用户名: 密码: 验证码:
粉末活性炭循环流化床吸附脱除烟气中SO_2的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各种烟气脱硫技术中,活性炭吸附脱硫是一种可资源化的烟气脱硫技术,该工艺可以同时脱除烟气中的NOx、HCl、HF、二噁英、重金属等污染物,有着广阔的发展和应用前景。然而,目前的活性炭移动床吸附-加热再生法存在反应器体积庞大、占地面积大、设备投资高的问题。同时,移动床炭法脱硫工艺采用机械强度高的定型活性炭,工业应用的Φ5~9mm直径的柱状活性焦内扩散阻力大,内表面利用率低,同时在活性焦输送过程中因破碎、磨损造成机械损失,引起炭的损耗,并且移动床用活性焦的制作工艺复杂,存在成本高、运行费用高的缺点。以此为背景,本文提出了一种新型的吸附反应装置-循环流化床吸附反应器,流化床吸附塔具有传热、传质性能优良,气固混合均匀,压降低以及处理量大的优点,并且采用粉末活性炭,能够解决颗粒活性炭磨损的问题,同时可简化活性炭的制作工艺。本文从吸附平衡、吸附热力学和表观吸附动力学角度分析了烟气中S02在粉末活性炭上的吸附过程和机理;通过详细表征粉末活性炭的物理化学性质和对SO2吸附性能进行测试,分析了活性炭的孔隙结构和表面化学性质对SO2吸附性能的影响,为粉末活性炭的开发提供理论基础;建立了低温沉降炉吸附实验台,探讨了粉末活性炭对烟气中SO2的沿程吸附特性;建立了循环流化床吸附脱硫的小试实验台,研究了操作条件和运行参数对粉末活性炭脱硫性能的影响,为工业应用提供理论依据和基础支持。
     本文首先基于恒温固定床反应系统,考察了活性炭粒径、SO2体积分数、吸附温度对活性炭吸附脱除烟气中SO2的影响,从吸附平衡、吸附热力学和表观吸附动力学角度分析了烟气中SO2在粉末活性炭上的吸附特性。研究发现,活性炭吸附S02在初始阶段呈现较快的吸附速率,该阶段SO2吸附速率和表面吸附有关;随着吸附的进行,表面活性位逐渐被占据,SO2需要扩散到活性炭内部微孔中的活性位上发生吸附,活性炭的吸附速率急剧下降,粒内扩散起着主要作用;在接近吸附饱和阶段,SO2吸附量增加缓慢直至吸附平衡,该阶段与H2SO4的脱附有关,Bangham吸附动力学模型可以较好地预测SO2在活性炭上的动态吸附过程。与2mm粒径的颗粒活性炭相比,0.075mm粒径的粉末活性炭呈现较快的SO2吸附速率和较高的平衡吸附量;随着SO2体积分数的增加,SO2初始吸附速率和平衡吸附量逐渐增加,SO2在粉末活性炭上的吸附平衡符合Freundlich吸附等温线模型与Langmuir吸附等温线模型;吸附热力学研究表明,SO2在粉末活性炭上的吸附自由能变△G、吸附焓变AH、吸附熵变△S均为负值,该过程是一个自发、放热、熵降低的过程,升温不利于SO2的吸附。
     选择5种不同的粉末活性炭,由N2吸附等温线,通过DR方程、as-plot方法、HK方法、BJH方法、DFT方法、孔隙分形维数对活性炭的孔隙结构进行了表征;通过元素分析、Boehm滴定、热重分析及FT-IR表征了活性炭表面化学性质;在固定床反应系统上对粉末活性炭的脱硫性能进行了测试。研究发现:由于原材料和活化方法不同,5种粉末活性炭具有不同的孔隙结构和表面化学性质,粉末活性炭YAC、CAC1微孔孔径分布较窄,小孔径微孔所占比例较大,而活性炭WAC、 CAC2、CAC3微孔孔径分布相对较宽;粉末活性炭WAC、CAC1、CAC3具有一定量的中孔或大孔,而活性炭YAC、CAC2具有极少的中孔或大孔;活性炭WAC表面含有较多的O元素,主要以羧基、内酯基、酚羟基等酸性含氧官能团的形式存在,活性炭YAC、CAC1表面含有较多的碱性官能团;不同的粉末活性炭呈现不同的SO2吸附速率和饱和吸附量。粉末活性炭对SO2的吸附性能与其比表面积、孔隙容积等不直接相关,微孔孔径分布对活性炭的脱硫性能具有一定影响,活性炭表面官能团的种类和数量对其脱硫性能具有很大影响,碱性官能团的数量与其脱硫性能表现出较好的正相关性。
     基于固定床研究结果,搭建了低温沉降炉实验台,研究了粉末活性炭对烟气中SO2的沿程吸附特性,建立了表观沿程吸附动力学模型。结果表明:在初始阶段,SO2迅速被粉末活性炭吸附,随着沿程增加,粉末活性炭对SO2的吸附速率急剧降低,脱硫效率缓慢增加;碳硫摩尔比对SO2的吸附影响很大,随着碳硫摩尔比的增大,脱硫效率逐渐提高,但SO2的初始吸附速率逐渐降低,8O2吸附量逐渐减少;粉末活性炭对S02的吸附性能随温度的升高而下降;随着SO2体积分数的增加,活性炭的脱硫效率逐渐下降,但在粉末活性炭给料速率相同的情况下,SO2的初始吸附速率和吸附量逐渐增加;烟气中的O2、H2O有利于粉末活性炭对SO2的吸附;粉末活性炭的循环利用对于提高脱硫效率,降低活性炭用量,提高活性炭的利用率,起着非常重要的作用。在低温沉降炉上,模拟了粉末活性炭的循环倍率对脱硫效率的影响,随着粉末活性炭循环倍率的增加,脱硫效率逐渐增加,粉末活性炭的循环利用可实现对烟气中SO2的高效脱除;在低温沉降炉反应系统上,粉末活性炭对SO2的沿程动态吸附过程可以用Bangham吸附动力学模型描述。
     建立了循环流化床吸附脱硫的小试实验系统,对粉末活性炭在流化床内的脱硫性能进行了考察,研究了碳硫摩尔比、反应温度、水蒸气体积分数等操作条件和运行参数对脱硫效率的影响规律,对粉末活性炭的循环吸附特性及吸附动力学进行了分析。研究表明:碳硫摩尔比对粉末活性炭的脱硫效率影响很大,随着碳硫摩尔比的增加,脱硫效率逐渐增加,但活性炭对SO2的吸附量逐渐减少,不同粉末活性炭呈现出不同的脱硫效率及变化趋势,与其具有不同的孔隙结构及表面化学性质有关;水蒸气浓度的增加有利于活性炭脱硫效率的提高;在60℃以上的温度区间(60~75℃),脱硫效率随温度的升高而下降,在60℃以下的温度区间(40~60℃),脱硫效率随着温度的降低变化不大;在循环吸附过程中,粉末活性炭具有较高的初始吸附速率,随着吸附时间的增加,吸附速率迅速衰减;粉末活性炭在循环流化床内对SO2的吸附动力学可用Bangham吸附动力学模型描述。
Adsorption desulfurization by activated carbon is a resource utilization technology among a variety of flue gas desulfurization technologies. This technology can also remove other pollutants such as NOx, HF, HCl, dioxins, and heavy metals and so on. Therefore, there is a very promising future for application. However the moving-bed adsorption and heating regeneration technology has disadvantage of lager size of reactor and high investment. This technology uses formed activated coke of high mechanical strength as adsorbent. The activated coke of5-9mm diameter has drawbacks of severe internal diffusion, low utilization of inner surface, mechanical loss due to fragmentation and abrasion during the transportation process, complex production process, and high cost and operating expense. Based on this background, a new type of adsorption device, circulating fluidized bed adsorption reactor, was proposed. The circulating fluidized bed has the advantage of excellent heat and mass transfer, high performance of gas-solid mixing and low pressure drop. The circulating fluidized bed technology can use powder activated carbon to avoid abrasion of adsorbent and simply the production process of activated carbon. The adsorption equilibrium, adsorption thermodynamics and apparent adsorption kinetics of SO2onto powder activated carbon were investigated. The physicochemical property of activated carbon and its effect on SO2adsorption were analyzed in order to provide a theoretical basis for the preparation of activated carbon. The SO2adsorption performance along the way was studied in a low temperature drop tube furnace experimental system. The effects of operating parameters on the desulfurization performance of fluidized activated carbon were investigated in the lab circulating fluidized bed experimental system in order to provide a foundation support for industrialization.
     The effects of activated carbon particle size, SO2volume fraction and adsorption temperature on SO2adsorption were investigated based on a thermostat fixed-bed reactor. The adsorption equilibrium, adsorption thermodynamics and apparent adsorption kinetics of SO2onto powder activated carbon were analyzed. The results show that there is a rapid SO2adsorption rate on activated carbon in the initial stage, which is determined by the surface adsorption, after that the adsorption rate drops sharply due to the effect of intraparticle diffusion, and then the adsorption rate drops slowly and the amount of SO2adsorbed increases slowly until the adsorption equilibrium, which is determined by the desorption rate of H2SO4. The Bangham kinetic model can be used to predict the kinetics of SO2adsorption on powder activated carbon. The powder activated carbon of0.075mm diameter shows a larger SO2adsorption rate and the amount of SO2adsorbed at equilibrium compared with granular activated carbon of2mm diameter. The initial SO2adsorption rate and the equilibrium adsorption increase with increasing SO2inlet concentration. Langmuir and Freundlich adsorption isotherm model present better fitted results for SO2adsorption equilibrium on powder activated carbon. The adsorption thermodynamics results indicate that the adsorption enthalpy, the Gibbs free energy, and the entropy are negative, so the adsorption is a spontaneous, exothermic, and entropy decreasing process. The SO2adsorption on powder activated carbon is unfavorable at higher temperature.
     Five kinds of powder activated carbons were investigated to SO2removal in a fixed bed reactor. The pore texture characteristics of the adsorbents were characterized by analyzing N2adsorption isotherm through several approaches, namely DR, as-plot, HK, BJH, DFT and micropore fractal dimension. The surface chemical properties were characterized by elemental analysis, Boehm titration, thermogravimetric analysis and FT-IR. The results show that the powder activated carbons have different pore structure and surface chemical properties because of the different precursor and activation method. The activated carbon YAC and CAC1present narrow micropore size distribution and has a large amount of small micropores, while WAC, CAC2and CAC3have relatively wide micropore size distribution. The activated carbon WAC, CAC1and CAC3have a certain amount of mesopores and macropores, while YAC and CAC2have few of mesopores and macropores. The powder activated carbon WAC has more element of oxygen, mainly in the form of acidic oxygen functional groups such as carboxyl, lactone, phenol and so on, while YAC and CAC1have more basic functional groups. Five kinds of powder activated carbon present different SO2adsorption rate and equilibrium adsorption capacity due to different physicochemical properties. The desulphurization activity of powder activated carbon is independent of specific surface area and pore volume. Micropore size distribution has a certain influence on SO2removal. The type and quantity of surface functional groups have a great effect on the desulphurization performance. There is a good correlation between the amount of basic functional groups and SO2adsorption.
     Based on the results of fixed-bed studies, a low temperature drop tube furnace experimental system was built up. SO2adsorption over powder activated carbon along the way was investigated, and an apparent adsorption kinetics model was proposed. The results show that SO2is quickly adsorbed by powder activated carbon in the initial stage, and then the desulfurization efficiency increases slowly along the way. The carbon-sulfur molar ratio has a great effect on SO2adsorption, and the desulfurization efficiency gradually increase with carbon-sulfur ratio increasing due to the increase in the number of active sites. However, the initial adsorption rate and adsorption capacity of SO2gradually decrease with carbon-sulfur ratio increasing due to competitive adsorption between powder activated carbons. The desulfurization efficiency decreases with increasing adsorption temperature and SO2volume fraction. The initial adsorption rate and adsorption capacity increase with increasing SO2volume fraction at the same feed rate of powder activated carbon. O2and H2O from flue gas promote SO2adsorption by activated carbon. Circulating of powder activated carbon plays a very important role to enhance desulfurization efficiency, reduce the amount of adsorbents and improve the utilization of activated carbon. The desulfurization efficiency increases with increasing circulating ratio of activated carbon, and circulating of powder activated carbon can achieve efficient removal of SO2from flue gas. The Bangham kinetics model can be used to predict the kinetics of SO2adsorption on powder activated carbon in the low temperature drop tube furnace experimental system.
     A circulating fluidized bed adsorption system was built up in which SO2removal performance of powder activated carbon was investigated. The effects of operating parameters such as carbon-sulfur molar ratio, adsorption temperature and H2O volume fraction on SO2removal efficiency were investigated. The cyclic adsorption characteristics and adsorption kinetics of powder activated carbon were analyzed. The results show that the carbon-sulfur molar ratio has a great effect on SO2removal. The desulfurization gradually increases with increasing carbon-sulfur ratio, however the adsorption capacity of SO2gradually decreases. Different kinds of activated carbon present different desulfurization efficiency and change trends due to different pore texture and surface chemistry. SO2removal efficiency increases with H2O concentration increasing. The desulfurization rate decreases with temperature increasing in the range of above60℃, and changes little below60℃.In the cycling of powder activated carbon, activated carbon shows a higher initial adsorption rate, and then the adsorption rate decreases rapidly with adsorption time increasing The Bangham kinetics model can be used to predict the kinetics of SO2adsorption on powder activated carbon in the circulating fluidized bed adsorption system.
引文
[1]郝吉明,王书肖.燃煤SO2控制技术手册[M].北京:化学工业出版社,2001.
    [2]国家环境保护部,2011年中国环境状况公报.
    [3]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社,2001.
    [4]董毅.活性炭法脱除烟气中二氧化硫的试验研究[D].哈尔滨工业大学硕士学位论文,2004.
    [5]岑泽文PAN-ACF脱硫脱硝的试验研究[D].武汉大学硕士学位论文,2005.
    [6]毛键雄,毛键全,赵树民.煤的清洁燃烧[M].北京:科学技术出版社,1998.
    [7]郭予超.我国火电厂烟气脱硫现状及展望[J].华东电力,2001,29(9):1-7.
    [8]赵旭东,高继慧,吴少华,等.干法、半干法(钙基)烟气脱硫技术研究进展及趋势[J].化学工程,2003,31(4):64-67.
    [9]赵增泰.世界硫磺供需情况展望和价格变化趋势预测[J].硫酸工业,2000,(2):1-7.
    [10]赵增泰.全球硫磺供需形势[J].硫酸工业,2008,(1):1-5.
    [11]李文龙.2011年中国硫磺市场的统计与分析[J].硫酸工业,2012,(1):1-4.
    [12]Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke:1. Activity of activated coke [J]. Fuel,1997, 76(6):549-553.
    [13]Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke:2. Process application and performace of activated coke [J]. Fuel,1997,76(6):555-560.
    [14]高继贤,王铁锋,王金福.炭法吸附烟气净化硫回收工程开发进展及前景[J].现代化工,2007,27(2):22-26.
    [15]布学朋,徐振刚,李文华,等.中国活性焦烟气净化研究分析[J].洁净煤技术,2010,16(2):67-73.
    [16]李兵,张立强,马春元,等.活性炭孔隙结构和表面化学性质对吸附氧化NO的影响[J].煤炭学报,2011,36(11):1906-1910.
    [17]李兵,张立强,马春元,等.粉末活性炭低温吸附氧化NO动力学研究[J].煤炭学报,2011,36(12):2092-2096.
    [18]李兰廷.活性焦脱硫脱硝的机理研究—烟气组成的影响[J].煤炭学报,2010,35(S1):185-189.
    [19]唐强.802和NOx混合气体竞争吸附实验研究[D].西安交通大学博士学位论文,2003.
    [20]刘义.活性炭法烟气脱硫机理和应用研究[D].西安交通大学博士学位论文,2003.
    [21]Tseng HH, Wey MY. Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts. Chemosphere,2006,62(5):1337-1340.
    [22]张守玉.煤制活性焦脱除烟气中二氧化硫的研究[D].中国科学院山西煤炭化学研究所博士学位论文,2001.
    [23]吴涛.活性焦联合脱除烟气中SO2和NO机理研究[D].煤炭科学研究总院硕士学位论文,2010.
    [24]Izquierdo MT, Rubio B, Mayoral C, et al. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas [J]. Fuel,2003,82(2): 147-151.
    [25]Solano AL, Gullon IM, Martinez de Lecea C, et al. Activated carbons from bituminou coal: effect of minera matter content [J]. Fuel,2000,79(6):631-637.
    [26]Rubio B, Izquierdo MT. Low cost adsorbents for low temperature cleaning of flue gases [J]. Fuel,1998,77(6):631-637.
    [27]Rubio B, Izquierdo MT, Mastral AM. Influence of low-rank coal char properties on their SO2 removal capacity from flue gases.2. Activated chars [J]. Carbon, 1998,36(3):263-268.
    [28]李开喜,吕春祥,凌立成.活性炭纤维的脱硫性能[J].燃料化学学报,2002,30(1):89-96.
    [29]Liu QY, Li CH, Li YX. SO2 removal from flue gas by activated semi-cokes 1. The preparation of catalysts and determination ofoperating [J]. Carbon,2003, 41(12):2217-2223.
    [30]Liu QY, Shang GJ, Li JG, et al. SO2 removal from flue gas by activated semi-cokes 2. Effect of physical structures and chemical properties on SO2 removal activity [J]. Carbon,2003,41(12):2225-2230.
    [31]Olson DG, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process [J]. Fuel Processing Technology,2000,65-66:393-405.
    [32]Davini P. Flue gas desulphurization by activated carbon fibers obtained from polyacrylonitrile by-product [J]. Carbon,2003,41(2):277-284.
    [33]上官炬.改性半焦烟气脱硫剂的物理结构和表面化学特性变化机理[D].太原理工大学博士学位论文,2005.
    [34]Davini P. The effect of certain metallic derivatives on the adsorption of sulphur dioxide on active carbon [J]. Carbon,2001,39(3):419-214.
    [35]李兰廷.活性焦干法联合脱硫脱硝的正交实验[J].煤炭学报,2009,34(10):1400-1404.
    [36]Fortier H, Zelenietz C, Dahn TR, et al. SO2 adsorption capacity of K2CO3-impregnated activated carbon as a function of K2CO3 content loaded by soaking and incipient wetness [J]. Applied Surface Science,2007, 253(6):3201-3207.
    [37]Wang Jianying, Zhao Fengyun, Hu Yongqi, et al. Modification of activated carbon fiber by loading metals and their performance on SO2 removal [J]. Chinese Journal of Chemical Engineering,2006,14(4):478-485.
    [38]Wey MY, Fu CH, Tseng HH, et al. Catalytic oxidization of SO2 from incineration flue gas over bimetallic Cu-Ce catalysts supported on pre-oxidized activated carbon [J]. Fuel,2003,82(18):2285-2290.
    [39]沈曾民,张文辉,张学军.活性炭材料的制备与应用[M].北京:化学工业出版社,2006.
    [40]蒋剑春.活性炭应用理论与技术[M].北京:化学工业出版社,2010.
    [41]章燕豪.吸附作用[M].北京:人民出版社,1989.
    [42]近藤精一,石川达雄,安部郁夫.李国希,译.吸附科学[M].北京:化学工业出版社,2005.
    [43]格雷格,辛.高敬琮,译.吸附比表面与孔隙率[M].北京:化学工业出版社,1989.
    [44]孙飞,高继慧,朱玉雯,等.典型炭材料微观结构及SO2吸附机理研究[J].工程热物理学报,2012,33(6):1085-1089.
    [45]Lua AC, Guo J. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption [J]. Journal of Colloid and Interface Science,2002,251(2):242-247.
    [46]Guo J, Lua AC. Adsorption of sulphur dioxide onto activated carbon prepared from oil-palm shells with and without pre-impregnation [J]. Separation and Purification Technology 2003,30(3):265-273.
    [47]Lua AC, Guo J. Adsorption of sulfur dioxide on activated carbon from oil-palm waste [J]. Journal of Environmental Engineering 2001,127(1):895-901.
    [48]Marin FC, Hidalgo EU, Utilla JR., et al. Adsorption of SO2 in flowing air onto activatedcarbons from olive stones [J]. Fuel,1992,71(5):575-578.
    [49]陶贺,金保升,朴桂林,等.活性焦烟气脱硫脱硝的静态实验和工艺参数选择[J].东南大学学报(自然科学版),2009,39(3):635-640.
    [50]Izquierdo MT, Rubio B. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal [J]. Journal of Hazardous Materials 2008, 155(2):199-205.
    [51]Daley MA, Mangun CL, DeBarr JA, et al. Adsorption of SO2 onto oxidation and heat-treated activated carbon fibers (ACFs) [J]. Carbon 1997,35(3):411-417.
    [52]张香兰,刘洋,张燕,等.催化法制备活性半焦及其脱硫性能的研究[J].中国矿业大学学报,2008,37(3):320-323.
    [53]DeBarr JA, Lizzio A. Adsorption of SO2 on Bituminous coal char and activated carbon fiber [J]. Energy and Fuels,1997,11(2):267-271.
    [54]Starck J, Burg P, Muller S, et al. The influence of demineralisation an ammoxidation on the adsorption properties of an activated carbon prepared from a Polish lignite [J]. Carbon,2006,44(12):2549-2557
    [55]Pinero ER, Amoros DC, Martinez de Lecea, et al. Factors controling the SO2 removal by porous carbons relevance of the SO2 oxidation step [J]. Carbon,2000, 38(3):335-344.
    [56]Lisovskii A, Semiat R, Aharoni C. Adsorption of sulfur dioxide by active carbon treated by nitric acid:Ⅰ.effect of the treatment on adsorption of SO2 and extractabilty of the acid formed [J]. Carbon,1997,35(10):1639-1643.
    [57]Lisovskii A, Semiat R, Aharoni C. Adsorption of sulfur dioxide by active carbon treated by nitric acid:Ⅱ.effect of preheating on the adsorption properties [J]. Carbon 1997,35(10):1645-1648.
    [58]李开喜,凌立成,刘郎,等.热处理改性的活性炭纤维的脱硫活性[J].催化学报,2000,21(3):264-268.
    [59]Li KX, Ling LC, Lu CX, et al. Influence of CO-evolving groups on the activity of activated carbon fiber for SO2 removal [J]. Fuel Processing Technology,2001, 70(3):151-158.
    [60]Ling LC, Li KX, Liu L, et al. Removal of SO2 over ethylene tar pitch and cellulose based activated carbon fibers [J]. Carbon,1999,37(3):499-504.
    [61]Mochida I, Miyamoto S, Kuroda K, et al. Adsorption and adsorbed species of SO2 during its oxidative removal over pitch-based activated carbon fibers [J]. Energy and Fuels,1999,13(2):369-373.
    [62]Goutam C, Douglas GM, Narendra NB, et al. Adsorptive removal of sulfur dioxide by Saskatchewan lignite and its derivatives [J]. Fuel,2006, 85(12):1803-1810.
    [63]Kisamori S, Mochida I. Roles of surface oxygen groups on poly-based active carbon fibers in SO2 adsorption [J]. Langmuir,1994,10(4):1241-1245.
    [64]Davini P. Desulphurization properties of activated carbons obtained from petroleum pitch pyrolysis [J]. Carbon,1999,37(9):1363-1371.
    [65]Lizzio A, DeBarr JA. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char [J]. Fuel,1996,75(13):1515-1522.
    [66]Kisamori S, Kuroda K, Mochida I. Oxidative removal of SO2 and recovery of H2SO4 over poly-based activated carbon fiber [J]. Energy and Fuels 1994, 8(6):1337-1340.
    [67]Davini P. Influence of surface properties and iron addition on the SO2 adsorption capacity of activated carbons [J]. Carbon,2002,40(5):729-734.
    [68]Davini P. Adsorption and desorption of SO2 on active carbon:the effect of surface basic groups [J]. Carbon,1990,28(4):565-571.
    [69]张永奇,房倚天,黄戒介,等.活性焦孔结构及表面性质对脱除烟气中S02的影响[J].燃烧科学于技术,2004,10(2):160-164.
    [70]张守玉,朱廷钰,王洋,等.煤种及活化条件对活性焦脱硫性能的影响[J].过程工程学报,2002,2(6):491-496.
    [71]张守玉,王洋,吕俊复,等.煤种及炭化条件对活性焦脱硫性能的影响[J].燃烧科学与技术,2003,9(5):430-433。
    [72]Castilla CM, Marin FC. Activated carbons as adsorbents of SO2 in flowing air. Effect of their pore texture and surface basicity [J]. Langmuir 1993, 9(5):1378-1383.
    [73]Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers [J]. Carbon,2000,38(2):227-239.
    [74]赵修松,蔡光宇,王作周,等.消除烟道气中二氧化硫的活性炭催化剂:SO2在催化剂上动态吸附研究[J].环境科学,1992,13(5):67-71.
    [75]蔡光宇,王作周,赵修松等.消除及回收烟气中SO2的糠醛渣活性炭研究[J].环境科学,1993,14(2):2-8.
    [76]Xu LS, Guo J, Zeng HC. Removal of SO2 fron O2-containg flue gas by activated carbon fiber (ACF) impregnated with NH3 [J]. Chemosphere,2006, 62(5):823-826.
    [77]Mangun CL, Debarr JA, Economy J. Adsorption of sulfur dioxide on ammonia-treated activated fibers [J]. Carbon,2001,39(11):1689-1696.
    [78]Bagreev A, Bashkova S, Bandosz TJ. Adsorption of SO2 on activated carbons the effect of nitrogen functionality and pore sizes [J]. Langmuir,2002, 18(4):1257-1264.
    [79]Li KX, Ling LC, Lu CX, et al. Catalytic removal of SO2 over ammonia-activated carbon fibers [J]. Carbon,2001,39(12):1803-1808.
    [80]Muniz J, Herrero JE, Fuertes AB. Treatment to enhance the SO2 capture by activated carbon fibers [J]. Applied Catalysis B:Environmental,1998, 18:171-179.
    [81]Pinero RE, Amoros DC, Solano AL. The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres [J]. Carbon,2003,41(10):1925-1932.
    [82]Lee YW, Park JW, Choi DK. Adsorption characteristics of SO2 on activated carbon prepared from coconut shell with potassium hydroxide activation [J]. Environmental science & technology,2002,36(5):1086-1092.
    [83]Liu Zhen-shu. Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers [J]. Waste Management,2008,28(11):2329-2335.
    [84]张守玉,房倚天,黄戒介,等.活性焦吸附氧化法脱除烟道气中二氧化硫[J].燃料化学学报,1999,27(6):522-528.
    [85]刘义.固定床活性炭脱硫动态传质过程分析[J].扬州大学学报(自然科学版),2007,10(3):65-68.
    [86]Gaur V, Asthana R, Verma N. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O [J]. Carbon,2006,44(1):46-60.
    [87]Lizzio A, Debarr JA. Mechanism of SO2 Removal by Carbon [J]. Energy and Fuels,1997,11(2):284-291.
    [88]Mochida I, Kuroda K, Kawano S, et al. Kinetic study of the continuous removal of SOx on polyacrylonitrile-based activated carbon fibres 1. Catalytic activity of PAN-ACF heat-treated at 800℃ [J]. Fuel,1997,76(6):533-536.
    [89]Mochida I, Kuroda K, Kawano S, et al. Kinetic study of the continuous removal of SOx using polyacrylonitrile-based activated carbon fibres 2. Kinetic model [J]. Fuel,1997,76(6):537-541.
    [90]Pinero ER, Amoros DC, Solano AL. Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibers [J]. Carbon,2001,39(2):231-242.
    [91]Zawadzki J. Infrared studies of SO2 on carbons-I. Interaction of SO2 with carbon films [J]. Carbon,1987,25(3):431-436.
    [92]Zawadzki J. Infraredstudies of SO2 on carbons Ⅱ. the SO2 species adsorbed on carbonfilms [J]. Carbon,1987,25(4):495-502.
    [93]Zawadzki J, Wisniewski M. An infrared study of the behavior of SO2 and NOx over carbon and carbon-supported catalysts [J]. Catalysis Today,2007, 119(1-4):213-218.
    [94]Contescu A, Vass M, Contescu C, et al. Acid buffering capacity of basic carbons revealed by their continuous pK distribution [J]. Carbon,1998,36(3):247-258.
    [95]Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon,1994,32(5):759-769.
    [96]程振民,蒋正兴,袁渭康.活性炭脱硫研究(Ⅰ)SO2-N2-O2体系中SO2的氧化反应动力学[J].环境科学学报,1997,17(3):268-372.
    [97]程振民,蒋正兴,袁渭康.活性炭脱硫研究(Ⅱ)水蒸汽存在下S02的氧化反应机理[J].环境科学学报,1997,17(3):273-377.
    [98]程振民,蒋正兴,袁渭康.活性炭表面SO2的催化氧化三相反应动力学[J].华东理工大学学报,1997,23(1):7-13.
    [99]Kopac T, Kocabas S. Adsorption equilibrium and breakthrough analysis for sulfur dioxide adsorption on silica gel [J]. Chemical Engineering and Processing, 2002,41(3):223-230.
    [100]Karatepe N, Orbak, I, Yavuz R, et al. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties [J]. Fuel,2008, 87(15-16):3207-3215.
    [101]Mello M. Adsorption of sulphur dioxide from multicomponent mixtures on hydrophobic zeolites [D]. University of new Brunswick, Canada,2000.
    [102]余兰兰.污泥吸附剂的制备及其应用研究[D].南京理工大学博士学位论文,2006.
    [103]高继贤.移动床炭法变温吸附烟气净化与硫回收过程研究[D].清华大学博士学位论文,2010.
    [104]张伟.活性半焦烟气脱硫动力学与再生工艺的研究与设计[D].中国海洋大学硕士学位论文,2007.
    [105]Bangham DH, Sever W. An experimental investigation of the dynamicle equation of the process of gas-sorption [J]. Philisophical Magazine and Journal of Science, 1925,49(6):935-944.
    [106]张永奇.煤制烟气脱硫活性焦的研究[D].中国科学院山西煤炭化学研究所博士学位论文,2004.
    [107]翟尚鹏,刘静,杨三可,等.活性焦烟气净化技术及其在我国的应用前景.现代化工,2006,26(3):204-208.
    [108]立本英机,安部郁夫.高尚愚,译.活性炭的应用技术—其维持管理及存在问题[M].南京:东南大学出版社,2002.
    [109]邵海燕.活性炭用于循环流化床烟气脱硫脱硝的试验研究[D].山东大学硕士学位论文,2008.
    [110]杨毅,岑祖望.可资源化活性焦烟气脱硫技术简介[J].硫酸工业,2007,1:16-18.
    [111]朱惠峰.活性焦的制备及其烟气脱硫的实验研究[D].南京理工大学博士学位论文,2011.
    [112]石清爱.改性活性炭的烟气脱硫脱硝的性能研究[D].大连理工大学硕士学位论文,2011.
    [113]杨辉华.活性焦脱硫技术在江铜新30万t冶炼工程的应用[J].江西冶金,2007,27(5):16-18.
    [114]李健,高继贤,张青,等.贵溪铜冶炼环集烟气的活性焦脱硫工程应用[J].有色冶金设计与研究,2011,32(2):19-21.
    [115]涂瑞,李强,葛帅华.太钢烧结烟气脱硫富集SO2烟气制酸装置的设计与运行[J].硫酸工业,2012,2:26-30.
    [116]杨波.活性炭在太钢450烧结烟气脱硫脱硝工程中的应用及展望[J].科学之友,2011,23:10-11.
    [117]崔琳.烟气循环流化床半干法脱硫复合增湿特性及相关问题的研究[D].山东大学博士学位论文,2009.
    [118]Kebbedy LJ, Vijaya JJ, Sekaran G, et al. Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon [J]. Journal of Hazardous Materials,2007,149(1):134-143.
    [119]Senthilkumaar S, Varadarajan PR, Porkodi K, et al. Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies [J]. Journal of Colloid and interface science,2005,284(1):78-82.
    [120]Frederic C, Christopher DD, Hardy A, et al. Thermal behaviour of arsenic trioxide adsorbed on activated carbon [J]. Journal of Hazardous Materials,2009, 166(2-3):1238-1243.
    [121]Lu CL, Xu SP, Gan YX, et al. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH [J]. Carbon,2005,43(11):2295-2301.
    [122]Gokmen V, Serpen A. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin [J]. Journal of Food Engineering,2002,53(3):221-227.
    [123]姚超,秦泽勇,吴凤芹,等.直接耐酸性枣红在脱硅稻壳活性炭上的吸附热力学与动力学特性[J].化工学报,2011,62(4):977-985.
    [124]Dogan, M, Alkan M. Adsorption kinetics of methyl violet onto perlite [J]. Chemosphere,2003,50(4):517-528.
    [125]Namasivayam C, Sangeetha D. Application of coconut coir pith for the removal of sulfate and other anions from water [J]. Desalination,2008,219(1-3):1-13.
    [126]Chang CY, Tsai WT, Ing CH, et al. Adsorption of polyethylene glycol (PEG) from aqueous solution [J]. Journal of Colloid and Interface Science,2003, 260(2):273-279.
    [127]Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon [J]. Bioresource Technology,2007,98(1):14-21.
    [128]Rudzinski W, Plazinski W. Kinetics of dyes adsorption at the solid-solution interfaces:a theoretical description based on the two-step kinetic model [J]. Environment Science and Technology,2008,42(7):2470-2475.
    [129]尹艳山,张军,盛昌栋.NO在活性炭表面的吸附平衡和动力学研究[J].中国电机工程学报,2010,30(35):49-54.
    [130]Marczewski AW. Kinetics and equilibrium of adsorption of organic solutes [J]. Applied Surface Science,2007,253(13):5818-5826.
    [131]Tseng RL, Wu FC, Juang RS. Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons [J]. Carbon,2003,41(3):487-495.
    [132]Tamon H, Okazaki M. Influence of acidic surface oxides of activated carbon on gas adsorption characteristics [J]. Carbon,1996,34(6):741-746.
    [133]Bagreev A, Adib F, Bandosz TJ. pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams [J]. Carbon,2001, 39(12):1897-1905.
    [134]Park SJ, Jung WY. KOH activation and characterization of glass fibers-supported phenolic resin [J]. Journal of Colloid and Interface Science,2003, 265(2):245-250.
    [135]Ohba T, Suzuki T, Kaneko K. Relationship between DR-plot and micropore width distribution from GCMC simulation [J]. Carbon,2000,38(13):1879-1902.
    [136]Nguyen, C, Do DD. The Dubinin-Radushkevich equation and the underlying microscopic adsorption description [J]. Carbon,2001,39(9):1327-1336.
    [137]Gil A, Grange P. Application of the Dubinin-Radushkevich and Dubinin-Astakhov equations in the characterization of microporous solids [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996, 113(1-2):39-50.
    [138]刘振宇,郑经堂,王茂章,等.PAN基活性炭纤维的表面及其孔隙结构解吸[J].化学物理学报,2000,13(4):473-480.
    [139]Mangun CL, Daley MA, Braatz RD, et al. Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers [J]. Carbon,1998, 36(1-2):123-131.
    [140]Stoeckli F, Guillot A, Slasli AM, et al. Microporosity in carbon blacks [J]. Carbon,2002,40(2):211-215.
    [141]陆安慧,郑经堂,王茂章.高比表面积PAN-ACF的吸附与孔结构解吸[J].高分子材料科学与工程,2001,17(5):62-66.
    [142]Kaneko K, Ishii C, Kanoh H, et al. Characterization of porous carbons with high resolution as analysis and low temperature magnetic susceptibility [J]. Advances in Colloid and Interface Science,1998,76-77(1):295-320.
    [143]Kruk M, Jaroniec M, Choma J. Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons [J]. Carbon,1998,36(10):1447-1458.
    [144]Setoyama N, Suzuki T, Kaneko K. Simulation study on the relationship between a high resolution as-plot and the pore size distribution for activated carbon [J]. Carbon,1998,36(10):1459-1467.
    [145]Horvath G, Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon [J]. Journal of Chemical Engineering of Japan,1983,16(6):470-475.
    [146]Kowalczyk P, Terzyk AP, Gauden PA, et al. Numerical analysis of Horvath-Kawazoe equation [J]. Computers and Chemistry,2002,26(2):125-130.
    [147]Kowalczyk P, Gunko VM, Terzyk AP, et al. The comparative characterization of structural heterogeneity of mesoporous activated carbon fibers (ACFs) [J]. Applied Surface Science,2003,206(1-4):67-77.
    [148]Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms [J]. The Volume and Area Distributions in Pourous Substances,1951,73(1):373-280.
    [149]Gauden PA, Terzyk AP, Rychlicki G. The new correlation between microporosity of strictly microporous activated carbons and fractal dimension on the basis of the Polanyi-Dubinin theory of adsorption [J]. Carbon,2001,39(2):267-278.
    [150]Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials [J]. Langmuir,1989,5(6):1431-1433.
    [151]Wojsz R, Terzyk AP. Fractal dimension of microporous carbon on the basis of first solution of a laplace transform using an incomplete gamma function [J]. Computers Chemistry,1996,20(4):427-430.
    [152]Terzyk AP, Rychlicki G, Gauden PA, et al. Fractal dimension of microporous carbon on the basis of the Polanyi-Dubinin theory of adsorption:Part 3 Adsorption and adsorption thermodynamics in the micropores of fractal carbons [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998, 136(3):245-261.
    [153]Terzyk AP, Gauden PA, Rychlicki G, et al. Fractal dimension of microporous carbon on the basis of Polanyi-Dubinin theory of adsorption:Part Ⅳ. The comparative analysis of two alternative solutions of the overall adsorption isotherm equation for microporous fractal solids [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,152(3):293-313.
    [154]Gauden PA, Furmaniak S, Terzyk AP, et al. Impact of an adsorbed phase nonideality in the calculation of the filling pressure of carbon slit-like micropores [J]. Carbon,2004,24(3):573-583.
    [155]Gauden PA, Terzyk AP, Rychlicki G, et al.Estimating the pore size distribution of activated carbons from adsorption data of different adsorbates by various methods [J]. Journal of Colloid and Interface Science,2004,273(1):39-63.
    [156]Leon CA, Solar JM, Calemma V, et al. Evidence for the protonation of basal plane sites on carbon [J]. Carbon,30(5):797-811.
    [157]Figueiredo L, Pereira R, Freitas A. Modification of the surface chemistry of activated carbons [J]. Carbon,1999,37(9):1379-1389.
    [158]Puente G, Pis JJ, Menendez JA, et al. Thermalstability of oxygenatedfunctions in activatedcarbons [J]. Journal of Analytical and Applied Pyrolysis,1997, 43(2):125-138.
    [159]Zhou JH, Sui ZJ, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR [J]. Carbon,2007,45(4):785-796.
    [160]Dandekar A, Baker RTK, Vannice MA. Characterization of activatedcarbon, graphitizedcarbonfibers and synthetic diamond powder using TPD and DRIFTS [J]. Carbon,1998,36(12):1821-1831.
    [161]Ishizaki C, Marti I. Surface oxide strutures on a commercial activated carbon [J]. Carbon,1981,19(6):409-412.
    [162]Fanning PE, Vannice MA. A drifts study of the formation of surface groups on carbon by oxidation [J]. Carbon,1993,31(5):721-730.
    [163]Ros TG, Van Dillen AJ, Geus JW, et al. Surface structure of untreated parallel and fishbone carbon nanofibres an infrared study [J]. Chemphyschem,2002, 3(2):209-214.
    [164]Toebes ML, van Heeswijk JMP, Bitter JH, et al. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbonnanofibers [J]. Carbon,2004,42(2):307-315.
    [165]Castilla CM, Ramon MVL, Marin FC. Changes in surface chemistry of activated carbons by wet oxidation [J]. Carbon,2000,38(14):1995-2001.
    [166]Moran MAM, Menendez JA, Fuente E, et al. Contribution of the basal planes to carbon basicity: An Ab initio study of the H3O+ -π interaction in cluster models [J]. The Journal of Physical Chemistry B,1998,102(29):5595-5601.
    [167]Menendez JA, Phillios J, Xia B, et al. On the modification and characterization of chemical surface properties of activatedcarbon:In the search of carbons with stable basic properties [J]. Langmuir,1996,12(18):4404-4410.
    [168]Ramon MVL, Stoeckli F, Casrilla CM, et al. On the characterization of acidic and basic surface sites on carbons by various techniques [J]. Carbon,1999, 37(8):1215-1221.
    [169]Barton SS, Evans MJB, Halliop E, et al. Acidic and basic sites on the surface of porous carbon [J]. Carbon,1997,35(9):1361-1366.
    [170]Contescu A, Contescu C, Putyera K, et al. Surface acidity of carbons characterized by their continuous pK distribution and Boehm titration [J]. Carbon, 1997,35(1):83-94.
    [171]李开喜.活性炭纤维对模拟烟气中SO2的脱除[D].中国科学院山西煤炭化学研究所博士学位论文,1999.
    [172]Martin C, Perrard A, Joly JP, et al. Dynamic adsorption on activated carbons of SO2 traces in air I. Adsorption capacities [J]. Carbon,2002,40(12):2235-2246.
    [173]徐敬玉.流态化吸附制冷技术的理论及实验研究[D].浙江大学博士学位论文,2007.
    [174]陈凯华,宋存义,邱露,等.流化活性碳纤维脱除烟气中的SO2[J].北京科技大学学报,2009,31(3):290-294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700