Sewage sludge combustion [J]. Progress in Energy and CombustionScience,1999,25(1):55-ll6.
    [155] Fabrellas Begofia,Sanz Paloma,Abad Holgado Esteban,et a1.Analysis of dioxins and furans inenvironmental samples by GC ion-trap MS/MS [J]. Chemosphere,2004,55(11):1469-1475.
    [156] Fiedler Heidelure.Sources of PCDD/PCDF and impact on the environment [J]. Chemosphere,1996,32(1):55-64.
    [157] Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and newmethods [J].Renewable and Sustainable Energy Reviews,2008,12(1):116-140.
    [158] XU Qiang, ZHANG Chun-min, ZHAO Li-jun.sludge treatment,disposal and management[M].Beijing:Chemical Industry Press environmental Science and engineering center,2003(InChinese).
    [159] Calvo L F, Otero M, et, a1.Heating process characteristics and kinetics of sewage sludge indifferent atmospheres [J].Thermochimica Acta,2004,409(2):127-l35.
    [160] Nadziakiewicz J, Koziol M.Co-combustion of sludge with coal [J].Applied Energy,2003,75(4):239-248.
    [161] H. Schmidt, W. Kaminsky.Pyrolysis of oil sludge in a fluidized bed reactor [J]. Chemosphere,2001,45(3):285-290.
    [162] Vyazovkin S, Wight C A. Isothermal and nonisothermal kinetics of thermally stimulatedreactions of solids[J].Int.Reviews in Physical Chemistry,1998,17(3):407-433.
    [163] Ozawa T.Bull. A new method of analyzing thermogravimetric data [J]. Chem.Soc.Jpn,1965.38(11),1881-1886.
    [164] Flynn J H, Wall L A.J. A quick, direct method for the determination of activation energy fromthermogravimetric data [J].Polym.Sci.Part B, Polymer Letters,1966,4(5):323-328.
    [165] Kissinger H E. Reaction kinetics in differential thermal analysis [J].Anal.Chem.,1957,29(11):1702-1706.
    [166] Ozawa T. Estimation of activation energy by isoconversion methods [J].Therm.Acta,1992,203(1):159-165.
    [167] Friedman H L. Kinetics of thermal degradation of char-forming plastic fromthermogravimetry.: Application to a phenolic plastic [J]. J.Polym.Sci., Part C,1964,(6):183-195.
    [168] Ozawa T. Applicability of Friedman method [J].J.Therm.Anal.,1986,31(3):547-551.
    [169]胡荣祖等,主编.热分析动力学(第二版)[M].北京:科学出版社,2008.
    [170] Sergey Vyazovkin, David Dollimore.Linear and Nonlinear Procedures in IsoconversionalComputations of the Activation Energy of Nonisothermal Reactions in Solids[J].Journal ofChemical Information and Computer Sciences,1996,36(1):42-45.
    [171]房平,邵瑞华,司全印.污泥活性炭对Cr(Ⅵ)的吸附研究[J].环境污染与防治.2011,33(5):59-63.
    [172] Litz N. Assessment of organic constituent in sewage sludge [J].Water Science and Technology,2000,142(9):89-192.
    [173] Mininni G, et al. Partitioning of Cr, Cu, Pb and Zn in sewage sludge incineration by rotary kilnand fluidized bed furnaces [J].Water Science and Technology,2000,14(8):61-68.
    [174] Charge P C, You J H. Use of sewage sludge for manufacturing adsorbents [J].Can. J.Chem.Eng.,1987,65(6):922-927.
    [175]邵瑞华,房平,司全印.污水处理厂污泥制备活性炭的研究[J].安徽农业科学,2010,38(31):17632-17635.
    [176] Knoth W, Mann W, Meyer R.Polybrominated diphenyl ether in sewage sludge in Germany[J].Chemosphere,2007,67(9):1831-1837.
    [177] Ellen Z, Harrison, Summer Rayne Oakes, Matthew Hysell.et, al.Organic chemicals in sewagesludges[J].Science of the Total Environment.2006,367:481-497.
    [178] Bradley Clarke.Nichola Porter, Robert Symons.et, al.Polybrominated diphenyl ethers andpolybrominated biphenyls in Australian sewage sludge [J]. Chemosphere,2008,73:980-989.
    [179] HALE R C, LA GUARDIA M J, HARVEY E, et, al.Flame retardants: persistent pollutants inland-applied sludges [J].Nature.2001,412(7):140-141.
    [180]何品晶,邵立明,陈正火,等.污水厂污泥低温热化学转化过程机理研究[J].中国环境科学,1998,18(l):39-42,
    [181]赵长遂,黄超,陈晓平,等.造纸污泥热解试验和化学动力学研究[J].南京工程学院学报(社会科学版),2003,1(2):39-44
    [182]翟云波,魏先勋,曾光明,等.氮气气氛下城市污水厂污泥热解特性[J].现代化工,2004,24(2):36-38.
    [183]陈曼,金保升,贾相如,等.城市污水污泥的热解动力学特性研究[J].能源研究与利用,2005,(3):31-34.
    [184]奉华,张衍国,邱天,等.城市污水污泥的热解特性[J].清华大学学报(自然科学版),2001,41(10):90-92.
    [185] WANG Hong,ZHOU Hao-sheng,SUN Xue-xin,et al. Comparisons of Sewage Sludge andCoal Pyrolysis Using TGA FTIR [J].Journal of Huazhong University of Science andTechnology.1999,27(9):38-40(In Chinese).
    [186] Ahuja P, Singh PC, Upadhyay SN, et al.Kinetics of biomass and sewage sludge pyrolysis:Thermogravimetric and sealed reactor studies [J].Indian Journal of Chemical Technology,1996,3(6):306-312.
    [187] Folgueras M B,et al Thermo gravimetric analysis of the co-combustion of coal and sewagesludge[J].Fuel,2003,82:2051-2055.
    [188]邵瑞华,房平,司全印,等.污水处理厂污泥非等温热解动力学分析[C].The InternationalConference on Remote Sensing, Environment and Transportation Engineering (RSETE2011).2011,5:4198-4201.
    [189]刘秀如,吕清刚,赵科.城市污水污泥热解特性及动力学研究[J].2010,25(6):677-681.
    [190]杨琳,冉景煜.几种典型工业污泥及混合物热解特性影响因素[J].2010,33(10):42-49.
    [191]杨若明.环境中有毒有害化学物质的污染与监测[M].北京:中央民族大学出版社,2001.
    [192]逯兆庆,寻知磊.活性炭处理含铬废水的方法[J].电镀与涂饰,2002,21(5):42-44.
    [193]中国化工防治污染技术协会.化工废水处理技术[M].北京:化学工业出版社,2002.
    [194]房平,邵瑞华,司全印.污泥活性炭对Cr(Ⅵ)的吸附研究[J].环境污染与防治.2011,33(5):59-63.
    [195]王宝贞,刘学洪,黄君礼,等.活性炭去除水污染的效能与机理[J],哈尔滨建筑工程学院学报,1981(2):24-37.
    [196]贾陈忠,秦巧燕,樊生才.活性炭对含铬废水的吸附处理研究[J].应用化工,2006,35(5):369-372.
    [197] HoY S, McKay G. Sorption of dye from aqueous solution by peat [J]. Chemical EngineeringJournal,1998,70:115-124.
    [198] Zeynep E, Filiz N A. Adsorption of Reactive Black5from an aqueous solution: equilibriumand kinetic studies [J]. Desalination,2006,194:1-10.
    [199]单绍复.活性炭吸附原理及在环境工程中的应用[J].污染防治技术,1991,4(4):11-15.
    [200]葛俊森,梁渠.水中重金属危害现状及处理方法[J].江苏化工,2007,35(5):44-46.
    [201]王桂芳,包明峰,韩泽志.活性炭对水中重金属离子去除效果的研究[J].环境保护科学,2004,30(2):26-29.
    [202] Kadirvelu K, Thamaraiselvi K, Namasivayam C. Removal of heavy metals from industrialwastewaters by adsorption onto activated carbon prepared from an agricultural solidwaste[J].Bioresouree Technology,2001,(76):63-65.
    [203] Mohan D,Chander S. Single component and multi component adsorption of metal ions byactivated carbon[J].Colloids and Surfaces,2001,(177):183-196.
    [204]刘晓明,杨翠英,宋吉勇.用活性炭为吸附剂处理含Cr (Ⅵ)电镀废水探讨[J].山东科技大学学报(自然科学版)2005,24(2):107-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700