用户名: 密码: 验证码:
西藏高寒地区水泥混凝土路面太阳能融雪(冰)技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏高寒地区道路积雪结冰现象较为严重,往往造成道路中断或交通事故。与此同时,作为绿色能源的太阳能资源在西藏高寒地区较为丰富,如何利用太阳能技术修建高效、环保的水泥路面融雪系统,对解决西藏高寒地区的道路积雪和发展地区低碳经济具有十分重要的现实意义。
     为了开展西藏高寒地区水泥混凝土路面太阳能融雪(冰)技术研究,本文依托西部交通科技项目—《高寒地区太阳能实时融雪(冰)公路技术研究》,在西藏米拉山顶设立小型气象站进行高寒地区气象资料收集,通过室内、现场融雪试验得到了理论分析所必须的计算参数,进行融雪路面板的热力仿真研究了路面板的融雪性能,并结合数值分析编制了水泥混凝土路面融雪(冰)热力分析软件,提出了西藏高寒地区太阳能水泥混凝土路面融雪系统的设计方法。主要研究成果如下:
     1、在川藏公路西藏米拉山顶设立小型气象站进行了高寒地区气象资料收集,观测资料表明每年米拉山可能的积雪出现在11月中旬到次年的4月初。米拉山太阳能资源丰富,能够满足太阳能融雪路面要求。
     2、进行了室内、室外光伏系统和光热系统路面板融雪(冰)试验,得到了不同加热温度和功率时路面板表层温度与融雪速率的试验关联式;进行了水泥混凝土路面雪系统热力分析,得到了热管深度、间距、加热流体温度、环境条件等对路面板融雪效果的影响规律。针对实时融雪过程,研究了预热时间对路面板融雪效果的影响规律,分析了预热过程中路面板内部温度随着预热时间的变化以及降雪过程中路面积雪的分布、温度分布随时间变化的规律,表明采用降雪前路面板预热融雪效果最好。
     3、在西藏米拉山口进行了高寒地区混凝土路面太阳能现场融雪和加载试验,结果表明光伏系统融雪效果较好,300W/m2功率可以在5个小时内化完5cm厚的积雪,预热融雪效果较好;环境因素对路面温度影响较大,但对路面板底部影响较小;路面板加热过程中,应变随温度的上升由压变拉,加热管附近的应变最大,表现为内胀外缩;加载过程中,汽车荷载对路面的影响较小;XPS板的隔热效果较好,可以起到保护冻土路基的作用。
     4、根据所建立的水泥混凝土路面太阳能融雪模型,将融雪工况简化为三种工况,编制了水泥混凝土路面融雪热力分析程序,并提出了西藏太阳能水泥混凝土路面融雪系统的设计方法。系统采用C30混凝土含加热管路面板,预制尺寸采用2m×3m,现浇时切缝成2m×3m板,缝深应超过加热管埋深;XPS板厚度大于等于5cm,抗压强度大于5MPa。加热管功率推荐采用320W/m2,推荐热管埋深为6~12cm,间距为15~25cm。
There are many serious highway snow cover and freezing problems in Tibetan cold highland area, which often lead to traffic interrupts or accidents. Meanwhile, solar energy, being a green energy, is abundant in the area. Therefore, how to utilize solar energy technology and build high efficient and environmental pavement snowmelt system is very important to overcome Tibetan highway snow cover and develop low-carbon economy.
     For research on cememt concrete pavement's solar nnergy snowmelt in Tibetan cold highland area, relying on the West Traffic Research Project, Solar Energy Real-time Snowmelt Highway Research in Cold Highland Area, the paper has collected the meteorological data in the Tibetan cold highland area through the small weather station, which has been established on the top of Mountain mila, Tibet, and gained calculation parameters by indoor snowmelt tests, snowmelt field trials, which is necessary to theoretical analysis. Pavement snowmelt behavior is researched by snowmelt thermodynamic simulation analysis. And, the software of calculating thermal energy that be used to pavement snowmelt is also written, the design method of Tibetan solar energy snowmelt pavement is presented. The main results are as following:
     1、Through the small weather station, which has been established on the top of Mountain mila, Tibet, the meteorological data in the Tibetan cold highland area has been collected, which indicates that the possible snow-cover time is mid-November to early April every year, which indicats that the solar radiation energy in the area is enough to meet the requirement of pavement snowmelting.
     2、Through indoor snowmelt tests, snowmelt field trials of the solar photovoltaic slabs and the solar thermal slabs, The correlations between snow melting rate and surface temperature are obtained under different temperature of heating fluid and different heating power. The numerical analysis of the snowmelt pavement is carried out, in which the impact of depth and space of heat pipe, temperature of heating fluid and environmental conditions on snowmelt performance has been researched. In view of real-time snowmelt process, the impact of preheating time on snowmelt performance has been researched, the surface temperature changing regularities during the preheating process, the snow thickness changing regularities and the temperature distribution law during the snowfall process will be showed in this paper. The results demonstrate that the preheating before snowfall has best influence on snowmelt performance.
     3、On the top of mountain mila in Tibet, the snowmelt and loading tests of solar snowmelt pavement have been carried out, which indicates the solar photovoltaic slabs is better than the solar thermal slabs, for the snow5cm high can be melted in5hours under the power of300W/m2. It can be also found that the influence of environmental factor to the temperate of pavement is greater, but is litter in the bottom of pavement. In the heating progress, when the temperature become higher, the pavement appear inner expansion and outside shrink, and the strain of it begin vary from compression to tension, which is biggest adjacent to the heat pipe. During loading, the vehicle load has smaller action to the pavement than temperature's action. The heat insulation effect of XPS slab is better, which can protect frozen soil subgrade.
     4、Based on the model of pavement solar snowmelt system, three snowmelt conditions are simplified from the snowmelt process, and the cement concrete pavement snowmelt design software is compiled. Meanwhile, The design method of Tibetan solar pavement snowmelt system is presented, of which, the concrete pavement slab is poured by C30, which is2m×3m in cast-in-place, or cut by2m×3m cutting seam, which is deeper than the heat pipe. The thickness of XPS slab is no smaller than5cm, the compressive strength of XPS slab is no lower5MPa. And, the heating power is recommended320W/m2, the depth of heat pipe is6~12cm, the distance between two pipes is12~25cm.
引文
[1]中华人民共和国交通运输部,2009年公路水路交通运输行业发展统计公报[EB/OL], http://www.moc.gov.cn/zhuzhan/tongjigongbao/fenxigongbao/hangyegong bao/2010 09/t20100916_811433.html,2010-04-01
    [2]靳长征,白晨.浅谈道路结冰的清除[J].河南交通科技,1996,5:45-46
    [3]张健.石墨砂浆注浆钢纤维混凝土融雪化冰研究[D].大连理工大学硕士论文,2007
    [4]蒋军,代舒.冰雪灾害对道路运输的影响及对策探讨[J].道路交通与安全,2008,(04):18-22
    [5]李巨文,李淑玲.南方冰雪灾害的回顾与反思[J].防灾科技学院学报,2008,(04):71-74
    [6]赵文武,伍国正.我国南方冰雪灾害的特征与城市救灾对策研究[J].中国安全科学学报,2008,(10):5-9
    [7]陶诗言,卫捷.2008年1月我国南方严重冰雪灾害过程分析[J].气候与环境研究,2008,(04):337-350
    [8]中国西藏网,西藏太阳能资源丰富区达98%[DB/OL],http://www.tibet.cn/ news/index/xzyw/201012/t20101208_779142.htm,2010-12-8
    [9]孙凤环,李萍.西藏太阳能开发利用的前景与展望[J].西藏科技,2004,11(139):16-17,22
    [10]贾志裕等.高寒地区太阳能实时融雪(冰)公路技术研究[R].西安中交第一公路勘察设计研究院,2010
    [11]张炳臣,刘淑敏.冬季道路除雪方式的探讨[J].山东交通科技,2004,1:76-77
    [12]邓洪超,马文星,荆宝德.道路冰雪清除技术及发展趋势[J].工程机械,2005,(12):41-44+104
    [13]李国平,韩伟华.当前道路融雪方法及未来发展趋势[J].科技信息,2008,(21),55
    [14]刘红瑛,郝培文.道路除冰雪技术及其发展趋势[J].筑路机械与施工机械化,2008,(11):18-21+8
    [15]谭忆秋.雪灾中的路面除冰技术[J].交通建设与管理,2008,(Z1):86-87
    [16]齐晓杰.道路与公路冰雪清除技术发展现状与探讨[J].林业机械与木工设备, 2004,32(6):7-10
    [17]Taggart DG, Ibrahim O, Huston M. Application of Jetting Technology to Pavement Deicing [C].81st Annual Meeting of the Transportation-Research-Board, January, 2002 Washington, D.C. Safety and Maintenance Service,2002, (1794):77-83
    [18]Ostendorf DW, Hinlein ES, Ahlfeld DP, et al. Calibrated Models of Deicing Agent Solids, Pavement Texture, and Specific Conductivity of Highway Runoff [J]. Journal of Environmental Engineering-ASCE,2006,132(12):1562-1571.
    [19]田晋跃.国外道路除雪机械技术发展概况[J]专用汽车,2001,(04):43-44
    [20]张启君.国外除雪设备发展情况概述[J].建设机械技术与管理,2008(3):63-33
    [21]骆虹,罗立斌,张晶.融雪剂对环境的影响及对策[J].中国环境监测,2004,20(1):55-57
    [22]范杰,马颖.除雪剂在除雪中的应用及对环境危害的防治[J].重庆交通学院学报,2007,26(3):78-81
    [23]傅沛兴.北京道路冬季融雪问题研究[J].市政技术,2001,29(4):54—59
    [24]攀海滨.国外融雪材料在冬季除雪中的使用[J].筑路机械与施工机械化,2006,(11):5-7
    [25]陈建滨,董红星.环保型道路融雪剂的研制[J].化学工程师,2004,(10):65-66
    [26]刘丽平.化学融雪与大桥结构耐久性[J].中国市政工程,2008,(2):22-25
    [27]周纯秀.冰雪地区橡胶颗粒沥青混合料应用技术的研究[D].哈尔滨工业大学博士论文,2006
    [28]张洪伟.橡胶颗粒除冰雪沥青路面的研究[D].长安大学硕士论文,2009
    [29]Sherif Yehia. Conductive concrete overlay for bridge deek deicing:mixture proportioning, optimization andproperties. ACI Materials Journal.2000,97(2):172-181
    [30]李丹,董发勤,沈刚.钢纤维石墨导电混凝土在路面除冰雪中的应用研究[J].新型建筑材料,2004,(11):61-64
    [31]王庆艳.太阳能—土壤蓄热融雪系统路基得热和融雪机理研究[D].大连理工大学硕士论文,2007
    [32]管数园.电缆加热系统进行融雪的数值分析研究[D].上海交通大学硕士论文,2008
    [33]Chapman, W.P.. Design of snow melting systems[J]. Heating and Ventilating, 1952.49(4):96-102
    [34]ASHRAE Handbook-Fundamentals[M]. Atlanta, GA:American Society of Heating Refrigerating and Air-conditioning Engineers Inc,1993
    [35]Schnurr N.M., D.B.Rogers. Transient Analysis of Snow Melting Systems[J]. ASHRAE Transactions,1970.77,Part 2:159-166
    [36]Leal M.V.,P.L.Miller. An analysis of the transient temperature distribution in pavement heating installations[J]. ASHRAE Transactions,1972.78,Part 2:61-66
    [37]Schnurr N.M.,M.W.Falk. Heat transfer design data for optimization of snow melting systems[J].ASHRAE Transactions,1973.76,Part 2:257-263
    [38]Kilkis I.B. Design of embedded snow-melting systems. Part 1, Heat requirements-an overall assessment and recommendations[J]. ASHRAE Transactions,1994a.100,Part 1:423-433
    [39]Kilkis I.B. Design of embedded snow-melting systems. Part 2, Heat transfer in the slab-a simplified model[J]. ASHRAE Transactions,1994b.100, Part 1:434-441
    [40]Ramsey, J.W., M J.Hewett, T.H.Kuen,et al. Development of snow melting load design algorithms and data for locations around the world(ASHRAE 926-RP),Final Report[R]. Atlanta:American Society of Heating Refrigerating and Air conditioning Engineers Inc,1999
    [41]Chiasson, A. Advances in modeling of ground-source heat pump systems[D]. Oklahoma State University. Stillwater, OK,2000
    [42]Rees S.J., J.D.Spitler, X.Xiao. Transient analysis of snow-melting system performance[J]. ASHRAE Transactions,2002.108(2):406-423
    [43]Spitler J.D., Hogue T.D.Prevention of bridge deck icing using geothermal heat[R].Oklahoma State University,1995
    [44]Wadivkar Ojas. An experimental and numerical study of the thermal performance of a bridge deck de-icing system[D], Oklahoma State University,1997
    [45]Mahadevan Ramamoorthy. Applications of hybrid ground source heat pump system to buildings and bridge decks [D], Bachelor of Engineering, Government College of Technology Coimbatore, India,1996
    [46]Mahadevan Ramamoorthy, Hui Jin. Optimal sizing of hybrid ground source heat pump systems that use a cooling pond as a supplemental heat rejecter--A system simulation approach, Ashrae Transactions 2001,107(01):26-37
    [47]Xia Xiao. Experimental and Computational Investigation of Snow Melting of Heated Horizontal Surfaces [D]. Oklahoma State University,1999
    [48]Sean Lynn Hockersmith. Experimental and computational investigation of snow melting on heated horizontal surfaces[D], Oklahoma State University,1999
    [49]LIU Xiao bing. Development and Experimental Validation of Simulation of Hydronic Snow Melting Systems for bridges[D]. Oklahoma State University,2005.
    [50]J W Lund. Reconstruction of a pavement geothermal deicing system[J]. Geo-Heat Center Quarterly Bulletin,1999.20(1):14-17
    [51]Oregon Department of Transportation.Grading, structure and paving a canal bridges (klamathfalls)section, Wall Street and Eberlein Avenue, Klamath County[R]. Contract No.12745.,2003
    [52]Federal Highway Administration. Heated bridge technology [R]. DOT,1999.
    [53]Kinya Iwamoto, Shigeyuki Nagasaka. Prospects of snow melting systems using underground thermal energy storage in Japan[C]. Proceedings of Annual Conference of The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan,2000
    [54]Morita K., M.Tago. Development of the downhole coaxial heat exchanger system: potential for fully utilizing geothermal resources[J]. GRC Bulletin,1995.24(3):83-92
    [55]Katarzyna Zwarycz. Snow melting and heating systems based on geothermal heat pumps at Goleniow airport, Porland[R]. Geothermal Training Programme,2002
    [56]Arni Ragnarsson. Geothermal development in Iceland 1995-1999[C]. Proceedings of World Geothermal Congress. Japan,2000
    [57]Mariuse owezarek, Reman Demeanski. Applieation of heat extraction from the road bridge[C].9thInternational Confereneeon Thermal Energy Storage. Warsaw in Poland, Vol.Ⅱ,2003
    [58]高一平.利用太阳能的路面融雪系统[J].国外公路.1997(4):53-55
    [59]高青,黄勇等.循环热流体路面融雪化冰过程传热及其应用分析[J].热科学与技术,2009,8(2):124-130
    [60]高青,于呜,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路.2007,51(5):170-174
    [61]唐祖全,李卓球.导电混凝土融雪化冰机理分析[J].混凝土.2001(7):8-11
    [62]侯作富,李卓球.导电混凝土除冰化雪系统输入功率的有限元计算[J].华中科技大学学报(城市科学版).2002,19(1):82-85
    [63]侯作富,李卓球,胡胜良.融雪化冰用碳纤维导电混凝土的电阻率研究[J].长江大学学报(自然版).2005,7(2):264-266
    [64]唐祖全,李卓球.导电混凝土电热除冰化雪的功率分析[J].重庆建筑大学学报.2002,24(3):102-105
    [65]Tang ZQ, Qian JS, Li ZQ, et al. Influential Factors on Deicing Performance of Electrically Conductive Concrete Pavement [J]. Journal of WUHAN University of Technology-Materials Science Edition,2006,21(2):123-127
    [66]陈光.扫雪除冰车红外线加热系统设计及其数值模拟[D].大连理工大学硕士论文,2003
    [67]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究[D].武汉理工大学博士论文.2003
    [68]李丹,董发勤.钢纤维石墨导电混凝土在路面除冰雪中的应用研究[J].建筑门窗与金属建材.2004(11):61-64
    [69]武海琴.发热电缆用于路面融雪化冰的技术研究[D].北京工业大学,2005
    [70]李炎锋,武海琴,王贯明等.发热电缆用于路面融雪化冰的实验研究[J].北京工业大学学报,2006,32(3):217-222
    [71]胡文举,姜益强,姚强.桥面热力融雪模型研究与分析[J].哈尔滨工业大学学报,2007,39(12):1896-1899
    [72]胡文举.基于土壤源热泵桥面融雪系统的基础研究[D].哈尔滨工业大学硕士论文,2006
    [73]王华军.流体加热道路融雪传热传质特性[D].天津大学博士论文,2007
    [74]赵亮.基于流体加热的道路融雪理论与实验研究[D].天津大学硕士论文,2007
    [75]王华军,赵军等.太阳能—地热道路融雪系统路面传热特性的数值分析[J].太阳能学报.2007,28(6):608-611
    [76]Huajun Wang, Jun Zhao, Zhihao Chen. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water [J]. Energy Conversion and Management,2008 (49):1538-1546
    [77]朱强,赵军,刘益青.太阳能-土壤蓄热技术在公路融雪中的应用[J].交流平台,2007(30):70~71
    [78]朱强,宋着坤,赵军.太阳能和地表热能道路融雪(冰)系统[J].太阳能,2004(6):52~53
    [79]颜景文,陈政伟,喻林青等.道路热力融雪速率的试验测定及融雪过程动态特性[J].工程热物理学报,2010(7):1100-1104
    [80]方安平等Origin 8.O实用指南[M].北京:机械工业出版社.2009
    [81]Xiaobing, SJ Rees, JD Spitler. Modeling snow melting on heated pavement surfaces.Part I:Model development[J].Applied Thermal Engineering,2007 (27): 1115-1124
    [82]Xiaobing, SJ Rees, JD Spitler. Modeling snow melting on heated pavement surfaces.Part II:Experimental validation[J].Applied Thermal Engineering,2007 (27):1125-1131
    [83]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006
    [84]刘保柱,苏彦华,张洪林MATLAB7.0从入门到精通[M].北京:人民邮电出版社,2010
    [85]邓学均,陈荣生.刚性路面设计(第二版)[M].北京:人民交通出版社,2005
    [86]交通部行业标准.公路水泥混凝土路面设计规范(JTJ D40-2002)(S)北京:人民交通出版社,2002
    [87]国家标准.混凝土结构设计规范(GB 50010-2002)(S)北京:建筑工业出版社,2002
    [88]蒋利学,陆伟杰.混凝土结构中钢筋保护层厚度的控制[J].工业建筑,2005,35(增):179-183
    [89]彭武.谈混凝土结构中钢筋保护层的厚度控制[J].广‘东建材,2009,(6):79-81
    [90]王选仓,侯荣国.长寿命路面结构设计.交通运输工程学报[J],2007(6):46-49
    [91]侯荣国.复合式长寿命路面结构研究[D].长安大学博十论文,2008
    [92]季文华,慕万奎.水泥混凝土路面温度应力分析[J].黑龙江交通科技,2004,(3):12-14
    [93]姚祖康.水泥混凝土路面的温度翘曲应力[J].同济大学学报,1981,(3):44-54
    [94]谈至明,姚祖康,刘伯莹.水泥混凝土路面的温度应力分析[J].公路,2002,(8):19-23
    [95]牛开民,田波.水泥混凝土路面等效疲劳温度应力系数[J].中国公路学报,2006,19(5):23-28
    [96]顾文钧,俞建荣.水泥砼路面温度疲劳应力计算方法的改进[J].重庆交通学院学报,1997,16(2):37-42
    [97]Wang HJ, Chen ZH. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids[J]. Energy Conversion and Management.2009 (50):157-165.
    [98]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [99]李安定.太阳能光伏发电系统工程[M].北京:北京工业大学出版社.2001
    [100]太阳光发电协会编,刘树民,宏伟译.太阳能光伏发电系统设计与施工[M].北京:科学出版社.2006
    [101]罗运俊,陶桢.太阳能热水器及系统[M].北京:化学工业出版社,2007
    [102]吴振一,窦建清.全玻璃真空太阳能集热管热水器及热水系统[M].北京:清华大学出版社,2008
    [103]程建国.西藏太阳能与水源热泵联合供暖应用研究[D].西南交通大学硕士论文,2006
    [104]罗运俊,何梓年,王常贵.太阳能利用技术[M].北京:化学工业出版社,2005
    [105]王宏卯,郑宗和,高会水.西藏地区太阳能直接供暖系统的设计[J].煤气与热力,2007(27):67-68
    [106]李宏毅,金磊.建筑工程太阳能发电技术及应用[M].北京:机械工业出版社.2007
    [107]仰洪兴,周伟.太阳能建筑一体化技术与应用[M].北京:中国建筑工业出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700