用户名: 密码: 验证码:
嗜热螯台球菌TAD1的脱氮性能及其好氧反硝化分子机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,活性氮污染在世界范围内正呈现愈演愈烈的趋势,其范围不仅包括水体中的硝氮、亚硝氮及铵态氮等,还包括大气中的NO_x(主要为NO和NO_2)气体,因而如何去除活性氮的污染成为近年来的研究热点。生物法脱氮作为一种低成本且无污染的绿色技术,已引起越来越广泛的关注。然而,根据传统的反硝化理论,氧的存在抑制反硝化的进行,降低了生物脱氮的效率,因此,最初的生物反应器均是在厌氧下进行,这很明显增加了运行成本,进而限制了其大规模的工业化应用。此外,部分工业含氮废水及经过洗涤后的燃煤烟气的温度均达到了50℃左右,而当前的相关生物技术的最佳温度均为常温,因而,开发高温生物脱氮技术具有切实的工程应用价值。本文选用嗜热螯台球菌TAD1(ChelatococcusdaeguensisTAD1)为研究对象,并应用于不同的反应器内,深入分析了TAD1在多种条件下的脱氮性能,初步探讨了TAD1发生好氧反硝化的分子机制,以期为真正地工业应用提供实践与理论指导。
     首先,采用PB(Plackett-Burman)设计法和基于中心组合实验设计(CCD)的响应面法,对生物滴滤塔的循环液组分进行了优化。结果表明,对脱氮率影响最大的因子是柠檬酸铵和硫酸亚铁,对实验数据进行二次多项式回归拟合后,获得响应值脱氮率(Y)对自变量柠檬酸铵(X1)和硫酸亚铁(X2)的二元二次回归方程:Y=-2.15+3.13X_1~2+204X_2-0.657X_1~2-1844X_2+5.68X_1X_2,求导后得到模型的极值点,即柠檬酸铵为2.62g/L,硫酸亚铁为0.059g/L,相应的模型预测的最大脱氮率为8.0318mg/(L·h)。
     其次,在实验室内建一小型生物滴滤系统,利用优化后的循环液组分,开放条件下以TAD1挂膜后来处理模拟烟气。该系统在不同负荷和氧浓度下均可实现对NO_x的有效去除。在进口NO浓度为600ppm、112.5s的空床停留时间(EBRT)下,NO_x的去除率(RE)可达到80.2–92.3%,氧对RE没有产生负面影响。同时,在系统运行的整个过程中,TAD1始终占有优势地位,说明其具有处理实际烟气的可行性。
     第三,分析TAD1在高温下的同步硝化反硝化性能,并将其应用于高温曝气生物滴滤池中。结果表明,无论是在纯种培养还是在曝气生物滴滤池中,TAD1均有良好的异养硝化-好氧反硝化性能。在纯种培养下,铵的去除能力达到6.97mg-NH_4~+-N/(L·h),约有32.3%的总氮被TAD1转化成氮气;在曝气生物滤池中,12小时后在三种条件下的氮去除效率均达到100%,氮去除能力(平均脱氮率)分别为12.67mg/(L·h)、3.62mg/(L·h)及16.53mg/(L·h),揭示TAD1具有应用于高温废水脱氮的潜力。
     第四,在实验室生物滴滤塔上进一步探索影响脱氮效果的最佳工艺参数及条件,随后在广州电厂一生物滴滤系统内,用TAD1挂膜,以火电厂经过脱硫除尘的烟道气为研究对象。结果显示,在实验室生物滴滤塔内,初始NO-3浓度和空气流速对脱氮没有产生负面影响,综合考虑,乙酸钠为最佳碳源;在电厂生物滴滤系统中,NO_x去除效率可达到84.3-86.7%,最大污染负荷和最大处理能力分别为159.4g/(m~3·h)和137.3g/(m~3·h),相应的NO_x进口浓度为558mg/m~3。虽然TAD1在生物膜中没有占绝对优势,但与其它多种微生物共存,共同完成处理NO_x的过程。
     最后,通过实时荧光定量PCR系统分析四种反硝化基因在不同溶氧下的表达规律,从基因水平初步探讨TAD1在高温下的好氧反硝化发生机制。结果表明,TAD1的硝酸还原酶、亚硝酸还原酶和一氧化氮还原酶的基因类型分别为napA、nirK和cnorB,且含有氧化亚氮还原酶基因nosZ。随着溶氧的提高,napA、nirK、cnorB和nosZ的表达量呈下降趋势,说明高氧浓度对四种反硝化基因有抑制作用,而氧限制或微好氧环境可能更有利于基因的表达。
Recently, the pollution of reactive nitrogen is growing in intensify, which includes notonly NO-3-N, NO-2-N and NH+4-N in the water but also NO_x in the gas. Accordingly, how toremove reactive nitrogen has became a research focus. As a green technology with low costand no pollution, denitrificaion by microbial methods has attracted more and more attention.However, the oxygen inhibits denitrification and decreases removal efficiency according tothe traditionary denitrifying theory. As a result, the initial bioreactor all performed under theanaerobic condition, which obviously increased the operation cost and thus limited itsindustrial application on a large scale. In addition, the temperature of some industrial wastewater containing nitrogen and flue gas after scrub achieves to about50℃, but the presentrelative biotechnology functions well at common temperature. Therefore, it has the value ofengineering application to explore the biological nitrogen removal technology at hightemperature. In this study, thermophilic Chelatococcus daeguensis TAD1was used andinoculated to the different bioreactors. Then, the denitrification performances under differentconditions were deeply analyzed and the molecular mechanism that TAD1denitrified underaerobic condition was preliminarily discussed with the aim to provide practice and theoryguidance for the real industrial application.
     First of all, Plackett-Burman design and response surface method based on centralcomposite design were utilized to optimize the medium for recycling liquid of a bio-tricklingfilter. Results showed that the most important factors affecting denitrification rate wereammonium citrate and ferrous sulfate. With the data subject to regression fitting, thefollowing second-order polynomial equation was obtained, depicting relationship between thedenitrification rate (Y) and variables (concentrations of ammonium citrate (X1) and ferroussulfate (X2)): Y=-2.15+3.13X_1~2+204X_2-0.657X_1-1844X_2~2+5.68X_1X_2. On the basis of thisequation, extreme points were: ammonium citrate2.62g/L and ferrous sulfate0.059g/L, andthe corresponding predicted maximum denitrification rate by the model was8.0318mg/(L·h).
     Then, a lab-scale bio-trickling filter was set up to treat simulated flule gas after theformation of biofilm with TAD1under the open condition using the optimized recyclingliquid. The filter could remove NO_x efficiently under conditions of different loadings and oxygen concentrations. When the inlet NO concentration was600ppm and EBRT was112.5s,the removal efficiency (RE) of NO_x achieved to80.2–92.3%and oxygen had no negativeeffect on RE. Meanwhile, TAD1predominated in the biofilm all the time during the wholeoperation, indicating that it is feasible to treat the real flue gas by TAD1.
     Thirdly, the denitrification performance of simultaneous nitrification and denitrificationby TAD1at high temperature was analyzed, and then it was applied to an aerobic biofilter.Results showed that TAD1exhibited a high performance of heterotrophic nitrification-aerobicdenitrification in both pure culture and aerobic biofilter. In the pure culture, the eliminatecapacity of NH_4~+-N got up to6.97mg/(L·h), and about32.3%of total nitrogen was convertedto nitrogen gas. In the aerobic biofilter, all the nitrogen removal efficiencies of threeconditions after12h reached100%, and the eliminate capacity (average denitrification rate) ofnitrogen was12.67mg/(L·h)、3.62mg/(L·h) and16.53mg/(L·h), respectively, suggesting thatTAD1has a potential for nitrogen removal from wastewater at high temperature.
     Fourthly, the best process parameters and conditions affecting denitrification efficiency ina lab-scale bio-trickling filter were further investigated. Thereafter, TAD1was inoculated to apilot-scale bio-trickling filter in a power plant (Guangzhou) using the flue gas afterdesulfuration and dedusting as an object of study. Results revealed that the initial NO_3~-concentration and air flow had no influence on the denitrification, and taken together, sodiumacetate was the optimum carbon source in a lab-scale bio-trickling filter. In a pilot-scalebio-trickling filter, the removal efficiency of NO_x attained to84.3-86.7%. The maximumpollutional loading and processing capacity were159.4g/(m~3·h) and137.3g/(m~3·h),respectively, and the corresponding inlet concentration of NO_x was558mg/m~3. AlthoughTAD1did not predominate in the biofilm, it coexisted with other microorganisms to removeNO_x together.
     Finally, expression of four denitrificaiotn genes in TAD1under different levels ofdissolved oxygen (DO) was systematically analyzed by means of real-time fluorescentquantitative PCR, aiming to preliminarily discuss molecular mechanism of aerobicdenitrification by TAD1from gene level at high temperature. Results manifested that genetype of nitrate reductase, nitrite reductase and nitric oxide reductase was napA, nirK andcnorB, respectively, and there was nosZ in TAD1. With DO increasing, expressions of napA, nirK and cnorB all decreased, suggesting that high level of DO exerted an inhibitory effect onexpression of four denitrification genes, whereas oxygen-limited or microaerobic environmentprobably more favored gene expressions.
引文
[1]熊利泽.一氧化氮:有害的气体还是有用的药物[J].医学与哲学,1993,(2):11-13
    [2]黄诗坚. NOx的危害及其排放控制[J].电力环境保护,2004,20(1):24-25
    [3]方华,莫江明.活性氮增加:一个威胁环境的问题[J].生态环境,2006,15(1):164-168
    [4]Galloway J. N., Dentener F. J., Capone D. G., et al. Nitrogen cycles: past, present, andfuture[J]. Biogeochemistry,2004,70(2):153-226
    [5]柏源,李忠华,薛建明,等.尿素为还原剂燃煤烟气脱硝技术的研究与应用[J].电力科技与环保,2011,27(1):19-22
    [6]刘金伟.燃煤锅炉NOx污染控制技术发展现状及建议[J].北方环境,2011,(8):145-147
    [7]Garrity G. M., Winters M.,Searles N. B. Bergry’s Manual of Systematic Bacteriology[M].Springer-Verlag2001
    [8]Auling G., Busse H. J., Egli T., et al. Description of the Gram-Negative, Obligately Aerobic,Nitrilotriacetate (NTA)-Utilizing Bacteria as Chelatobacter heintzii, gen. nov., sp. nov., andChelatococcus asaccharovorans, gen. nov., sp. nov[J]. Systematic and AppliedMicrobiology,1993,16(1):104-112
    [9]Panday D.,Das S. K. Chelatococcus sambhunathii sp. nov., a moderately thermophilicalphaproteobacterium isolated from hot spring sediment[J]. International Journal ofSystematic and Evolutionary Microbiology,2010,60(4):861-865
    [10]NARAIN D.,TRIPATHI A. K. Evaluation of the Coal-Degrading Ability of Rhizobiumand Chelatococcus Strains Isolated from the Formation Water of an Indian Coal Bed[J].Journal Of Microbiology And Biotechnology,2011,21(11):1101-1108
    [11]Yoon J., Kang S., Im W., et al. Chelatococcus daeguensis sp. nov., isolated fromwastewater of a textile dye works, and emended description of the genus Chelatococcus[J].International Journal of Systematic and Evolutionary Microbiology,2008,58(9):2224
    [12]张苗,黄少斌.高温好氧反硝化菌的分离鉴定及其反硝化性能研究[J].环境科学,2011,32(1):259-265
    [13]Liang W., Huang S., Liu J., et al. Removal of nitric oxide in a biotrickling filter underthermophilic condition using Chelatococcus daeguensis[J]. Journal of the Air&WasteManagement Association,2012,62(5):509-516
    [14]Ohara H., Noguchi T., Tokumaru H., et al. Properties of a new strain of Nitrosomonasisolated from an aerobic biofilm in a domestic sewage-treatment system[J]. Journal ofFermentation and Bioengineering,1994,77(4):358-362
    [15]Koops H. P., Harms H.,Wehrmann H. Isolation of a moderate halophilicammonia-oxidizing bacterium, Nitrosococcus mobilis nov. sp[J]. Archives of Microbiology,1976,107(3):277-282
    [16]Sorokin D. Y., Muyzer G., Brinkhoff T., et al. Isolation and characterization of a novelfacultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov[J]. Archives ofMicrobiology,1998,170(5):345-352
    [17]Daum M., Zimmer W., Papen H., et al. Physiological and molecular biologicalcharacterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida[J].Current Microbiology,1998,37(4):281-288
    [18]Mével G.,Prieur D. Heterotrophic nitrification by a thermophilic Bacillus species asinfluenced by different culture conditions[J]. Canadian Journal of Microbiology,2000,46(5):465-473
    [19]Niel E. W. J., Braber K., Robertson L., et al. Heterotrophic nitrification and aerobicdenitrification in Alcaligenes faecalis strain TUD[J]. Antonie Van Leeuwenhoek,1992,62(3):231-237
    [20]Joo H. S., Hirai M.,Shoda M. Characteristics of ammonium removal by heterotrophicnitrification-aerobic denitrification by Alcaligenes faecalis No.4[J]. Journal of Bioscienceand Bioengineering,2005,100(2):184-191
    [21]陈建孟,马建锋,王家德,等.生物滤床中一氧化氮的好氧去除过程研究[J].环境科学学报,2005,25(11):1436-1442
    [22]Freitag A.,Bock E. Energy conservation in Nitrobacter[J]. FEMS Microbiology Letters,1990,66(1-3):157-162
    [23]Koschorreck M., Moore E.,Conrad R. Oxidation of nitric oxide by a new heterotrophicPseudomonas sp[J]. Archives of Microbiology,1996,166(1):23-31
    [24]Ferguson S. J. Denitrification and its control[J]. Antonie Van Leeuwenhoek,1994,66(1):89-110
    [25]Moir J. W. B., Richardson D. J.,Ferguson S. J. The expression of redox proteins ofdenitrification in Thiosphaera pantotropha grown with oxygen, nitrate, and nitrous oxideas electron acceptors[J]. Archives of Microbiology,1995,164(1):43-49
    [26]Wilson L.,Bouwer E. Biodegradation of aromatic compounds under mixedoxygen/denitrifying conditions: a review[J]. Journal of Industrial Microbiology&Biotechnology,1997,18(2):116-130
    [27]Wehrfritz J. M., Reilly A., Spiro S., et al. Purification of hydroxylamine oxidase fromThiosphaera pantotropha: Identification of electron acceptors that couple heterotrophicnitrification to aerobic denitrification[J]. FEBS Letters,1993,335(2):246-250
    [28]Pujol R., Lemmel H.,Gousailles M. A keypoint of nitrification in an upflow biofiltrationreactor[J]. Water science and technology,1998,38(3):43-49
    [29]Pujol R., Hamon M., Kandel X., et al. Biofilters: flexible, reliable biological reactors[J].Water science and technology,1994,29(10-11):33-38
    [30]Gilmore K., Husovitz K., Holst T., et al. Influence of organic and ammonia loading onnitrifier activity and nitrification performance for a two-stage biological aerated filtersystem[J]. Water science and technology,1999,39(7):227-234
    [31]Wang X., Gu X., Lin D., et al. Treatment of acid rose dye containing wastewater byozonizing–biological aerated filter[J]. Dyes And Pigments,2007,74(3):736-740
    [32]Zhu S.,Ni J. Treatment of coking wastewater by a UBF‐BAF combined process[J].Journal of Chemical Technology and Biotechnology,2008,83(3):317-324
    [33]Su D., Wang J., Liu K., et al. Kinetic Performance of Oil-field Produced Water Treatmentby Biological Aerated Filter1[J]. Chinese Journal Of Chemical Engineering,2007,15(4):591-594
    [34]Lu X., Yang B., Chen J., et al. Treatment of wastewater containing azo dye reactivebrilliant red X-3B using sequential ozonation and upflow biological aerated filterprocess[J]. Journal of Hazardous Materials,2009,161(1):241-245
    [35]Han D. W., Yun H. J.,Kim D. J. Autotrophic nitrification and denitrification characteristicsof an upflow biological aerated filter[J]. Journal of Chemical Technology andBiotechnology,2001,76(11):1112-1116
    [36]Qiu L., Zhang S., Wang G., et al. Performances and nitrification properties of biologicalaerated filters with zeolite, ceramic particle and carbonate media[J]. BioresourceTechnology,2010,101(19):7245-7251
    [37]Mulder A., Graaf A., Robertson L., et al. Anaerobic ammonium oxidation discovered in adenitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology,1995,16(3):177-184
    [38]Tal Y., Watts J. E. M.,Schreier H. J. Anaerobic ammonia-oxidizing bacteria and relatedactivity in Baltimore inner harbor sediment[J]. Applied and Environmental Microbiology,2005,71(4):1816-1821
    [39]Lee K. H.,Sublette K. L. Reduction of nitric oxide to elemental nitrogen by Thiobacillusdenitrificans[J]. Applied Biochemistry and Biotechnology,1990,24(1):441-445
    [40]Shanmugasundram R., Lee C. M.,Sublette K. L. Reduction of nitric oxide by denitrifyingbacteria[J]. Applied Biochemistry and Biotechnology,1993,39(1):727-737
    [41]Barnes J. M., Apel W. A.,Barrett A. B. Removal of nitrogen oxides from gas streamsusing biofiltration[J]. Journal of Hazardous Materials,1995,41315-326
    [42]Yang W.-f., Hsing H.-j., Yang Y.-c., et al. The effects of selected parameters on the nitricoxide removal by biofilter[J]. Journal of Hazardous Materials,2007,148:653-659
    [43]Flanagan W. P., Apel W. A., Barnes J. M., et al. Development of gas phase bioreactors forthe removal of nitrogen oxides from synthetic flue gas streams[J]. Fuel,2002,81:1953-1961
    [44]Jinsiriwanit S. Treatment of nitrogen oxides and sulfur dioxide from combustion gases bychemolithoautotrophic organisms in a bioreactor system[D]. RIVERSIDE: UNIVERSITYOF CALIFORNIA,2006
    [45]Chen J. M.,Ma J. F. Abiotic and biological mechanisms of nitric oxide removal fromwaste air in biotrickling filters[J]. Journal of the Air&Waste Management Association,2006,56(1):32-36
    [46]Jiang R., Huang S., Chow A., et al. Nitric oxide removal from flue gas with a biotricklingfilter using Pseudomonas putida[J]. Journal of Hazardous Materials,2009,164(2-3):432-441
    [47]Jiang R., Huang S., Yang J., et al. Field applications of a bio-trickling filter for theremoval of nitrogen oxides from flue gas[J]. Biotechnology Letters,2009,31(7):967-973
    [48]Robertson L.,Kuenen J. Thiosphaera pantotropha gen. nov. sp. nov., a facultativelyanaerobic, facultatively autotrophic sulphur bacterium[J]. Microbiology,1983,129:2847-2855
    [49]Frette L., Gejlsbjerg B.,Westermann P. Aerobic denitrifiers isolated from an alternatingactivated sludge system[J]. FEMS Microbiology Ecology,1997,24(4):363-370
    [50]Patureau D., Zumstein E., Delgenes J., et al. Aerobic denitrifiers isolated from diversenatural and managed ecosystems[J]. Microbial Ecology,2000,39(2):145-152
    [51]Kim Y. J., Yoshizawa M., Takenaka S., et al. Isolation and culture conditions of aKlebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneouslywith controlled iron and molybdate ion concentrations[J]. Bioscience, Biotechnology, andBiochemistry,2002,66(5):996-1001
    [52]Takaya N., Catalan-Sakairi M. A. B., Sakaguchi Y., et al. Aerobic denitrifying bacteriathat produce low levels of nitrous oxide[J]. Applied and Environmental Microbiology,2003,69(6):3152-3157
    [53]周丹丹,马放,王弘宇.关于好氧反硝化菌筛选方法的研究[J].微生物学报,2004,44:837-839
    [54]李平,郑永良,陈舒丽,等.一株好氧反硝化细菌的鉴定及其在废水处理中的应用[J].应用与环境生物学报,2005,11(5):600-603
    [55]Wang P., Li X., Xiang M., et al. Characterization of efficient aerobic denitrifiers isolatedfrom two different sequencing batch reactors by16S-rRNA analysis[J]. Journal ofBioscience and Bioengineering,2007,103(6):563-567
    [56]Kim M., Jeong S.-y., Yoon S. J., et al. Aerobic Denitrification of Pseudomonas putidaAD-21at Different C/N Ratios[J]. Journal of Bioscience and Bioengineering,2008,106(5):498-502
    [57]Robertson L., Cornelisse R., Vos P., et al. Aerobic denitrification in various heterotrophicnitrifiers[J]. Antonie Van Leeuwenhoek,1989,56(4):289-299
    [58]Spector M. Production and decomposition of nitrous oxide during biologicaldenitrification[J]. Water Environment Research,1998,70(5):1096-1098
    [59]Stouthamer A. Metabolic pathways in Paracoccus denitrificans and closely relatedbacteria in relation to the phylogeny of prokaryotes[J]. Antonie Van Leeuwenhoek,1992,61(1):1-33
    [60]Robertson L.,Kuenen J. Combined heterotrophic nitrification and aerobic denitrificationin Thiosphaera pantotropha and other bacteria[J]. Antonie Van Leeuwenhoek,1990,57(3):139-152
    [61]MOIR J., BARATTA D., RICHARDSON D., et al. The purification of a cd1-type nitritereductase from, and the absence of a copper-type nitrite reductase from, the aerobicdenitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor[J].European Journal of Biochemistry,1993,212:377-385
    [62]BELL L. C.,FERGUSON S. J. Nitric and nitrous oxide reductases are active underaerobic condition in cells of Thiophaera pantotropha[J]. Biochemical Journal,1991,273:423-427
    [63]Braun C., Zumft W. G., Mikrobiologie L., et al. The Structural Genes of the Nitric OxideReductase Complex from Pseudomonas stutzeri Are Part of a30-Kilobase Gene Cluster forDenitrification[J]. Journal of Bacteriology,1992,174:2394-2397
    [64]Arai H., Igarashi Y.,Kodama T. Expression of the nir and nor genes for denitrification ofPseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator,DNR, in addition to ANR[J]. FEBS Letters,1995,371:73-76
    [65]Berks B. C., Page M. D., Richardson D. J., et al. Sequence analysis of subunits of themembrane‐bound nitrate reductase from a denitrifying bacterium: the integral membranesubunit provides a prototype for the dihaem electron‐carrying arm of a redox loop[J].Molecular Microbiology,1995,15(2):319-331
    [66]Holloway P., McCormick W., Watson R. J., et al. Identification and analysis of thedissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti[J]. Journalof Bacteriology,1996,178(6):1505-1514
    [67]Blasco F., Iobbi C., Giordano G., et al. Nitrate reductase of Escherichia coli: completionof the nucleotide sequence of the nar operon and reassessment of the role of the α and βsubunits in iron binding and electron transfer[J]. Molecular and General Genetics MGG,1989,218(2):249-256
    [68]Ramos H. C., Boursier L., Moszer I., et al. Anaerobic transcription activation in Bacillussubtilis: identification of distinct FNR-dependent and-independent regulatorymechanisms[J]. The EMBO Journal,1995,14(23):5984
    [69]Berks B., Richardson D., Reilly A., et al. The napEDABC gene cluster encoding theperiplasmic nitrate reductase system of Thiosphaera pantotropha[J]. Biochemical Journal,1995,309(Pt3):983
    [70]Morozkina E. V.,Zvyagilskaya R. A. Nitrate Reductases: Structure, Functions, andEffect of Stress Factors[J]. Biochemistry(Moscow),2007,72:1151-1160
    [71]Jüngst A., Wakabayashi S., Matsubara H., et al. The nirSTBM region coding forcytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a clusterof mono-, di-, and tetraheme proteins[J]. FEBS Letters,1991,279(2):205-209
    [72]Braun C.,Zumft W. Marker exchange of the structural genes for nitric oxide reductaseblocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide[J]. Journal ofBiological Chemistry,1991,266(34):22785-22788
    [73]Arai H., Igarashi Y.,Kodama T. The structural genes for nitric oxide reductase fromPseudomonas aeruginosa[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure andExpression,1995,1261(2):279-284
    [74]Boer A. P. N., Oost J., Reijnders W. N. M., et al. Mutational Analysis of the Nor GeneCluster which Encodes Nitric‐Oxide Reductase from Paracoccus denitrificans[J].European Journal of Biochemistry,1996,242(3):592-600
    [75]Bedmar E. J., Robles E. F.,Delgado M. J. The complete denitrification pathway of thesymbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum[J]. Biochemical SocietyTransactions,2005,33:141-144
    [76]Viebrock A.,Zumft W. Molecular cloning, heterologous expression, and primary structureof the structural gene for the copper enzyme nitrous oxide reductase from denitrifyingPseudomonas stutzeri[J]. Journal of Bacteriology,1988,170(10):4658-4668
    [77]Berks B. C., RICHARDSON D. J., ROBINSON C., et al. Purification andcharacterization of the periplasmic nitrate reductase from Thiosphaera pantotropha[J].European Journal of Biochemistry,1994,220(1):117-124
    [78]Thomas G., Potter L.,Cole J. A. The periplasmic nitrate reductase from Escherichia coli: aheterodimeric molybdoprotein with a double‐arginine signal sequence and an unusualleader peptide cleavage site[J]. FEMS Microbiology Letters,1999,174(1):167-171
    [79]Arnoux P., Sabaty M., Alric J., et al. Structural and redox plasticity in the heterodimericperiplasmic nitrate reductase[J]. Nature Structural&Molecular Biology,2003,10(11):928-934
    [80]Berks B. Enzymes and associated electron transport systems that catalyse the respiratoryreduction of nitrogen oxides and oxyanions[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1995,1232(3):97-173
    [81]Philippot L.,H jberg O. Dissimilatory nitrate reductases in bacteria[J]. Biochimica etBiophysica Acta,1999,1446(1-2):1-23
    [82]Filimonenkov A., Zvyagilskaya R., Tikhonova T., et al. Isolation and characterization ofnitrate reductase from the halophilic sulfur-oxidizing bacterium Thioalkalivibrionitratireducens[J]. Biochemistry (Moscow),2010,75(6):744-751
    [83]Romanowska I., Kwapisz E., Mitka M., et al. Isolation and preliminary characterizationof a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordoniaalkanivorans S7[J]. Journal of Industrial Microbiology&Biotechnology,2010,37(6):625-629
    [84]Antipov A. N., Morozkina E. V., Sorokin D. Y., et al. Characterization of MolybdenumFree Nitrate Reductase from Haloalkalophilic Bacterium Halomonas sp. Strain AGJ13[J].Biochemistry(Moscow),2005,70:3-7
    [85]Bedzyk L., Wang T. A. O.,Ye R. W. The Periplasmic Nitrate Reductase in Pseudomonassp. Strain G-179Catalyzes the First Step of Denitrification[J]. Journal of Bacteriology,1999,181:2802-2806
    [86]Bell L. C., Richardson D. J.,Ferguson S. J. Periplasmic and membrane-bound respiratorynitrate reductases in Thiosphaera pantotropha:The periplasmic enzyme catalyzes the firststep in aerobic denitrification[J]. FEBS Letters,1990,265(1,2):85-87
    [87]Carter J. O. N. P., Hsiao Y. A. H., Spiro S., et al. Soil and Sediment Bacteria Capable ofAerobic Nitrate Respiration[J]. Applied and Environmental Microbiology,1995,61(8):2852-2858
    [88]Gamble T. N., Betlach M. R.,Tiedje J. M. Numerically dominant denitrifying bacteriafrom world soils[J]. Applied and Environmental Microbiology,1977,33(4):926-939
    [89]Adman E. T., Godden J.,Turley S. The Structure of Copper-nitrite Reductase fromAchromobacter cycloclastes at Five pH Values, with NO2Bound and with Type II CopperDepleted[J]. Journal of Biological Chemistry,1995,270(46):27458-27474
    [90]Kukimoto M., Nishiyama M., Murphy M. E. P., et al. X-ray structure and site-directedmutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atomsin nitrite reduction[J]. Biochemistry,1994,33(17):5246-5252
    [91]Fül p V., Moir J. W. B., Ferguson S. J., et al. The anatomy of a bifunctional enzyme:Structural basis for reduction of oxygen to water and synthesis of nitric oxide bycytochrome cd1[J]. Cell,1995,81(3):369-377
    [92]Watmough N., Field S., Hughes R., et al. The bacterial respiratory nitric oxidereductase[J]. Biochemical Society Transactions,2009,37:392-399
    [93]Hino T., Matsumoto Y., Nagano S., et al. Structural basis of biological N2O generation bybacterial nitric oxide reductase[J]. Science,2010,330(6011):1666-1670
    [94]Brown K., Tegoni M., Prudêncio M., et al. A novel type of catalytic copper cluster innitrous oxide reductase[J]. Nature Structural&Molecular Biology,2000,7(3):191-195
    [95]Prudêncio M., Pereira A. S., Tavares P., et al. Purification, characterization, andpreliminary crystallographic study of copper-containing nitrous oxide reductase fromPseudomonas nautica617[J]. Biochemistry,2000,39(14):3899-3907
    [96]López-Gutiérrez J. C., Henry S., Hallet S., et al. Quantification of a novel group ofnitrate-reducing bacteria in the environment by real-time PCR[J]. Journal ofMicrobiological Methods,2004,57(3):399-407
    [97]Chon K., Chang J. S., Lee E., et al. Abundance of denitrifying genes coding for nitrate(narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewatereffluent-fed constructed wetlands[J]. Ecological Engineering,2011,37:64-69
    [98]Lukow T.,Diekmann H. Aerobic denitrification by a newly isolated heterotrophicbacterium strain TL1[J]. Biotechnology Letters,1997,19(11):1157-1159
    [99]Kim J., Park K., Cho K., et al. Aerobic nitrification-denitrification by heterotrophicBacillus strains[J]. Bioresource Technology,2005,96(17):1897-1906
    [100]Lee B. D., Apel W. A.,Smith W. A. Oxygen Effects on Thermophilic MicrobialPopulations in Biofilters Treating Nitric Oxide Containing Off-Gas Streams[J].Environmental Progress,2001,20:157-166
    [101]Maas P. V. D., Bosch P. V. D., Klapwijk B., et al. NOx Removal From Flue Gas by anIntegrated Physicochemical Absorption and Biological Denitrification Process[J].Biotechnology and Bioengineering,2005,90:433-491
    [102]Mishima M., Iwata K., Nara K., et al. Cultivation characteristics of denitrification bythermophilic Geobacillus sp. strain TDN01[J]. The Journal of General and AppliedMicrobiology,2009,55(2):81-86
    [103]占国强,王晓梅,何晓红,等.高温自养硝化反硝化工艺研究[J].应用与环境生物学报,2010,16(1):122-125
    [104]Vitousek P. M., Aber J. D., Howarth R. W., et al. Human alteration of the global nitrogencycle: sources and consequences[J]. Ecological Applications,1997,7(3):737-750
    [105]李德彬,张琪,宋旭.地下水三氮污染的现状及主要除氮方法[J].环境与可持续发展,2009,(5):35-37
    [106]刘景涛,孙继朝,林良俊,等.广州市地下水环境三氮污染初探[J].中国地质,2011,38(2):489-494
    [107]H.K.Huang,S.K.Tseng. Nitrate reduction by Citrobacter diversus under aerobicenvironment[J]. Applied Microbiology and Biotechnology,2001,55:90-94
    [108]Jiang R., HUANG S.,YANG J. Biological removal of NOx from simulated flue gas inaerobic biofilter[J]. Glob NEST J,2008,10(2):241-248
    [109]Plackett R. L.,Burman J. P. The design of optimum multifactorial experiments[J].Biometrika,1946,33(4):305-325
    [110]Chen H. Response-surface methodology for optimizing citric acid fermentation byAspergillus foetidus[J]. Process Biochemistry,1994,29(5):399-405
    [111]Saleh-Lakha S., Shannon K., Henderson S., et al. Effect of Nitrate and Acetylene on nirS,cnorB, and nosZ Expression and Denitrification Activity in Pseudomonas mandelii[J].Applied and Environmental Microbiology,2009,75(15):5082-5087
    [112]Tanyildizi M., zer D.,Elibol M. Optimization of [alpha]-amylase production by Bacillussp. using response surface methodology[J]. Process Biochemistry,2005,40(7):2291-2296
    [113]Haider M.,Pakshirajan K. Screening and optimization of media constituents forenhancing lipolytic activity by a soil microorganism using statistically designedexperiments[J]. Applied Biochemistry and Biotechnology,2007,141(2):377-390
    [114]刘孜,易斌,高晓晶,等.我国火电行业氮氧化物排放现状及减排建议[J].环境保护,2008,(16):7-10
    [115]Miyadera T. Alumina-supported silver catalysts for the selective reduction of nitric oxidewith propene and oxygen-containing organic compounds[J]. Applied Catalysis B:Environmental,1993,2(2):199-205
    [116]Rubio B., Izquierdo M. T., Mayoral M. C., et al. Unburnt carbon from coal fly ashes as aprecursor of activated carbon for nitric oxide removal[J]. Journal of Hazardous Materials,2007,143(1):561-566
    [117]Lim T. H., Jeong S. M., Kim S. D., et al. Photocatalytic decomposition of NO by TiO2particles[J]. Journal of Photochemistry and Photobiology A: Chemistry,2000,134(3):209-217
    [118]Li W., Wu C. Z., Zhang S. H., et al. Evaluation of microbial reduction of Fe (III) EDTAin a chemical absorption-biological reduction integrated NOx removal system[J].Environmental Science&Technology,2007,41(2):639-644
    [119]Muyzer G., de Waal E. C.,Uitterlinden A. G. Profiling of complex microbial populationsby denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700
    [120]Kowalchuk G. A., Stephen J. R., De Boer W., et al. Analysis of ammonia-oxidizingbacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes bydenaturing gradient gel electrophoresis and sequencing of PCR-amplified16S ribosomalDNA fragments[J]. Applied and Environmental Microbiology,1997,63(4):1489-1497
    [121]Nicolaisen M. H.,Ramsing N. B. Denaturing gradient gel electrophoresis (DGGE)approaches to study the diversity of ammonia-oxidizing bacteria[J]. Journal ofMicrobiological Methods,2002,50(2):189-203
    [122]Lyautey E., Teissier S., Charcosset J. Y., et al. Bacterial diversity of epilithic biofilmassemblages of an anthropised river section, assessed by DGGE analysis of a16S rDNAfragment[J]. Aquatic Microbial Ecology,2003,33(3):217-224
    [123]Ramirez M., Gomez J. M., Aroca G., et al. Removal of hydrogen sulfide by immobilizedThiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J].Bioresource Technology,2009,100(21):4989-4995
    [124]An T., Wan S., Li G., et al. Comparison of the removal of ethanethiol in twin-biotricklingfilters inoculated with strain RG-1and B350mixed microorganisms[J]. Journal ofHazardous Materials,2010,183:372-380
    [125]Kurokawa M., Fukumori Y.,Yamanaka T. A hydroxylamine-cytochrome c reductaseoccurs in the heterotrophic nitrifier Arthrobacter globiformis[J]. Plant and Cell Physiology,1985,26(7):1439-1442
    [126]Otte S., Grobben N. G., Robertson L. A., et al. Nitrous oxide production by Alcaligenesfaecalis under transient and dynamic aerobic and anaerobic conditions[J]. Applied andEnvironmental Microbiology,1996,62(7):2421-2426
    [127]Gupta A. Thiosphaera pantotropha:a sulphur bacterium capable of simultaneousheterotrophic nitrification and aerobic denitrification[J]. Enzyme and MicrobialTechnology,1997,21(8):589-595
    [128]Robertson L. A., VAN Niel E. W. J., Torremans R. A. M., et al. Simultaneousnitrification and denitrification in aerobic chemostat cultures of Thiosphaerapantotropha[J]. Applied and Environmental Microbiology,1988,54(11):2812-2818
    [129]Richardson D. J.,Ferguson S. J. The influence of carbon substrate on the activity of theperiplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha[J]. Archivesof Microbiology,1992,157(6):535-537
    [130]LaPara T., Konopka A., Nakatsu C., et al. Thermophilic aerobic treatment of a syntheticwastewater in a membrane-coupled bioreactor[J]. Journal of Industrial Microbiology andBiotechnology,2001,26(4):203-209
    [131]Su J. J., Yeh K. S.,Tseng P. W. A strain of Pseudomonas sp. isolated from piggerywastewater treatment systems with heterotrophic nitrification capability in Taiwan[J].Current Microbiology,2006,53(1):77-81
    [132]Zhang J., Wu P., Hao B., et al. Heterotrophic nitrification and aerobic denitrification bythe bacterium Pseudomonas stutzeri YZN-001[J]. Bioresource Technology,2011,102:9866-9869
    [133]刘晶晶,汪苹,王欢.一株异养硝化-好氧反硝化菌的脱氮性能研究[J].环境科学研究,2008,21(3):121-125
    [134]黄钧,杨航,牟丽娉,等.异养硝化.好氧反硝化菌株DN1.2的脱氮特性研究[J].高技术通讯,2009,19(2):213-218
    [135]Robertson L. A., Dalsgaard T., Revsbech N. P., et al. Confirmation of aerobicdenitrification in batch cultures using gas chromatography and15N mass spectrometry[J].FEMS Microbiology Ecology,1995,18(2):113-120
    [136]Christen P., Domenech F., Michelena G., et al. Biofiltration of volatile ethanol usingsugar cane bagasse inoculated with Candida utilis[J]. Journal of Hazardous Materials,2002,89(2):253-265
    [137]Khammar N., Malhautier L., Degrange V., et al. Evaluation of dispersion methods forenumeration of microorganisms from peat and activated carbon biofilters treating volatileorganic compounds[J]. Chemosphere,2004,54(3):243-254
    [138]Acu a M. E., Pérez F., Auria R., et al. Microbiological and kinetic aspects of a biofilterfor the removal of toluene from waste gases[J]. Biotechnology and Bioengineering,1999,63(2):175-184
    [139]Morgan-Sagastume J.,Noyola A. Hydrogen sulfide removal by compost biofiltration:Effect of mixing the filter media on operational factors[J]. Bioresource Technology,2006,97(13):1546-1553
    [140]Van Groenestijn J.,Liu J. Removal of alpha-pinene from gases using biofilters containingfungi[J]. Atmospheric Environment,2002,36(35):5501-5508
    [141]GB13223-2003,火电厂大气污染物排放标准[S].中国:国家环境保护总局,国家质量监督检验检疫总局,2004
    [142]Kelso B. H. L., Smith R. V.,Laughlin R. J. Effects of carbon substrates on nitriteaccumulation in freshwater sediments[J]. Applied and Environmental Microbiology,1999,65(1):61-66
    [143]Ruiz G., Jeison D.,Rubilar O. Nitrification-denitrification via nitrite accumulation fornitrogen removal from wastewaters[J]. Bioresource Technology,2006,97(2):330-335
    [144]Kim D. J., Lee D. I.,Keller J. Effect of temperature and free ammonia on nitrificationand nitrite accumulation in landfill leachate and analysis of its nitrifying bacterialcommunity by FISH[J]. Bioresource Technology,2006,97(3):459-468
    [145]Park S., Bae W.,Rittmann B. E. Operational boundaries for nitrite accumulation innitrification based on minimum/maximum substrate concentrations that include effects ofoxygen limitation, pH, and free ammonia and free nitrous acid inhibition[J]. EnvironmentalScience&Technology,2009,44(1):335-342
    [146]Reyes F., Rold¨¢n M. D., Klipp W., et al. Isolation of periplasmic nitrate reductase genesfrom Rhodobacter sphaeroides DSM158: structural and functional differences amongprokaryotic nitrate reductases[J]. Molecular Microbiology,1996,19(6):1307-1318
    [147]Gavira M., Roldan M. D., Castillo F., et al. Regulation of nap gene expression andperiplasmic nitrate reductase activity in the phototrophic bacterium Rhodobactersphaeroides DSM158[J]. Journal of Bacteriology,2002,184(6):1693-1702
    [148]Philippot L., Mirleau P., Mazurier S., et al. Characterization and transcriptional analysisof Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nosgenes[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2001,1517(3):436-440
    [149]Hartsock A.,Shapleigh J. P. Mechanisms of oxygen inhibition of nirK expression inRhodobacter sphaeroides[J]. Microbiology-sgm,2010,156:3158-3165
    [150]Baumann B., van der Meer J. R., Snozzi M., et al. Inhibition of denitrification activitybut not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH[J].Antonie Van Leeuwenhoek,1997,72(3):183-189
    [151]Saleh-Lakha S., Shannon K., Henderson S., et al. Effect of pH and temperature ondenitrification gene expression and activity in Pseudomonas mandelii[J]. Applied andEnvironmental Microbiology,2009,75(12):3903-3911
    [152]Bergaust L., Shapleigh J., Frosteg rd, et al. Transcription and activities of NOxreductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygenavailability[J]. Environmental Microbiology,2008,10(11):3070-3081
    [153]Carlson C. A.,Ingraham J. L. Comparison of denitrification by Pseudomonas stutzeri,Pseudomonas aeruginosa, and Paracoccus denitrificans[J]. Applied and EnvironmentalMicrobiology,1983,45(4):1247-1253
    [154]Thomas K. L., Lloyd D.,Boddy L. Effects of oxygen, pH and nitrate concentration ondenitrification by Pseudomonas species[J]. FEMS Microbiology Letters,1994,118(1):181-186
    [155]K rner H.,Zumft W. G. Expression of denitrification enzymes in response to thedissolved oxygen level and respiratory substrate in continuous culture of Pseudomonasstutzeri[J]. Applied and Environmental Microbiology,1989,55(7):1670-1676
    [156]Saleh-Lakha S., Shannon K., Goyer C., et al. Nitric oxide reductase gene expression andnitrous oxide production in nitrate-grown Pseudomonas mandelii[J]. Applied andEnvironmental Microbiology,2008,74(22):6876-6879
    [157]Roussel-Delif L., Tarnawski S., Hamelin J., et al. Frequency and Diversity of NitrateReductase Genes among Nitrate-Dissimilating Pseudomonas in the Rhizosphere ofPerennial Grasses Grown in Field Conditions[J]. Microbial Ecology,2005,49:63-72
    [158]Braker G., Fesefeldt A.,Witzel K. P. Development of PCR primer systems foramplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria inenvironmental samples[J]. Applied and Environmental Microbiology,1998,64(10):3769
    [159]Casciotti K. L.,Ward B. B. Phylogenetic analysis of nitric oxide reductase genehomologues from aerobic ammonia-oxidizing bacteria[J]. FEMS Microbiology Ecology,2005,52(2):197-205
    [160]Braker G.,Tiedje J. M. Nitric oxide reductase (norB) genes from pure cultures andenvironmental samples[J]. Applied and Environmental Microbiology,2003,69(6):3476
    [161]R sch C., Mergel A.,Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteriain an acid forest soil[J]. Applied and Environmental Microbiology,2002,68(8):3818
    [162]Khoroshilova N., Popescu C., Münck E., et al. Iron-sulfur cluster disassembly in theFNR protein of Escherichia coli by O2:[4Fe-4S] to [2Fe-2S] conversion with loss ofbiological activity[J]. Proceedings of the National Academy of Sciences,1997,94(12):6087
    [163]Hartig E., Schiek U., Vollack K., et al. Nitrate and nitrite control of respiratory nitratereduction in denitrifying Pseudomonas stutzeri by a two-component regulatory systemhomologous to NarXL of Escherichia coli[J]. Journal of Bacteriology,1999,181(12):3658
    [164]Kiley P. J.,Beinert H. Oxygen sensing by the global regulator, FNR: the role of the iron‐sulfur cluster[J]. FEMS Microbiology Reviews,1998,22(5):341-352
    [165]Philippot L. Denitrifying genes in bacterial and Archaeal genomes[J]. Biochimica etBiophysica Acta,2002,1577:355-376
    [166]Darwin A. J., Ziegelhoffer E. C., Kiley P. J., et al. Fnr, NarP, and NarL regulation ofEscherichia coli K-12napF (periplasmic nitrate reductase) operon transcription in vitro[J].Journal of Bacteriology,1998,180(16):4192-4198
    [167]Stewart V., Bledsoe P. J.,Williams S. B. Dual overlapping promoters control napF(periplasmic nitrate reductase) operon expression in Escherichia coli K-12[J]. Journal ofBacteriology,2003,185(19):5862-5870
    [168]Zumft W. G. Cell Biology and Molecular Basis of Denitrification[J]. Microbiology,1997,61:533-616
    [169]Coyne M. S., Arunakumari A., Averill B. A., et al. Immunological identification anddistribution of dissimilatory heme cd1and nonheme copper nitrite reductase indenitrifying bacteria[J]. Applied and Environmental Microbiology,1989,55:2924-2931
    [170]Hendriks J., Oubrie A., Castresana J., et al. Nitric oxide reductases in bacteria.[J].Biochimica et Biophysica Acta,2000,1459:266-273
    [171]Hendriks J., Warne A.,Gohlke U. The active site of the bacterial nitric oxide reductase isa dinuclear iron center.[J]. Biochemistry,1998,37:13102-13109
    [172]Chan Y. K., McCormic W. A.,Watson R. J. A new nos gene downstream from nosDFY isessential for dissimilatory reduction of nitrous oxide by Rhizobium (Sinorhizobium)meliloti[J]. Microbiology,1997,143(8):2817-2824
    [173]Sears H. J., Sawers G., Berks B. C., et al. Control of periplasmic nitrate reductase geneexpression (napEDABC) from Paracoccus pantotrophus in response to oxygen andcarbon substrates[J]. Microbiology,2000,146:2977-2985
    [174]Wan C., Yang X., Lee D. J., et al. Aerobic denitrification by novel isolated strain usingNO-2-N as nitrogen source[J]. Bioresource Technology,2011,102:7244-7248
    [175]Starkenburg S. R., Arp D. J.,Bottomley P. J. Expression of a putative nitrite reductaseand the reversible inhibition of nitrite‐dependent respiration by nitric oxide in Nitrobacterwinogradskyi Nb‐255[J]. Environmental Microbiology,2008,10(11):3036-3042
    [176]Baek S.-h.,Shapleigh J. P. Expression of Nitrite and Nitric Oxide Reductases inFree-Living and Plant-Associated Agrobacterium tumefaciens C58Cells[J]. Applied andEnvironmental Microbiology,2005,71:4427-4436
    [177]Vollack K. U.,Zumft W. G. Nitric oxide signaling and transcriptional control ofdenitrification genes in Pseudomonas stutzeri[J]. Journal of Bacteriology,2001,183(8):2516-2526
    [178]Henderson S. L., Dandie C. E., Patten C. L., et al. Changes in denitrifier abundance,denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxicsoil microcosms amended with glucose and plant residues[J]. Applied and EnvironmentalMicrobiology,2010,76(7):2155-2164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700