用户名: 密码: 验证码:
永磁行星齿轮传动系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一种新型无接触式传动机构—永磁行星齿轮传动,与传统机械式行星齿轮传动相比,永磁行星齿轮传动系统具有许多优点:不需润滑和冷却;降低维修成本,提高稳定性;启动力矩低且具有过载保护功能;工作效率高;没有磨损和噪声等。在医疗器械、化工设备以及食品加工设备等领域有着广阔的应用前景。
     本文介绍了永磁行星齿轮传动系统的工作原理,进行了传动系统的参数分析与设计,从同轴条件、邻接条件、等极距条件、装配条件几方面研究了该传动系统的参数关系。
     利用等效电流模型法,推导了磁性齿轮单一轮齿和多轮齿磁感应强度计算公式,在此基础上,推导了太阳轮与行星轮之间、内齿圈与行星轮之间的转矩以及机构输出转矩的计算公式,分析了磁感应强度随场点位置参数的变化规律,以及结构参数对转矩的影响规律;研究结果表明:永磁行星齿轮传动系统的转矩受磁极对数、轮齿径向厚度、轮齿轴向厚度、磁齿轮间气隙以及传动比等参数影响比较大,合理选择参数能够使得该系统结构更加紧凑。
     建立了永磁行星齿轮传动系统的平移-扭转振动动力学模型及其动力学微分方程,由径向力和转矩计算表达式推导了磁性齿轮之间的径向和切向磁性耦合刚度,在此基础上,对系统固有频率和振动模态进行了研究,完成了该传动系统各阶模态对系统设计参数的灵敏度公式推导和变化规律分析;研究发现:磁极对数、磁性齿轮轴向厚度、磁齿轮之间气隙以及磁性齿轮径向间隙对系统模态的影响较大,行星轮安装个数大于2时,系统振动模态包括中心构件扭转、中心构件平移和行星轮模态,行星轮安装个数等于2时不存在行星轮模态,而是内齿圈模态和太阳轮模态。
     建立了永磁行星齿轮传动系统强迫振动的动力学微分方程,对该系统强迫振动时域和频域响应进行了求解,将外部激励分为输入端激励、输出端激励以及同时综合考虑输入端和输出端激励三种情况,完成了系统强迫振动时域和频域响应分析,分析了结构和性能参数对系统频域响应的影响规律;结果表明:只考虑输出端激励时系统各部件动态位移响应较只考虑输入端激励时大,磁感应强度、磁极对数、磁齿轮间的气隙以及磁齿轮的轴向厚度对各构件的低频振幅影响比较大,进行结构设计时要合理选择系统结构参数,避免系统各部件产生较大的振动。
     设计了永磁行星齿轮传动实验样机,搭建了实验平台,对极限转矩以及传动效率进行了测试,将实验测试数据与理论分析结果进行对比分析,证明了理论计算的正确性以及样机参数设计的合理性。
In this paper, a new non-contact drive permanent magnetic planetary gear drive isstudied. Compare with traditional planetary gear drive, the permanent magnetic planetarygear drive has many advantages. The magnetic planetary gear drive does not needlubrication and cooling. It can reduce maintenance and improved reliability. It need lowstarting torque and can offer overload protection. The operating efficiency of the magneticplanetary gear drive is much higher than that of the traditional planetary gear drive. Themagnetic gear drive is without wear and noise.So it can find good application in thetechnical field such as medical apparatus, chemical equipment, food processing equipment,etc.
     In this paper, the operating principle of the permanent magnetic planetary gear driveis introduced. Relationship between the parameters of transmission system is researchedfrom the condition of concentricity, the condition of adjacency, the condition of the equalpole distance, and the mounting condition of the drive.
     Using the equivalent current method, the equations of the magnetic inductionintensity for one magnetic gear tooth or multiple magnetic gear teeth are deduced. From it,the equations of the torques between the planetary gears and sun gear or crown gear, andthe equation of the output torque for the drive are developed aswell. The magnetic fluxdensity of the magnetic gear teeth and its distribution are investigated. The torquesbetween the gears and their changes along with the main drive parameters are analysed.Results show that the pole pair number, the tooth thickness, the tooth width, and the speedratio of the drive have obvious influence on the magnetic output torques. Reasonableselection of parameters can make the system structure more compact.
     The translation-torsion dynamic model for a permanent magnetic planetary geardrive is proposed. Based on the model, the dynamic equations for the permanent magneticplanetary gear drive are given. From the magnetic meshing forces and torques between theelements for the drive system, the tangent and radial magnetic meshing stiffness isobtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to thesystem parameters is discussed. Results show that the pole pair number, the tooth width,the air gap and the tooth thickness have obvious effects on the natural frequencies. For theplanetary gear number larger than two, the vibrations of the drive system include thetorsion mode of the center elements, the translation mode of the center elements, and theplanet modes. For the planetary gear number equal to two, the planet mode does not occur,the crown mode and the sun gear mode occur.
     The forced vibration equation for the permanent magnetic planetary gear drive iseduced. The time and frequency forced responses are computed and analyzed under threekind of condition,only consider the input excitation, only consider output excitation andconsider input excitation and output excitation comprehensively. The influence ofstructure parameters to frequency forced responses is discussed. Results show that thedynamic displacement when only considering output excitation is larger than that whenonly considering input excitation. Magnetization intensity, pole pair number, air gap andaxial thickness have obvious effects on the low frequency vibration amplitude of elements.Selecting rational system structure parameters is very important, which can avoid systemelements generating larger vibration.
     The experimental prototype of the permanent magnetic planetary gear drive isdesigned, and measure the maximum torque and transmission efficiency. The validity oftheoretical calculation and rationality of parameter design are proved by comparing theexperimental data and theoretical analysis results.
引文
[1]鄂中凯.齿轮传动设计[M].北京:机械工业出版社,1985:1-53.
    [2]李华敏.关于齿轮、链、带等学科的发展[J].机械传动,1992,16(1):1-4.
    [3]田杰,赵韩,陈科.小型及微型稀土永磁齿轮传动设计初探[J].机械传动,1998(2):5-6,20,53.
    [4]张宏宇.行星齿轮机构在汽车自动变速器中的应用[J].装备制造技术,2011(4):158-161.
    [5]李锐.行星齿轮减速器在传动系统中的设计与应用[J].郑州铁路职业技术学院学报,2011(2):23-25.
    [6]张建涛,夏东.永磁齿轮在人工心脏中的应用研究[J].微特电机,2005(9):5-6,10.
    [7]张建涛.永磁齿轮特性仿真及其在人工心脏中的应用研究[D].北京:中国科学院电工研究所电机与电器学科硕士学位论文,2005:2.
    [8]邓辉华.稀土永磁齿轮传动系统动态特性仿真技术研究[D].合肥:合肥工业大学机械电子工程学科硕士学位论文,2006:1-4.
    [9]李桌棠,磁性材料[M].上海:上海大学出版社,2001,67-79.
    [10]宋后定,陈培林.永磁材料及其应用[M].北京:机械工业出版社,1984:1-101.
    [11]任伯胜.稀土永磁材料的开发和运用[M].南京:东南大学出版社,1989:1-29.
    [12]周寿增.稀土永磁材料及其应用[M].北京:冶金工业出版社,1990:1-8.
    [13]李文彬.磁力应用工程[M].北京:兵器工业出版社,1991:18-35
    [14]王玉良,王喆,高兴军,等.永磁传动在密封领域中的应用[J].磁性材料及器件,2009(1):1-5,24.
    [15]王喆,邓子龙,王玉良.径向型永磁联轴器传动转矩的数值计算[J].磁性材料及器件,2007(2):40-43.
    [16]刘雪洪,刘梁,常思勤.基于磁力传动的永磁离合器设计与试验[J].农业机械学报,2008(5):15-17,14.
    [17]吕合军,王维刚,曹言光,等.125CQB5—150型磁传动潜水泵的研制[J].石油机械,2008(7):45-47,89-90.
    [18]孟海军.磁传动技术在阀门制造中的应用[J].中国新技术新产品,2010(19):2.
    [19]李向华.上海磁浮轨道巡检车传动系扭转振动的研究[D].上海:上海交通大学车辆工程学科博士学位论文,2007:1-17,33-55.
    [20] Cierniak S. Rollverhalten von Kugeln zwischen geschrankten Rinnen[J]. Konstruktion,1981,33(4):155-158.
    [21] Koji I, Makita S, Suguru A. Non-contact Magnetic Gear for Micro TransmissionMechanism[C]//Proceedings of the1991IEEE Micro Electro Mechanical Systems,1991:125-130.
    [22] Temper Corp. Magnetic Gear and Gear Train Configuration: US,5569967A[P].1996-10-29.
    [23] Furlani E P. Permanent Magnet and Electormechanical Devices: Materials, Analysis andApplications[M]. New York: Academic Press,2001:1-518.
    [24] Furlani E P. Analytical Analysis of Magnetically Coupled Multipole Cylinders[J]. Journal ofPhysics D: Applied Physics,2000,33(1):28-33.
    [25] Yao Y D, Huang D R, Hsieh CC, et al. Simulation Study of the Magnetic Coupling between RadialMagnetic Gears[J]. IEEE Transactions on Magnetics,1997,33(2):2203-2206.
    [26] Yao Y D, Huang D R, Lee C M, et al. Magnetic Coupling Studies between Radial MagneticGears[J]. IEEE Transactions on Magnetics,1997,33(5):4236-4238.
    [27] Nagrial M H, Rizk J. Design and Performance of a Magnetic Gear[J]. IEEE InternationalMagnetics Conference,2000:644.
    [28]陈匡非.平行轴永磁齿轮的特性研究[D].北京:中国科学院电工研究所电工理论与新技术学科硕士学位论文,2003:1-10.
    [29] Tsurumoto K, Kikuchi S. A new Magnetic Gear Using Permanent Magnet[J]. IEEE Transactionson Magnetics,1987,23(5):3622-3624.
    [30] Sulzer Innotec AG. Electrodynamic Transmission and a Centrifugal Pump with a Transmission ofthis Kind: US,6217298B1[P].2001-04-17.
    [31] Fresenius Hemocare GMBH. Magnetic Gear and Centrifuge Having a Magnetic Gear: US,6440055B1[P].2002-08-27.
    [32] Yao Y D, Huang D R, Hsieh C C, et al. The Radial Magnetic Coupling Studies of PerpendicularMagnetic Gears[J]. IEEE Transactions on Magnetics,1996,32(5):5061-5063.
    [33] Baermann M. Magnetic Worm Drive: US,3814962A[P].1974-06-04.
    [34] Kikuchi S, Tsurumoto K. The Radial Magnetic Coupling Studies of Perpendicular MagneticGears[J]. IEEE Transactions on Magnetics,1993,32(5):5061-5063.
    [35] Kikuchi S, Tsurumoto K. Trial Construction of a New Magnetic Skew Gear Using PermanentMagnet[J]. IEEE Transactions on Magnetics,1994,30(6):4767-4769.
    [36] Kikuchi S, Tsurumoto K. Design and Characteristics of A New Magnetic Worm Gear UsingPermanent Magnet[J]. IEEE Trane,1987,29(6):2923-2925.
    [37]王洪群.磁传动应用技术发展[J].重型机械,2006(6):1-4.
    [38]王洪群.磁传动设计研究[J].机械设计,2008(10):51-54.
    [39]苏颜宏,张泽惠.磁传动技术的发展和应用[J].甘肃科技,2004,20(8):82-86.
    [40]杨超君,顾红伟.永磁传动技术的发展现状和展望[J].机械传动,2008(2):1-4.
    [41]李福宝.磁传动密封综述[J].辽阳石油化工高等专科学校学报,2000,16(1):37-39.
    [42]王虎生,侯云鹏,程树康.无接触永磁齿轮传动机构发展综述[J].微电机,2008(2):71-73.
    [43] David C. Common Industry Myths About Magnetic Drive Pumps[J]. World Pumps,2004(455):20-23.
    [44]蒋大辉.国外磁力驱动泵发展综述[J].水泵技术,1993,43(3):44.
    [45] Laing N. Centrifugal Pump with Magnetic Coupling: US,3649137A[P].1972-03-14.
    [46] Filer B. Magnetic Coupling for Motor Driven Pumps and the Like: US,3826938A[P].1974-07-30.
    [47]郑学家.第三代永磁体-钕铁硼[J].辽宁化工,2002,31(2):60-61.
    [48] Martin JR, T B Magnetic Transmission: US,3378710[P].1968-04-16.
    [49] Gerd S, Juerge L. Magnetic Parallel Shaft Drive for Contactless Transmission of Torque-usesWheels with Magnets at Circumference at Least Two of which are Rotationally Located on Shafts:DE,4223826[P].1994-01-27.
    [50] Nobuyuki S. Miniature motor with a frequency generator: US,5013946[P].1991-05-07.
    [51] Hatch G P. Recent Developments In Permanent Magnet Gear Systems&Machines[C/OL].
    [2012-03-03]. http://www.terramagnetica.com/papers/hatch-permanent-magnet-gears.pdf.
    [52] Atallah K, Calverley S D, Howe D. Design, Analysis and Realisation of a High-PerformanceMagnetic Gear[J]. IEE Proc.-Electr. Power Appl,2004,151(2):135-143.
    [53]白金刚.径向磁场调制型无刷双转子电机的研究[D].哈尔滨:哈尔滨工业大学电气工程学科硕士学位论文,2011:16-52.
    [54] Linni J, Chau K T, Yu Gong, et al. Comparison of Coaxial Magnetic Gears With DifferentTopologies. IEEE Transactions on Magnetics,2009,45(10):4526-4529.
    [55]杜世勤.新型磁齿轮复合电机的设计研究[D].上海:上海大学电力电子与电力传动学科博士学位论文,2010:1-43.
    [56]刘新华.新型磁场调制式磁性齿轮的设计研究[D].上海:上海大学电力电子与电力传动学科博士学位论文,2008:13-30.
    [57]张琪,王凯立,黄苏融,等.轴向磁场调制型磁力齿轮的设计方法[J].电机与控制应用,2011(11):6-10,15.
    [58]刘航航.无刷双馈电机磁场调制机理与电磁设计研究[D].重庆:重庆大学电气工程学科硕士学位论文,2011:1-26.
    [59]包广清,刘新华,毛开富.基于磁场调制式磁齿轮传动的永磁同步风力发电系统[J].农业机械学报,2011(5):116-120,150.
    [60] Lingzhong Xu, Zhen Huang, Yulin Yang. Mesh theory for Toroidal Drive[J]. Transactions of theASME,2004,126(3):551-557.
    [61] Xu L Z, Huang J. Torques for electromechanical integrated toroidal drive[J]. Journal ofMechanical Engineering Science,2005,219(8):801-811.
    [62]高振玲,蔡毅.永磁超环面传动行星轮轮齿空间磁场分布计算[J].机械设计与制造,2009(11):55-56.
    [63] Neuland A H. Apparatus for Transmitting Power: US,1171351[P].1916-02-08.
    [64] Micro Pump Corp. Magnetic Transmission: US,3378710A[P].1968-04-16.
    [65] Reese G A. Magnet Gear Arrangement: US,3301091A[P].1967-01-31.
    [66] Nikolaus L. Magnetic Transmission: US,3645650A[P].1972-02-29.
    [67] Nikkiso Eiko Kk. Multiple Magnet-driven Type Pump: JP,63223390A[P].1988-09-16.
    [68] Bernd A, Leo H. Magnetic Drive Arrangement Comprising a Plurality of MagneticallyCooperating Parts Which are Movable Relative to One Another: US,5633555[P].1997-05-27.
    [69] Bernd A. Magnetic Drive Arrangement: US,5994809A[P].1999-11-30.
    [70] Huang C C, Tsai M C, Dorrell D G, et al. Development of a Magnetic Planetary Gearbox[J]. IEEETransactions on Magnetics,2008,44(3):403-412.
    [71]苏州博菲利电动科技有限公司.行星磁性轮系动力传动装置:中国,200810018700.8[P].2008-08-13.
    [72]江苏泰隆减速机股份有限公司,苏大卫.磁浮行星齿轮变速机:中国,201010295205.9[P].2011-02-09.
    [73] Akoun G, Yonnet J P.3D Analytical Calation of the Forces Exerted Between Two CuboidalMagnets[J]. IEEE Transactions on Magnetics,1984,20(5):1962-1964.
    [74] Furlani E P. Formulas for the Force and Torque of Axial Couplings[J]. IEEE Transactions onMagnetics,1993,29(5):2295-2301.
    [75] Furlani E P, Reznik S, Janson W. A Three-Dimensional Field Solution for Bipolar Cylinders[J].IEEE Transactions on Magnetics,1994,30(5):2916-2919.
    [76] Furlani E P, Kroll R A. A Three-Dimensional Field Solution for Radially Polarized Cylinders[J].IEEE Transactions on Magnetics,1995,31(1):844-851.
    [77] Furlani E P. A Three-Dimensional Field Solution for Axially-polarized Multipole Disks[J]. Journalof Magnetism and Materials,1994(135):205-214.
    [78] Furlani E P, Knewtson M A. A Three-Dimensional Field Solution fo Permanent-MagnetAxial-Field Motors[J]. IEEE Transactions on Magnetics,1997,33(3):2322-2325.
    [79] Wang R, Furlani E P, Cendes Z J. Design and Analysis of a Permanent Magnet Azial CouplingUsing3D Finite Element Field Computations[J]. IEEE Transactions on Magnetics,1994,30(4):2292-2295.
    [80] Furlani E P. A Formula for the Levitation Force Between Magneic Disks[J]. IEEE Transactions onMagnetics,1993,29(6):4165-4169.
    [81] Furlani E P, Lewis T S. A Two Dimensional Model for the Torque of Radial Couplings[J]. Int. J.Appl. Elect. Mech.,1995(6):187-196.
    [82] Furlani E P Analysis and Optimization of Synchronous Couplings[J]. J. Appl. Phys.,1996(79):4692-4694.
    [83] Furlani E P, Wang R, Kusnadi H. A Three-Dimensional Model for Computing the Torque of RadialCouplings[J]. IEEE Transactions on Magnetics,1997,31(5):2522-2526.
    [84] Furlani E P. A Two-Dimensional Analysis for the Coupling of Magnetic Gears[J]. IEEETransactions on Magnetics,1997,33(3):2317-2321.
    [85] Furlani E P. Analytical Analysis of Magnetically Coupled Multipole Cylinders[J]. J. Phys. D: Appl.Phys.,2000(33):28-33.
    [86] Huang D R, Yao Y D, Lin S M, et al. The Radial Magnetic Coupling Studies between MagneticGears[J]. IEEE Transactions on Magnetics,1995,31(6):3752-3754.
    [87] Yao Y D, Huang D R, Lee C M, et al. Magnetic Coupling Studies between Radial Magneticgears[J]. IEEE Transactions on Magnetics,1997,33(5):4236-4238.
    [88] Yao Y D, Chiou G J, Huang D R, et al. Theoretical Computations for The Torque of MagneticCoupling[J]. IEEE Transactions on Magnetics,1995,31(3):1881-1884.
    [89] Yao Y D, Huang D R, Lin S M, et al. Theoretical Computation of the Magnetic Coupling betweenMagnetic Gears[J]. IEEE Transactions on Magnetics,1996,32(3):710-713.
    [90] Huang D R, Hsieh C C, Chiang D Y, et al. The Radial Magnetic Coupling Studies of PerpendicularMagnetic Gears[J]. IEEE Transactions on Magnetics,1996,32(5):5061-5063.
    [91] Vandevelde L, Jan A, Melkebeek A. A Survey of Magnetic Force Distributions Based on DifferentMagnetization Models and on the Virtual Work Principle[J]. IEEE Transactions on Magnetics,2001,37(5):3405-3409.
    [92] Niguchi N, Hirata K, Muramatsu M, et al. Dynamic Analysis of Axial-type Magnetic GearEmploying3-D FEM[C]//Digests of the201014th Biennial IEEE Conference on ElectromagneticField Computation,2010.
    [93] Niguchi N, Hirata K. Transmission Torque Analysis of a Novel Magnetic Planetary GearEmploying3-D FEM[J]. IEEE Transactions on Magnetics,2012,48(2):1043-1046.
    [94] Man Y K, Zhang Y S, Zhao, Y S. Analysis on a Novel Coaxial Magnetic Gear[J]. AppliedMechanics and Materials,2012,(121-126):3682-3688.
    [95]戈宝军,李哲生.永磁传动器磁场和力矩特性的分析与计算[J].哈尔滨电工学院学报,1992,15(4):294-298.
    [96]赵韩,杨志轶.永磁齿轮传动力矩三维分析与计算[J].农业机械学报,2001,32(6):95-98,109.
    [97]赵韩,杨志轶,田杰.永磁齿轮传动力矩计算方法研究[J].机械工程学报,2001,37(11):66-69.
    [98]赵韩,陶俊,杜世俊,等.稀土永磁传动机构的转矩计算及特性分析[J].机械传动,1999,23(3):23-25.
    [99]赵韩,田杰.用有限元法设计稀土永磁齿轮传动[J].机械科学与技术,2000,19(2):207-209.
    [100]赵韩,陶俊,田杰.磁场积分法在稀土永磁齿轮传动机构场分析中的应用[J].机械工程学报,2000,36(8):29-32.
    [101]田杰,邓辉华,赵韩,等.稀土永磁齿轮传动系统动态仿真研究[J].中国机械工程,2006(22):2315-2318.
    [102]田杰,邓辉华,张萍,等.考虑非线性磁导率稀土永磁齿轮磁场研究[J].机械工程师,2006(1):92-94.
    [103]张建涛,夏东.永磁齿轮转矩特性研究[J].机械,2005(3):3-5.
    [104]张建涛,夏东.永磁齿轮传动特性研究[J].机械设计与制造,2005(5):69-70.
    [105]孔繁余,张旭锋,张洪利,等.无接触传动永磁齿轮磁场的数值模拟[J].工程设计学报,2009(3):187-190.
    [106]田杰.稀土永磁齿轮的设计理论与实验研究[D].合肥:合肥工业大学机械制造学科博士学位论文,1999:29-86.
    [107]郑伟刚,罗延科,李屹.稀土永磁磁力齿轮传动实验研究[J].械制造,2004(11):52-54.
    [108]李福伟.基于有限元分析的磁性齿轮模拟仿真及实验研究[D].天津:天津大学机械制造及其自动化硕士学位论文,2009:12-39.
    [109]Tian H, Nagaya K, Ikai S. Vibration Control Of A MagneticGear System By Using Sliding ModeControl[J]. Journal of Sound and Vibration,1994,177(1):57-70.
    [110]Fukuoka M, Nakamura K, Ichinokura O. Dynamic Analysis of Planetary-type Magnetic GearBased on Reluctance Network Analysis[J]. IEEE Transactions on Magnetics,2011,47(10):25-29.
    [111]Montague, R.G., Bingham, C.M., Atallah, K. Magnetic Gear Dynamics for Servo Control[C].Proceedings of the Mediterranean Electrotechnical Conference-MELECON,2010:1192-1197.
    [112]Tsai M C, Huang C C. Development of a Variable-inertia Device with a Magnetic PlanetaryGearbox[J]. IEEE/ASME Transactions on Mechatronics,2011,16(6):1120-1128.
    [113]Chen H H, Chen J. Dynamic Properties Analysis of Electromagnetic Gear Driving System[J].Applied Mechanics and Materials,2010,(34-35):422-428.
    [114]陈海虹,吴永闯,陈俊.电磁齿轮传动系统动态仿真研究[J].机械传动,2010(7):9-14.
    [115]Hao X H, Xu L Z. Internal Resonance Analysis for Electromechanical Integrated ToroidalDrive[J]. Journal of Computational and Nonlinear Dynamics,2010,5(4): Art. No.041004.
    [116]Xu L Z, Hao X H. Sensitivity of Toroidal Drive Natural Frequencies to Modes Parameters[J].JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing,2006,49(1):213-224.
    [117]Xu L Z, Hao X H. Free Vibration for Toroidal Drive[C]. Journal of Multi-body Dynamics,2006,220(2):125-140.
    [118]Xu L Z, Hao X H. Nonlinear Forced Vibration for Electromechanical Integrated Toroidal Drive[J].International Journal of Applied Electromagnetics and Mechanics,2008,28(3):351-369.
    [119]Xu L Z, Hao X H. Dynamic Response for Electromechanical Integrated Toroidal Drive to ElectricExcitation[J]. Structural Engineering and Mechanics,2007,26(6):635-650.
    [120]Xu L Z, Hao X H. Dynamic Model for Electromechanical Integrating Toroidal Drive[J].International Journal of Applied Electromagnetics and Mechanics,2005,22(3-4):199-211.
    [121]温诗铸,黎明.机械学发展战略研究[M].北京:清华大学出版社,2003:1-4.
    [122]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004:1-10.
    [123]张策.机械动力学(第二版)[M].北京:高等教育出版社,2008:1-3,324-336.
    [124]饶振纲.行星齿轮传动设计[M].北京:化学工业出版社,2003:1-112.
    [125]马从谦.渐开线行星齿轮传动设计[M].北京:机械工业出版社,1987:1-87.
    [126]黄政棋.磁性行星齿轮系之设计与特性分析[D].台北:国立成功大学机械工程学科硕士学位论文,2006:20-21.
    [127]丁君.工程电磁场与电磁波[M].北京:高等教育出版社,2005:1-30.
    [128]牛中奇,朱满座,卢智远,等.电磁场理论基础[M].北京:电子工业出版社,2001,76-83.
    [129]邹继斌,刘宝廷,崔淑梅,等.磁路与磁场[M].哈尔滨:哈尔滨工业大学出版社,1998:1-108.
    [130]Yao Y D, Huang D R, Hsieh C C, et al. Simulation Study of the Magnetic Coupling betweenRadial Magnetic Gears[J]. IEEE Transactions on Magnetics,1997,33(2):2203-2206.
    [131]谢正义. Pro/ENGINEER Wildfire2.0中文版完全学习手册[M].北京:中国电力出版社,2005:1-342.
    [132]二代龙震工作室. Pro/ENGINEER Wildfire5.0基础设计[M].北京:清华大学出版社,2010:1-383.
    [133]万凯宇.行星齿轮传动系统动力学分析研究[D].南京:南京航空航天大学机械设计及理论学科硕士学位论文,2004:7-36.
    [134]王世宇,张策,宋轶民,等.行星齿轮传动固有频率的统计特性分析[J].机械科学与技术,2005,24(6):705-709.
    [135]Lin J, Parker R G. Analytical Characterization of the Unique Properties of Planetary Gear FreeVibration[J]. Journal of Vibration and Acousties,1999,121:316-321.
    [136]Perkins N C, Mote C D. Comments on Curve Veering in Eigenvalue Problems[J]. Journal ofSound and Vibration,1986,106(3):451-463.
    [137]Pierre C. Mode Localization and Eigenvalue Lociveering Phenomena in Disordered structures[J].Journal of Sound and Vibration,1988,126(3):485-502.
    [138]Lin J, Parker R G. Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes toModes Parameters[J]. Journal of Sound and Vibration,1999,228(1):109-128.
    [139]王世宇,张策,宋轶民,等.行星传动固有特性分析[J].中国机械工程,16(16):1461-1465.
    [140]郑兆昌.机械振动(上册)[M].北京:机械工业出版社,1980:1-240.
    [141]林鹤.机械振动理论及应用[M].北京:冶金工业出版社,1990:23-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700