用户名: 密码: 验证码:
基于AnnAGNPS模型的桃江流域农业非点源污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业废水及城市生活污水等点源污染的有效控制,农业非点源污染逐渐成为水环境的首要污染源和第一大污染源。在我国水污染控制中呈现出点源可调整的空间越来越小,而非点源可调整的空间相对增大的趋势。因此,对农业非点源发生机理和控制措施的研究越来越受到人们的关注。作为鄱阳湖第一大支流赣江的源头之一,桃江流域人口的81.2%为农村人口,农业非点源污染是水体污染的最主要因素。鉴于此,以桃江流域为例,开展农业非点源污染发生机理和流失特征的研究,具有很强的理论价值、现实意义和示范效果。
     本文结合野外调查、实验室分析、查询历史资料和已有文献成果等多种手段,建立了桃江流域基础信息数据库。运用定性分析和定量计算相结合的方法,开展了桃江流域农业非点源污染的研究。主要包括以下方面:
     1.首先运用氮收支平衡方法在桃江流域及典型研究区两个尺度分别建立氮平衡变化模型,定量分析区域氮输入、输出量以及氮净增量,为后续建立并应用AnnAGNPS模型定量模拟农业非点源氮的发生机理和流失特征提供了参数和重要的边界条件,并为氮的拦截提供了科学依据。结果显示:2006~2008年桃江流域及研究区年均氮输入总量为32992t/a与6957t/a,其中化肥施用输入氮占氮总输入量比例分别为44.94%与44.05%,是最主要的输入源;作物收获氮占氮总输出量比例分别为49.89%与50.78%,是最主要的输出源;氮的输入增量远高于氮的输出增量,氮净增量分别为14945t/a与3167t/a,2006-2007年和2007~2008年氮净增量年增长率分别为桃江流域(9.78%、4.28%),研究区(8.27%、2.83%),呈显著上升趋势;对氮净增量及其去向研究结果显示,桃江流域及研究区氮净增量的分担率分别为水体(64.18%与62.12%)、土壤(30.86%与32.96%)、生物(4.96%与4.93),可见,区域里剩余氮主要以两种方式存在:一是通过地表、地下水径流进入河道,排出流域,进入到水体,污染水体;二是残留在土壤中,造成土壤的污染。农业非点源氮是流域氮的主要来源,对其进行研究已刻不容缓。
     2.在3S技术的支持下,建立研究区农业非点源污染AnnAGNPS模型,并对模型的适用性进行了检验。模型校验过程及结果显示:1)对不同时间尺度而言,年、月、日水平的模拟精度依次递减,模型对年和月水平的模拟精度较高,对日水平的模拟精度较低。可能是由于,实际暴雨的发生是相对短暂的过程,一般持续时间不足1天(24小时),而由于气象数据以及实验条件的限制,只能进行日事件的模拟,这在某种程度上削弱了降雨的强度,并延长了降雨的时间,因此对模型的精度造成影响;2) AnnAGNPS模型对地表径流、泥沙侵蚀及总氮输出的模拟精度从高到低依次为:地表径流>泥沙>总氮输出。造成此现象的原因主要是泥沙和总氮的迁移是以径流为载体,误差依次累加并有被放大的可能性;3)通过与国内外同行的研究比较,得出影响模型精度的条件主要有流域尺度、地形地貌及流域气候特征;4)年水平和月水平的校验精度满足模型模拟的精度要求,日水平的总氮校验相对误差在50%以内。因此,本文建立的AnnAGNPS模型适用于非点源污染的长期模拟及预测,但并不适宜非点源污染的风险评价和风险管理。
     3.以2001~2008年的降雨为驱动,将已建立的模型运用于研究区农业非点源污染负荷的定量预测、污染时空特性分析及最佳管理措施(Best Management Practices, BMPs)的评价。结果显示:1)研究区2001~2008年年均径流深为579.74mm,泥沙流失152.66×103t/a,非点源氮负荷2781.73t/a;汛期(4-8月)月径流、泥沙流失和非点源氮负荷占全年的百分比分别为64.30%、85.64%、86.34%,反映了水土流失及非点源氮输出主要由高强度降雨引起;2)年水平降雨、径流、泥沙及总氮负荷的年际变化曲线,走势有较高的相似性,且各相关系数(降雨-径流、降雨-泥沙、降雨-总氮、径流-泥沙、径流-总氮)介于0.7825~0.8421之间,揭示了降雨、径流、泥沙、总氮四者之间的密切联系;3)汛期的月降雨、径流、泥沙及总氮负荷变化曲线,同样具有相似的走势,各相关系数介于0.6022~0.9855之间,揭示了四者之间的密切联系的同时,也反映了汛期较年水平相比,相关系数波动幅度更大;降雨-径流的R2高达0.9855,说明汛期降雨-径流具有很好的线性关系,径流-总氮的R2为0.6022,在5组之中最低,反映了高强度降雨下,径流中氮含量差别很大,非点源氮的输出具有高度的不确定性。这可能与不同月份农作物的施肥等管理方式有很大关系,不同月份的施肥量不同、农作物生长阶段不同及对氮的拦截能力也不同,同等降雨条件下引起的非点源氮污染差别较大;4)在不同水文年,径流差别不大,而泥沙和非点源氮的输出差别很大,2001~2008年,丰水年径流量、泥沙和非点源氮分别是枯水年的1.4倍、3.5倍和1.8倍,说明泥沙侵蚀较径流和非点源更加敏感,间接说明高强度降雨是造成泥沙侵蚀的主要因素;5)对研究区非点源氮关键源区进行识别,并将五级作为非点源氮污染关键源区;6)平衡施肥对非点源污染氮的削减效果最佳;植被缓冲区的设置对径流、泥沙侵蚀以及氮素流失均有较为明显的效果。
With point source pollution including industrial waste water and city sewage has been effectively controlled, agricultural non-point source pollution has become the primary source of pollution and the first major pollution source of water environment. In our country, water pollution control presents that the point source adjustable space is becoming smaller, however, non-point source adjustable space has an increasing trend. Therefore, more and more researchers focus on occurrence mechanism and control measures of agriculture non-point source pollution. As one of the headwaters of Gan River which is the biggest tributary of Poyang lake basin, Tao River basin's rural population accounts for about81.2%, so agricultural non-point source pollution is the most important source to water pollutions. Therefore, it has highly theoretical and practical significance, also the demonstration effect to study on the occurrence mechanism and loss characteristics of agricultural non-point source pollution in Tao River basin.
     In this paper, means of field investigation, laboratory analysis and querying historical data and existing literature outcomes were applied in building basic database in Tao River basin. Method of qualitative analysis and quantitative calculation combined together to carry out the study of the Tao River basin agricultural non-point source pollution. The research steps are as follows:
     1. Nitrogen balance change model was established at two scales in Tao River basin and study area by means of Nitrogen balance income and expenditure, and was used for quantitative analysis of the regional nitrogen input, output, and net increase. It provided not only important Parameters and boundary conditions for the followed up establishment and application of the AnnAGNPS model to quantitative simulation of occurred mechanism and loss characteristics agricultural non-point source nitrogen, but also a scientific basis for the interception of nitrogen. The results showed that average annual nitrogen input in Tao River basin and study area was32992t/a and6957t/a from2006to2008, among which, chemical fertilizer input nitrogen accounted for44.94%and44.05%, respectively, was the main source of nitrogen input; Crop nitrogen fixation accounted for49.89%and50.78%of the total nitrogen output, was the main source of output, respectively; Nitrogen input increment was much higher than nitrogen output increment, net nitrogen increase was14612t/a and3167t/a with annual growth in Tao River Catchment (9.78%and4.28%) and in study area (8.27%、2.83%), showing a significantly upward trend. The studies of net nitrogen and its whereabouts showed that the share ratio of net nitrogen increment in Tao River Catchment and study area were water body (64.18%and62.12%), soil (30.86%and32.96%) and living creature (Organism)(4.96%and4.93%), respectively. So it shows clear that, there were two existence types of residual nitrogen:First, it flowed into the river through surface and groundwater runoff and polluted the water body; Second, it was left in the soil, causing soil pollution. Agricultural non-point source nitrogen is the main watershed nitrogen sources, so studies on the topic are becoming significant and urgent.
     2. Based on3S technology, AnnAGNPS model was established to simulate agricultural non-point source pollution in study area and its applicability was calibrated and validated. The calibration and validation processes and results showed:1) on different time scales of year, month and day, the simulation accuracy of the model was decreasing Sequential. With time scales of year or month, model showed higher simulation accuracy than that of day. Maybe, it dues to that, the actual occurrence of heavy rain is a relatively short-term process, usually lasting less than one day (24hours). But when daily simulation has to be carried out, because of limitations of meteorological data and experimental conditions, it could lead to weaken rainfall intensity, prolong rainfall time and impact accuracy of the model;2) AnnAGNPS model simulation accuracy order of surface runoff, sediment erosion and total nitrogen output from high to low were as follows:surface runoff> sediment erosion> total nitrogen output. The reason for this phenomenon might be the migration of sediment and total nitrogen in runoff for the carrier, the error in turn accumulate and be enlarged;3) Compared with domestic and foreign counterparts, it can be drawn that main factors which affected the accuracy of the model were basin-scale, climatic characteristics and topography of the watershed;4) Calibration and validation of year and month scales meet with model accuracy requirements, the relative error of day scale was less than50%. Therefore, the AnnAGNPS model, which established in this paper was suitable for the simulation and prediction of long-term non-point source pollution, but wasn't suitable for risk assessment and risk management of non-point sources.
     3. Based on rainfall from2001to2008, the AnnAGNPS model above was applied in quantitative prediction, spatio-temporal analysis and evaluation of best management practices. The results showed that:1) From2001to2008, the average annual runoff depth was579.74mm, sediment loss was152.66X103t/a and non-point source nitrogen was2781.73t/a; monthly runoff, sediment loss and non-point source nitrogen in flood season (April to August) accounted for64.30%,85.64%and86.34%of the whole year, respectively, reflecting that, runoff, sediment loss and non-point source nitrogen output mainly caused by high intensity rainfall;2) The high similarity of inter annual variability curve of rainfall, runoff, sediment and total nitrogen and the correlation coefficient (rainfall-runoff, rainfall-sediment, rainfall-nitrogen, runoff-sediment and runoff-nitrogen) were between0.7825and0.8421, showed a close relationship between the four parameters;3) variability curve of rainfall, runoff, sediment and total nitrogen in flood season also had similarly trend, the correlation coefficient were between0.6022and0.9855, showing a close relationship between the four and reflecting the correlation coefficient had bigger fluctuation in flood season than that of the whole year. The correlation coefficient of rainfall-runoff was0.9855, showed that flood season rainfall runoff had a very good linear relationship, while the R2of runoff-nitrogen was0.6022, reflecting non-point source nitrogen output were highly uncertain in flood season. Therefore It shows that, in all year round, the crop growth stage, fertilization, management mode and the nitrogen intercept ability could be different, so the non-point source pollution levels of nitrogen can also be different correspondingly, even under the same rainfall situation;4) In different hydrological years, runoff difference was small, but the sediment and non-point source nitrogen output difference were bigger. From2001to2008, runoff, sediment and non-point source nitrogen in wet year were1.4times,3.5times and1.8times as that of dry year, respectively. It can be seen that the sediment erosion was more sensitive to rainfall than runoff and nitrogen, at the same time showed indirectly that, high intensity rainfall was the main factor of sediment erosion;5) By identification of critical source areas of nitrogen in study area, nitrogen non-point source pollution critical areas was confirmed as Level5.(The highest Level);6) Balanced fertilization was most efficient to cut down the non-point source nitrogen pollution, vegetation buffer had obvious effect on runoff, sediment erosion and nitrogen loss.
引文
[1]G. T. Miller. Living in the Environment: An Introduction to Environmental Science[M]. Belmont:Wadsworth Publishing Company.1992:602-611.
    [2]USEPA. Non-point Source pollution from Agriculture[EB/OL].
    [3]A. M. Duda. Addressing non point source of water pollution must become an international priority[J]. Water Science and Technology.1993.26(3-5):1-11.
    [4]王振刚.密云水库上游石匣小流域非点源污染负荷模型研究与建立.首都师范大学硕士学位论文.2002.
    [5]B. Kronvang, P. Graesboll, S. E. Larsen, et al. Diffuse nutrient losses in Denmark[J]. Water Science and Technology.1996.33(4-5):81-88.
    [6]P. C. M. Boers. Nutrient emissions from agriculture in the Netherlands, causes and remedies[J]. Water Science and Technology.1996.33(4-5):183-189.
    [7]杨苏树,倪喜云.大理州洱海流域农业非点源污染现状[J].农业环境与发展,1999,16(2):43.
    [8]鲍全盛,曹利军,王华东.密云水库非点源污染负荷评价研究[J].水资源保护,1997,(01):8-11.
    [9]屠清瑛,顾丁锡,尹澄清等.巢湖——富营养化研究[M].合肥:中国科技大学出版社,1990:1-20.
    [10]熊丽君.基于GIS的非点源污染研究[D].河海大学硕士学位论文.2004.
    [11]Vladimir Novotny and H. Olem. Water Quality: Prevention, Identification, and Management of Diffuse Pollution [EB/OL].
    [12]Karen A. Poiani and B. L. Bedford. GIS-based nonpoint source pollution modeling: Considerations for wetlands[J]. Soil and Water Conservation.1995.50(6):613-619.
    [13]P. I. A. Kinnell. AGNPS-UM:applying the USLE-M within the agricultural non point source pollution model[J]. Environmental Modelling & Software.2000.15(3):331-341.
    [14]B. Luo, J. B. Li, G. H. Huang, et al. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement[J]. Science of the Total Environment.2006.361(1-3):38-56.
    [15]M. S. Babel, M. M. M. Najim and R. Loof. Assessment of agricultural NonPoint Source model for a watershed in tropical environment[J]. Journal of Environmental Engineering-Asce.2004.130(9):1032-1041.
    [16]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,(05):88-92+97.
    [17]张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,(06):52-56.
    [18]鲍全盛,毛显强,王华东.我国水环境非点源污染研究与展望[J].上海环境科学,1996,(05):11-16.
    [19]鲍全盛王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,(01):66-72.
    [20]张从.中国农村面源污染的环境影响及其控制对策[J].环境科学动态,2001,(4):4.
    [21]唐莲,白丹.农业活动非点源污染与水环境恶化[J].环境保护,2003,(3):3.
    [22]Vladimir NovotnyChesters. Handbook of Nonpoint Pollution:Sources and Management[M]. Van Nostrand Reinhold,1981.
    [23]朱松,方沛南,蓝雪春.降雨径流污染研究综述[J].中国农学通报,2009,(12):240-245.
    [24]都金康,谢顺平,许有鹏等.分布式降雨径流物理模型的建立和应用[J].水科学进展,2006,(05):637-644.
    [25]李怀恩,蔡明.非点源营养负荷—泥沙关系的建立及其应用[J].地理科学,2003,(04):460-463.
    [26]温灼如,苏逸深,刘小靖等.苏州水网城市暴雨径流污染的研究[J].环境科学,1986,(06):2-6+69.
    [27]张雪松,郝芳华,杨志峰等.基于swat模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,10(04):38-42.
    [28]郝芳华,程红光,杨胜天.非点源污染模型:理论方法与应用[M].北京:中国环境科学出版社,2006.
    [29]H. P. Schwan. Electrical Impedance of the Human Body[J]. Journal.1998. (Issue).
    [30]R. J. Kirkby. Dorsal but not ventral lesions of the caudate nucleus disrupt maze learning in the rat[J]. Physiology & amp; Behavior.1978.20(5):669-671.
    [31]P. A. McCarthy and J. L. Magrath. The traumatized vermiform appendix[J]. The American Journal of Surgery.1938.39(1):148-150.
    [32]F. A. Nash. Tuberculosis contact firms' surveys[J]. British Journal of Tuberculosis and Diseases of the Chest.1957.51(2):151-157.
    [33]U. S. C. Service. National Engineering Handbook: Section 4 - Hydrology[S].1956.
    [34]张秀英,孟飞丁宁.SCS模型在干旱半干旱区小流域径流估算中的应用[J].水土保持研究,2003,(04):172-174+249.
    [35]穆宏强.SCS模型在石桥铺流域的应用研究[J].水利学报,1992,(10):79-83+89.
    [36]刘贤赵,康绍忠,刘德林等.基于地理信息的SCS模型及其在黄土高原小流域降雨-径流关系中的应用[J].农业工程学报,2005,(05):93-97.
    [37]M. Bosznay. Generalization of SCS Curve Number Method[J]. Journal of Irrigation and Drainage Engineering.1989.115(1):139-144.
    [38]P. K. Singh, P. K. Bhunya, S. K. Mishra, et al. A sediment graph model based on SCS-CN method[J]. Journal of Hydrology.2008.349(1-2):244-255.
    [39]张美华,王晓燕,秦福来.SCS模型在密云石匣试验小区降雨径流量估算中的应用[J].首都师范大学学报(自然科学版),2004,(S1):155-158.
    [40]王白陆.SCS产流模型的改进[J].人民黄河,2005,(05):24-26.
    [41]徐秋宁,马孝义,安梦雄等.SCS模型在小型集水区降雨径流计算中的应用[J].西南农业大学学报,2002,(02):97-100+107.
    [42]E. D. and Ongley. Control of water pollution from agriculture[M]. Burlington: FAO irrigation and drainage 1996.
    [43]R. E. Horton. An Approach Toward a Physical Interpretation of Infiltration-Capacity1 [J]. Soil Sci. Soc.Am. J.1941.5(C):399-417.
    [44]U. EPA 1996 National water quality inventory to Congress[R]. Washington D.C.1996.
    [45]J. R. Philip. The Theory of Infiltration:1. the Infiltration Equation and Its Solution[J]. Soil Science.1957.83(5):345-358.
    [46]W. H. Green and G. A. Ampt. Studies of soil physics, Part I, The flow of air and water through soils[J]. The Journal of Agricultural Science.1911.4(1):1-24.
    [47]马希斌.对蓄满产流模型产流量计算方法的改进[J].东北水利水电,1994,(08):33-37.
    [48]陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,(01):48-52.
    [49]李怀恩.水文模型在非点源污染研究中的应用[J].陕西水利,1987,(03):18-23.
    [50]崔泰昌,陆建华.试论蓄满产流模型与超渗产流模型[J].山西水利科技,2000,(03):13-15.
    [51]何长高,董增川,陈卫宾.流域水文模型研究综述[J].江西水利科技,2008,(01):20-25.
    [52]N. H. Crawford and R. K. Linsley Digital simulation in hydrology' stanford watershed model Ⅳ[R]. Dept Civil Engineering, Stanford University. Stanford, California 1966.
    [53]M. B. Abbott, J. C. Bathurst, J. A. Cunge, et al. An introduction to the European Hydrological System — Systeme Hydrologique Europeen, "SHE",1:History and philosophy of a physically-based, distributed modelling system[J]. Journal of Hydrology.1986.87(1-2): 45-59.
    [54]W. Wischmeier and S. D. D Predicting rainfall-erosion losses form crop land and east of the Rocky Mountains[R]. USDA, ARS, Agriculture Handbook 282.1965.
    [55]W. Wischmeier and D. Smith Predicting rainfall erosion losses:A guide to conservation planning [R]. U.S. Department of Agriculture Washington, DC 1978.
    [56]L. Lane, K. Renard, G. Foster, et al. Development and application of modern soil erosion prediction technology-The USDA experience[J]. Soil Research.1992.30(6):893-912.
    [57]刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001:4-7.
    [58]J. C. I. Ascough, C. Baffaut, M. A. Nearing, et al. The WEPP watershed model. I. Hydrology and erosion [J]. Transactions of the ASAE.1997.40(4):921-933.
    [59]F. G. R USDA-Water Erosion Prediction Project, Hillslope Profile and Watershed Model Documentation[R]. Purdue University. West Lafayette 1995.
    [60]江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[J].水土保持研究,1996,(02):84-97.
    [61]李玉山,刘国彬,刘宝元等.中美小流域治理和农业的对比研究[J].水土保持通报,1993,(01):11-15.
    [62]杨子生.滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J].山地学报,1999,(S]):23-25.
    [63]阮伏水,朱鹤健.福建省花岗岩地区土壤侵蚀与治理[M].北京:中国农业出版社,1997.
    [64]L. R. Ahuja, A. N. Sharpley, M. Yamamoto, et al. The depth of rainfall-runoff-soil interaction as determined by 32P[J]. Water Resource Research.1981. (17):967-974.
    [65]王全九,王文焰,沈冰等.降雨-地表径流-土壤溶质相互作用深度[J].土壤侵蚀与水土保持学报,1998,(02):42-47.
    [66]王全九,邵明安.降雨-地表径流-土壤溶质相互作用深度[J].土壤侵蚀与水土保持学报,1998.
    [67]王琦,朱荫湄.土壤耕作与农业非点源污染[J].耕作与栽培,1996.
    [68]易秀.农事活动对水资源的非点源污染问题[J].西安工程学院学报,2001,(02):42-45.[69] J. D. Gaynor and W. I. Findlay. Soil and Phosphorus Loss from Conservation and Conventional Tillage in Corn Production[J]. J. Environ. Qual.1995.24(4):734-741.
    [70]邬伦,李佩武.降雨——产流过程与氮、磷流失特征研究[J].环境科学学报,1996,(01):111-116.
    [71]G. R. Benoit. Effect of agricultural management of wet sloping soil on nitrate and phosphorus in surface and subsurface water[J]. Water Resour. Res.1973.9(5):1296-1303.
    [72]A. N. Sharpley, S. C. Chapra, R. Wedepohl, et al. Managing agricultural phosphorus for protection of surface waters:issues and options[J]. Journal of Environmental Quality.1994. 23(3):437-451.
    [73]HYF Ng, T Mayer and J. Marsalek. Phosphorus Transport in Runoff from a Small Agricultural Watershed[J]. Water Science & Technology 1993.28(3-5):451-460
    [74]A. N. Sharpley and S. J. Smith. Prediction of soluble phosphorus transport in agricultural runoff[J]. Journal of Environmental Quality.1989.18:313-316.
    [75]郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002,(01):105-110.
    [76]R. A. Zampella. CHARACTERIZATION OF SURFACE WATER QUALITY ALONG A WATERSHED DISTURBANCE GRADIENT1[J]. JAWRA Journal of the American Water Resources Association.1994.30(4):605-611.
    [77]黄丽,丁树文,张光远等.三峡库区紫色土坡地的耕作利用方式与水土流失初探[J].华中农业大学学报,1998,(01):49-53.
    [78]单保庆,尹澄清,白颖等.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):5.
    [79]李佩武.N、P输出与土地利用类型相关性研究[J].农业环境与发展,1998,(3).
    [80]陈能汪,洪华生,张珞平等.九龙江流域降雨径流污染特征研究[J].厦门大学学报(自然科学版),2004,(04):537-541.
    [81]蒋光毅,史东梅,卢喜平等.紫色土坡地不同种植模式下径流及养分流失研究[J].水土保持学报,2004,(05):54-58+63.
    [82]L. Bergstrom and N. Brink. Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil[J]. Plant and Soil.1986.93(3):333-345.
    [83]范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,(01):16-21.
    [84]J. W. Bauder and R. P. Schneider. Nitrate-Nitrogen Leaching Following Urea Fertilization and Irrigation1[J]. Soil Sci. Soc. Am. J.1979.43(2):348-352.
    [85]C. P. Beckwith, J. Cooper, K. A. Smith, et al. Nitrate leaching loss following application of organic manures to sandy soils in arable cropping[J]. Soil Use and Management.1998.14(3): 123-130.
    [86]E. M. Hansen and J. Djurhuus. Nitrate leaching as influenced by soil tillage and catch crop[J]. Soil and Tillage Research.1997.41(3-4):203-219.
    [87]樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2000,(01):23-26.
    [88]刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,(05):216-218.
    [89]Wang X B, Bailey L D and G. C. A. A review of fertilizer N behaviour in soils, and effective N management under conservation tillage systems[J]. Progress in Soil Science.1995.23(2): 1-11.
    [90]Z. Dou, R. H. Fox and J. D. Toth. Seasonal Soil Nitrate Dynamics in Corn as Affected by Tillage and Nitrogen Source[J]. Soil Sci. Soc. Am. J.1995.59(3):858-864.
    [91]G. S. Francis, R. J. Haynes, G. P. Sparling, et al. Nitrogen mineralization, nitrate leaching and crop growth following cultivation of a temporary leguminous pasture in autumn and winter[J]. Nutrient Cycling in Agroecosystems.1992.33(1):59-70.
    [92]J. Djurhuus and P. Olsen. Nitrate leaching after cut grass/clover leys as affected by time of ploughing[J]. Soil Use and Management.1997.13(2):61-67.
    [93]G. Heckrath, P. C. Brookes, P. R. Poulton, et al. Phosphorus Leaching from Soils Containing Different Phosphorus Concentrations in the Broadbalk Experiment[J]. J. Environ. Qual.1995. 24(5):904-910.
    [94]Cox. J W and F. N. K. Pathways for Phosphorus loss off pastures in South Australia[J]. Journal.2001. (Issue).
    [95]T. M. Addiscott and D. Thomas. Tillage, mineralization and leaching:phosphate[J]. Soil and Tillage Research.2000.53(3-4):255-273.
    [96]D. B. Beasley, L. F. Huggins and E. J. Monke. ANSWERS:A Model for Watershed Planning [J]. Transactions of the ASAE.1980.23(4):938-944.
    [97]D. B. Beasley, L. F. Huggins and E. J. Monke. Modeling sediment yields from agricultural watersheds[J]. Journal of Soil and Water Conservation.1982.37(2):113-117.
    [98]Dillaha T A and B. D. B. Distributed parameter modeling of sediment movement and particle size distributions[J]. Transactions of the ASAE.1983.26(6):1766-1772.
    [99]D. E. Storm, T. A. Dillaha, S. Mostaghimi, et al. Modeling phosphorus transport in surface runoff[J]. Transactions of the ASAE 1988.31(1):117-127.
    [100]李家科.流域非点源污染负荷定量化研究[D].西安理工大学博士学位论文.2009.
    [101]D. L. Thomas and D. B. Beasley. A physically based forest hydrology model, Ⅱ evaluation under natural conditions[J]. Transactions of the ASAE.1986.29(4):973-981.
    [102]R. D. Connolly, D. M. Silburn and C. A. A. Ciesiolka. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data.3. Application to a spatially complex catchment[J]. Journal of Hydrology.1997.193(1-4): 183-203.
    [103]R. D. Connolly, D. M. Silburn, C. A. A. Ciesiolka, et al. Modelling hydrology of agricultural catchments using parameters derived from rainfall simulator data[J]. Soil and Tillage Research.1991.20(1):33-44.
    [104]A. P. J. De Roo, L. Hazelhoff and G. B. M. Heuvelink. Estimating the effects of spatial variability of infiltration on the output of a distributed runoff and soil erosion model using Monte Carlo methods[J]. Hydrological Processes.1992.6(2):127-143.
    [105]Neitsch S L, Arnold J G and K. J. R Soil and water assessment tool's theoretical documentation, version 2000[R]. TWRI report TR-191, Texas:Texas Water Resources Institute, College Station.2002a.
    [106]R. A. Young and O. C. A. An agricultural non-point source model. In Computer Models of Watershed Hydrology[M]. Water Resources publications.1995:1011-1020.
    [107]R. A. Young, C. A. Onstad, D. D. Bosch, et al. AGNPS:A nonpoint-source pollution model for evaluating agricultural watersheds [J]. Journal of Soil and Water Conservation.1989. 44(2):168-173.
    [108]孟春红,赵冰AGNPS模型在小流域农业非点源污染中的应用[J].长江科学院院报,2008,(04):24-27+32.
    [109]Jennifer B S, George V and D. B. Use of AnnAGNPS model for a watershed in the coastal plain of Georgia[C]. Proceedings of the 9th National Nonpoint Source Monitoring Workshop.2001.
    [110]B. Baginska, W. Milne-Home and P. S. Cornish. Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST[J]. Environmental Modelling & amp; Software. 2003.18(8-9):801-808.
    [111]T. Ming-Shu and Z. Xiao-yong. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS[J]. Journal of Environmental Sciences.2004. 16(5):865-867.
    [112]S. Shrestha, M. S. Babel, A. Das Gupta, et al. Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal[J]. Environmental Modelling & Software.2006.21(7):961-975.
    [113]V. Polyakov, A. Fares, D. Kubo, et al. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed[J]. Environmental Modelling & Software.2007. 22(11):1617-1627.
    [114]A. Sarangi, C. A. Cox and C. A. Madramootoo. Evaluation of the AnnAGNPS model for prediction of runoff and sediment yields in St Lucia watersheds[J]. Biosystems Engineering.2007.97(2):241-256.
    [115]Z. Kliment, J. Kadlec and J. Langhammer. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical erosion models[J]. Catena.2008.73(3):286-299.
    [116]王1飞儿,吕唤春,陈英旭等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报,2003,(06):281-284.
    [117]朱松,陈英旭.小流域N、P污染负荷的构成比重研究[J].环境污染与防治,2003,(04):226-227+252.
    [118]黄金良,洪华生,杜鹏飞等AnnAGNPS模型在九龙江典型小流域的适用性检验[J].环境科学学报,2005,(08):1135-1142.
    [119]黄金良,洪华生,张路平等.基于GIS和USLE的九龙江流域土壤侵蚀量预测研究[J].水土保持学报,2004,(05):75-79.
    [120]花利忠.基于AnnAGNPS模型的流域侵蚀产沙评价[D].中国科学院研究生院(成都山地灾害与环境研究所)博士学位论文.2007.
    [121]赵同谦,张凯,郑华等.外来植物对陆地生态系统氮循环的影响途径[J].生态科学,2011,(02):207-212.
    [122]范改娜,祝贵兵,王雨等.河流湿地氮循环修复过程中的新型功能微生物[J].环境科学学报,2010,(08):1558-1563.
    [123]贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,(01):406-415.
    [124]胡云才,ReinholdUrs从德国农业氮投入来认识中国氮污染的严重性及应采取的对策[J].磷肥与复肥,2004,(05):8-12.
    [125]马广文,香宝,银山等.长江流域农业区非点源氮的平衡变化及其区域性差异[J].环境科学研究,2009,(02):132-137.
    [126]董文涛,程先富.肖明子.巢湖流域非点源污染来源、影响及控制研究[J].农业环境与发展,2011,(05):74-77.
    [127]石健华.湖泊富营养化和农业非点源污染防治[C],太湖高级论坛,中国上海.2004.
    [128]李如忠,汪家权,钱家忠.巢湖流域非点源营养物控制对策研究[J].水土保持学报,2004,(01):119-121+129.
    [129]杨淑莉,朱安宁,张佳宝等.不同施氮量和施氮方式下田间氨挥发损失及其影响因素[J].干旱区研究,2010,27(3):415-421.
    [130]G. X. Xing and X. Y. Yan. Direct nitrous oxide emissions from agricultural fields in China estimated by the revised 1996 IPPC guidelines for national greenhouse gases[J]. Environmental Science & amp; Policy.1999.2(3):355-361.
    [131]M. R. Burkart and D. E. James. Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico[J]. Journal of Environmental Quality.1999.28(3):850-859.
    [132]V. Smil. Nitrogen in crop production:An account of global flows[J]. Global Biogeochemical Cycles.1999.13(2):647-662.
    [133]IPCC International panel on climate change guidelines for national greenhouse gas inventories, chapter 4. Agriculture:nitrous oxide from agricultural soil and manure management[R]. Paris:OECD 1996.
    [134]王体健,刘倩,赵恒等.江西红壤地区农田生态系统大气氮沉降通量的研究[J].土壤学报,2008,45(2):280-287.
    [135]X. Bao, M. Watanabe, Q. X. Wang, et al. Nitrogen budgets of agricultural fields of the Changjiang River basin from 1980 to 1990[J]. Science of the Total Environment.2006. 363(1-3):136-148.
    [136]W. Yan, S. Zhang, P. Sun, et al. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate:A temporal analysis for 1968–1997[J]. Global Biogeochem. Cycles.2003.17(4):1091.
    [137]黄银晓,林舜华,蒋高明等.海河流域植物土壤中氮碳的含量特征[J].生态学报,1994,(03):225-234.
    [138]M. Roelcke, S. X. Li, X. H. Tian, et al. In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils[J]. Nutrient Cycling in Agroecosystems.2002. (1).
    [139]黄国勤,王兴祥,钱海燕等.施用化肥对农业生态环境的负面影响及对策[J].生态环境,2004,13(4):656-660.
    [140]G. X. Xing and Z. I. Zhu. The environmental consequences of altered nitrogen cycling resulting from industrial activity, agricultural production, and population growth in China[J]. TheScientificWorldJournal.2001.1 Supp12:70-80.
    [141]G. X. Xing and Z. L. Zhu. An assessment of N loss from agricultural fields to the environment in China[J]. Nutrient Cycling in Agroecosystems.2000.57(1):67-73.
    [142]张玉树,丁洪,秦胜金.农业生态系统中氮素反硝化作用与n2o排放研究进展[J].中国农学通报,2010,26(6):253-259.
    [143]V. N. Bashkin, S. U. Park, M. S. Choi, et al. Nitrogen budgets for the Republic of Korea and the Yellow Sea region[J]. Biogeochemistry.2002.57(1):387-403.
    [144]Michel Meybeck and D. V. Chapman. Global Freshwater Quality:A First Assessment Global Environment Monitoring System[M]. United Nations Environment Programme/World Health Organization. Blackwell Pub.Cambridge.1990.
    [145]朱松.小流域非点源N、P污染排放估算及控制对策研究[D].浙江大学硕十学位论文.2004.
    [146]G. X. Xing and Z. L. Zhu. Regional nitrogen budgets for China and its major watersheds[J]. Biogeochemistry.2002.57-58(1):405-427.
    [147]朱兆良.土壤中氮素的转化和移动的研究近况[J].土壤学进展,1979,(02):1-16.
    [148]朱兆良.中国土壤氮素研究[J].土壤学报,2008,(05):778-783.
    [149]朱兆良,我国土壤氮素研究中的某些进展[C],中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会,中国沈阳.2004.
    [150]罗定贵,王学军,孙莉宁.水质模型研究进展与流域管理模型warmf评述[J].水科学进展,2005,(02):289-294.
    [151]赵倩,马建,问青春等AnnAGNPS模型在柴河上游农业非点源污染模拟应用[C],第三届全国农业环境科学学术研讨会,中国天津.2009.
    [152]洪华生,黄金良,张珞平等AnnAGNPS模型在九龙江流域农业非点源污染模拟应用[J].环境科学,2005,(04):63-69.
    [153]Y. Yuan, R. L. Bingner and R. A. Rebich. Application of AnnAGNPS for analysis of nitrogen loadings from a small agricultural watershed in the Mississippi delta[J]. Total Maximum Daily Load (Tmdl):Environmental Regulations, Proceedings.2002.268-279.
    [154]S. Wang, T. Stiles, T. Flynn, et al. A Modeling Approach to Water Quality Management of an Agriculturally Dominated Watershed, Kansas, USA[J]. Water Air and Soil Pollution. 2009.203(1-4):193-206.
    [155]李家科,李怀恩,李亚娇AnnAGNPS模型研究及应用进展[J].西北农林科技大学学报(自然科学版),2009,(02):225-234.
    [156]J. Garbrecht and L. W. Martz. Advances in Automated Landscape Analysis[C]. Proceedings of the First International Conference on Water Resources Engineering. San Antonio, Texas. 1995.
    [157]江西省土地利用管理局江西省土壤普查办公室.江西土壤[M].北京:中国农业科学出版社,1991.
    [158]马建,鲁彩艳,赵倩等AnnAGNPS模型土壤数据库的建立——以柴河上游小流域为例[J].农业环境科学学报,2010,29(z1):151-155.
    [159]U. S. D. o. Agriculture EPIC-erosion/productivity impact calculator: 1. Model documentation.[R].1990.
    [160]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [161]K. E. Saxton and W. J. Rawls. Soil water characteristic estimates by texture and organic matter for hydrologic solutions[J]. Soil Science Society of America Journal.2006.70(5): 1569-1578.
    [162]毛晓建.(青岛北宅)白沙河流域非点源污染模拟研究[J].2006,硕士.
    [163]邹桂红,崔建勇.基于AnnAGNPS模型的农业非点源污染模拟[J].农业工程学报,2007,23(12):11-17.
    [164]邹桂红,崔建勇,刘占良等.大沽河典型小流域非点源污染模拟[J].资源科学,2008,(02):1007-7588.
    [165]Renard K G, Foster G R and Weesies G A. Predicting Soil Erosion by Water: A Guide to Conservation PlanningWith the Revised Universal Soil Loss Equation (RUSLE)[M]. U.S. Department of Agriculture, Agriculture Handbook No.703.1996.
    [166]贾宁凤,李旭霖,陈焕伟等AnnAGNPS模型数据库的建立--以黄土丘陵沟壑区砖窑沟流域为例[J].农业环境科学学报,2006,25(2):436-441.
    [167]刘梅梅,马启敏.AnnAGNPS模型数据库的建立——以大沽河流域为例[J].三峡环境与生态,2009,2(3):20-23,42.
    [168]郭新波,王兆骞.红壤小流域土壤侵蚀规律与模型研究[J].2001,博士.
    [169]章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征[J].山地学报,2003,21(1):33-40.
    [170]鲍锦磊AnnAGNPS模型在巢湖马槽河流域的应用研究[J].2006,硕士
    [171]S. C. Service Urban Hydrology for small watershed[R]. USDA Technical Release No.55. 1986.
    [172]肖军仓,周文斌,罗定贵等.非点源污染模型——SWAT用户应用指南[M].北京:地 质出版社.2009.
    [173]J. E. Nash and J. V. Sutcliffe. River flow forecasting through conceptual models part I — A discussion of principles[J]. Journal of Hydrology.1970.10(3):282-290.
    [174]J. P. McNamara, D. L. Kane and L. D. Hinzman. Hydrograph separations in an arctic watershed using mixing model and graphical techniques[J]. Water Resour. Res.1997.33(7): 1707-1719.
    [175]A. B. Birtles. Identification and separation of major base flow components from a stream hydrograph [J]. Water Resour. Res.1978.14(5):791-803.
    [176]P. R. Furey and V. K. Gupta. A physically based filter for separating base flow from streamflow time series[J]. Water Resour. Res.2001.37(11):2709-2722.
    [177]L. R. Rabiner and B. Gold. Theory and application of digital signal processing[M]. Englewood Cliffs, N.J., Prentice-Hall, Inc.1975.
    [178]R. Nathan and T. McMahon. Evaluation of automated techniques for base flow and recession analyses[J]. Water Resources Research.1990.26(7):1465-1473.
    [179]V. Lyne and M. Hollick. Stochastic time variable rainfall runoff modeling[C]. Hydrology and Water Resources Symposium Berth. Australia.1979.
    [180]J. G. Arnold and P. M. Allen. Automated methods for estimating baseflow and ground water recharge from streamflow records[J]. Journal of the American Water Resources Association.1999.35(2):411-424.
    [181]G. Arnold and P. Allen Base Flow Program User's Manual[R].2000.
    [182]D. K. Borah and M. Bera. Watershed-scale hydrologic and nonpoint-source pollution models:Review of applications[J]. Transactions of the Asae.2004.47(3):789-803.
    [183]L. F. Leon, W. G. Booty, G. S. Bowen, et al. Validation of an agricultural non-point source model in a watershed in southern Ontario[J]. Agricultural Water Management.2004.65(1): 59-75.
    [184]邹桂红.基于AnnAGNPS模型的非点源污染研究[D].中国海洋大学博士学位论文.2007.
    [185]D. K. Borah, M. Bera and Asae. Watershed scale hydrologic and nonpoint source pollution models for long-term continuous and storm event simulations[M].2003.
    [186]张旭,郝庆菊,高扬等.都市农业区域暴雨径流磷素输出特征研究——以上海市新场镇果园村为例[J].水土保持研究,2010,(04):38-42.
    [187]降雨量标准[J].四川水利,1996,(05):39.
    [188]P. Naden. Models of Sediment Transport in Natural Streams [M]. New York:Modelling Geomorphological Systems.1988:217-258.
    [189]张玉珍.九龙江上游五川流域农业非点源污染研究[J].Journal.2003. (Issue).
    [190]Y. P. Yuan, R. L. Bingner and R. A. Rebich. Evaluation of AnnaGNPS on Mississippi Delta MSEA watersheds[J]. Transactions of the Asae.2001.44(5):1183-1190.
    [191]鲍锦磊.AnnAGNPS模型在巢湖马槽河流域的应用研究[D].合肥工业大学硕士学位论文.2006.
    [192]李俊.石头口门水库汇水流域农业非点源污染的模拟研究[D].吉林大学博士学位论文.2009.
    [193]Y. Yuan, M. A. Locke and R. L. Bingner. Annualized Agricultural Non-Point Source model application for Mississippi Delta Beasley Lake watershed conservation practices assessmen[J]. Journal of Soil and Water Conservation.2008.63(6):542-551.
    [194]L. M. Pease, P. Oduor and G. Padmanabhan. Estimating sediment, nitrogen, and phosphorous loads from the Pipestem Creek watershed, North Dakota, using AnnAGNPS[J]. Computers & Geosciences.2010.36(3):282-291.
    [195]S. Shrestha, M. S. Babel and A. Das Gupta. Evaluation of AnnAGNPS model for a watershed in the Siwalik Hills of Nepal[J]. Land and Water Management:Decision Tools and Practices, Vols 1 and 2.2004.675-681.
    [196]黄志霖,田耀武,肖文发等.非点源污染模型AnnAGNPS在三峡库区林农复合小流域模拟效果评定[J].环境科学,2009,(10):2872-2878.
    [197]周慧平,高超,朱晓东.关键源区识别:农业非点源污染控制方法[J].生态学报,2005,(12):3368-3374.
    [198]李振炜,于兴修,姚孝友等.农业非点源污染关键源区识别方法研究进展[J].生态学杂志,2011,(12):2907-2914.
    [199]P. Strauss, A. Leone, M. N. Ripa, et al. Using critical source areas for targeting cost-effective best management practices to mitigate phosphorus and sediment transfer at the watershed scale[J]. Soil Use and Management.2007.23(s1):144-153.
    [200]W. J. Gburek and A. N. Sharpley. Hydrologic Controls on Phosphorus Loss from Upland Agricultural Watersheds[J]. J. Environ. Qual.1998.27(2):267-277.
    [201]M. Frey, N. Konz, C. Stamm, et al. Identification of critical source areas for diffuse water pollution[J]. Agrarforschung Schweiz.2011.2(4):156-161.
    [202]C. E. Nobel and D. T. Allen. Using Geographic Information Systems (GIS) in industrial water reuse modelling[J]. Process Safety and Environmental Protection.2000.78(B4): 295-303.
    [203]X. Y. Wang and Q. H. Lin. Impact of critical source area on AnnAGNPS simulation[J]. Water Science and Technology.2011.64(9):1767-1773.
    [204]M. S. Srinivasan, P. Gerard-Marchant, T. L. Veith, et al. Watershed scale modeling of critical source areas of runoff generation and phosphorus transport[J]. Journal of the American Water Resources Association.2005.41(2):361-375.
    [205]H. B. Pionke, W. J. Gburek and A. N. Sharpley. Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin[J]. Ecological Engineering.2000.14(4):325-335.
    [206]R. P. Maas, M. D. Smolen and S. A. Dressing. Selecting critical areas for nonpoint-source pollution control[J]. Journal of Soil and Water Conservation.1985.40(1):68-71.
    [207]D. Fargas, J. A. M. Casasnovas and R. Poch. Identification of critical sediment source areas at regional level[J]. Physics and Chemistry of the Earth.1997.22(3-4):355-359.
    [208]谢中伟.松华坝流域农业非点源污染关键源区识别[D].云南师范大学硕士学位论文.2009.
    [209]蔡明,李怀恩,庄咏涛等.改进的输出系数法在流域非点源污染负荷估算中的应用[J].水利学报,2004,(07):40-45.
    [210]周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,(10):2696-2702.
    [211]贾宁凤.基于AnnAGNPS模型的黄土高原小流域土壤侵蚀和养分流失定量评价[D].中国农业大学博士学位论文.2005.
    [212]中华人民共和国水利部.土壤侵蚀分类分级标准SL190-2007[S].2008.
    [213]T. J. Logan. Agricultural best management practices for water pollution control:current issues[J]. Agriculture, Ecosystems & amp; Environment.1993.46(1-4):223-231.
    [214]仓恒瑾,许炼峰,李志安等.农业非点源污染控制中的最佳管理措施及其发展趋势[J].生态科学,2005,(02):173-177.
    [215]I. Chaubey, L. Chiang, M. W. Gitau, et al. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed[J]. Journal of Soil and Water Conservation.2010.65(6):424-437.
    [216]汪洪,李录久,王凤忠等.人工湿地技术在农业面源水体污染控制中的应用[C],第二届全国农业环境科学学术研讨会,中国云南昆明.2007.
    [217]冯孝杰.三峡库区农业面源污染环境经济分析[D].西南大学博士学位论文.2005.
    [218]刘建香,贾秋鸿,田树等.种植和施肥方式对云南坡耕地氮素流失的影响[J].云南农业大学学报,2009,(04):586-590+602.
    [219]许其功,席北斗,于会彬等.土地管理措施对营养物质排放的影响[J].环境科学,2009,(11):3243-3248.
    [220]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用[J].环境污染与防治,2006,(04):279—282.
    [221]E. P. Webster and D. R. Shaw. Impact of vegetative filter strips on herbicide loss in runoff from soybean (Glycine max)[J]. Weed Science.1996.44(3):662-671.
    [222]J. Uusi-Kamppa, B. Braskerud, H. Jansson, et al. Buffer Zones and Constructed Wetlands as Filters for Agricultural Phosphorus[J]. J. Environ. Qual.2000.29(1):151-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700