用户名: 密码: 验证码:
含风电场及电动汽车的电力系统安全性评估与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境问题是当前世界各国关注的焦点。在我国,为实现国家‘节能减排’的既定目标,电力行业在发电侧大力发展各种可再生能源发电,朝着电能生产的“低碳化”、“零排放”方向迈进;在负荷侧则提倡利用新型电驱动装置以取代基于传统化石能源的各类用能负荷,由此导致大型风电场和电动汽车得到快速发展。不确定性是风电和电动汽车的共有特点,风电场出力取决于风速的变化,具有明显的间歇性和波动性;而电动汽车作为一种新型负荷,与交通出行规律息息相关,可随时随地接入电网进行充电。随着二者在电力系统中渗透率的不断提高,随之产生的大量不确定性因素给电力系统的运行带来了诸如电压稳定、频率稳定等诸多问题,本文主要研究包含风电场和电动汽车的电力系统的安全性评估与控制方法,主要工作分为如下几个方面:
     1、对传统电力系统电压稳定安全域求解方法加以改进,以适于含间歇性可再生能源发电(如风电场)入网后电力系统在线安全监控的需要。主要工作包括如下两部分:
     1)传统利用一个超平面来近似表达系统安全域边界的方法,在计算速度和精度上都不能很好满足系统在线监控的需求,为此给出一种通过对运行点实施微扰以获得割集电压稳定域(CVSR)局部边界的新方法。首先利用潮流追踪,确定对割集每条支路潮流影响最大的发电机-负荷节点对,通过对其实施控制以实现对每条支路潮流增、减双向的精确微扰;然后利用微扰后的运行点,确定系统的电压稳定临界点,进一步得到CVSR边界在增、减两个扰动方向上的局部近似边界;最后,通过平移和加权处理,得到CVSR局部边界的精确结果。利用多个系统的验证结果表明,所给方法可有效降低CVSR边界的拟合误差。
     2)结合微扰法的思想,给出一种包含风电场的注入空间静态电压稳定域(IVSR)局部边界求解新方法,用于风速难以准确预测情况下系统电压稳定性的分析与在线安全监控。首先,利用潮流追踪与双层调度模型获得与风电场紧密关联的调控机组,用以平衡风速变化所引起的风电场输出功率的波动;进而,利用模态分析获得关键发电机节点,用于IVSR的有效降维;最后,对可能的风速和风电场输出功率区间进行分段并行计算,并通过定向微扰来获得对应风速下的IVSR的局部边界。利用多个系统验证表明,该方法可快速获得不同风速下IVSR的局部边界,可用于包含风电场的电力系统在线电压稳定监控,具有很好的工程应用前景。
     2、对电动汽车的建模和电动汽车对电力系统运行的影响进行了初步研究,目的是寻求相关分析理论与控制技术,为未来大量电动汽车入网运行提供技术支持。主要工作包含如下两部分:
     1)结合智能交通领中的Origin-Destination分析(O-D Analysis)理论,建立一种电动汽车时空分布模型(Spatial Temporal Model, STM),用于对高电动汽车渗透率下的电网供电安全性进行评估,可有效分析电动汽车充电负荷在时间和空间上的分布特性对电网运行的影响,对指导电网规划、升级与改造具有指导意义。
     2)在Vehicle-to-Grid (V2G)环境下,对比分析了利用电动汽车进行电网安全辅助服务的四类常用形式,Aggregator、Virtual Power Plant (VPP)、MicroGrid和Energy Hub,分析利用电动汽车进行电力系统一次调频的可能;在此基础上,提出一种基于V2G技术的电动汽车电压紧急控制策略,利用风电场和电动汽车之间的互补特性,通过施加控制以改善系统的电压稳定性。
     3、对含有间歇性注入的电力系统的断面潮流控制方法进行了深入研究,寻求断面潮流精准控制技术,以提高运行人员对系统的驾驭能力。主要工作包括如下两部分:
     1)给出一种基于直流潮流灵敏度的割集断面潮流定向控制新方法:首先,利用直流潮流确定系统中不同发电机与断面各支路之间的相关系数,从而获得断面潮流控制所需发电机输出功率转移分布因子表(GSDF);进而,根据断面潮流定向控制的需要,利用GSDF信息,并通过非线性优化过程确定断面潮流的调控方案。该方法不仅可以实现对断面总潮流的准确控制,同时可兼顾各支路潮流不同变动目标的定向要求,具有很好的工程应用前景。
     2)针对线性化直流潮流无法考虑系统电压问题对功率传输的影响所导致的控制误差,提出了一种基于曲面近似的断面潮流定向控制方法。该方法可以充分考虑断面潮流与调度发电机功率变换之间的非线性关系及系统无功功率影响,控制精度得到了进一步的提高。
Energy and environmental issue is currently the main focus of the world. In China,in order to achieve the goal of energy-saving and emission-reduction, the powerindustry has taken specific initiatives to develop all kinds of renewable energyresources at the generation side to de-carbonize the power generation. At the sametime, promote new types of electric drives to replace the traditional petrochemicalbased loads at the demand side. These measures lead to the fast development of largescale wind farms and electric vehicles. Uncertainty is the shared characteristic of windgeneration and electric vehicle. The power output of wind farm depends on the windspeed with intermittent and fluctuation nature; the charging power of electric vehiclehas closely relationship with the traffic patterns and is able to get access to the gridanytime and anywhere. With the increasing penetrations of wind farms and electricvehicles, the resulting great deal of uncertainties will significantly impact theoperation of power system at many aspects, such as voltage stability, frequencystability, etc. This dissertation studies the new security evaluation and controlstrategies for the power system with high penetration levels of wind farms and electricvehicles. The major work is categorized as follows:
     1. Improve the traditional solution method to determine the boundaries of voltagestability region, in order to make it suitable for on-line security monitoring andcontrol of power system with intimittent renewable energy generations (such as windfarms). The main tasks of this part include the following two aspects:
     1) The traditional method of using one hyper-plane to approximate the boundary ofsecurity region has the deficiencies both at calculation speed and accuracy, which isunable to satisfy the requirements of on-line monitor and control. In this part, a newperturbation approach is introduced to obtain the local boundaries of voltage stabilityregion in the cut-set space (CVSR) of power system. Firstly, the power flow tracingalgorithm is used to determine the generator-load pair which is most sensitive to thepower flow on each interface line. The power flow on each interface line is perturbedaccurately towards at both power increasing and decreasing directions byimplementing control on the generator-load pair. Then, using the operation pointsafter perturbation to determine the critical points related to voltage stability. Furture,obtain the local approximation boundaries of CVSR at the above two perturbationdirections. Finally, the accurate CVSR local boundaries are obtained by translation and weight. Verification results from several systems show that the proposed methodcan reduce the fitting error of CVSR effectively.
     2) Based on the above perturbation method, a new approach to determing the localboundaries of voltage stability region in power injection space (IVSR) with windfarms is presented. It can be used for voltage stability analysis and on-line securityevaluation with considering the output undertainty of wind farms. Firstly, power flowtracing and double layer dispatch model are used to determine the generators that areclosely relat+ed to the wind farms, in order to balance the power fluctuations causedby wind speed variation. Then, modal analysis is used to obtain the key generators toachieve an effective dimensionality reduction for IVSR. Finally, the forecasting outputpower (or wind speed) of wind farms is divided into several subintervals. For eachinterval, the corresponding local IVSR boundaries are calculated by the perturbationbased method. The parallel process is used to accelerate the computation speed. Thepresented approach is validated by several power systems. It is revealed that theapproach can give the local IVSR boundaries at different wind speeds and be used forpower system voltage stability analysis and on-line security evaluation with largescale wind farms, which has a good engineering application prospect.
     2. A preliminary research is carried out to model the electric vehicles and study thecorresponding impacts on the power system. The purpose is to seek revelant analysistheories and control strategies for power system in order to provide technical supportfor the future integration of electric vehicles. The main work is divieded into thefollowing two parts:
     1) Combined with the Origin-Destination analysis from the intelligenttransportation theory, a Spatial Temporal Model (STM) is developed to evaluate thesecurity of power supply with high penetration levels of electric vehicles. STM candetermine the impacts on power system caused by electric vehicles’ charging powerwith spatial temporal characteristic. STM is able to guide the planning and upgrade ofthe power grid.
     2) Under the environment of Vehicle-to-Grid (V2G), four architectures of usingelectric vehicles to support the operation of power system, Aggregator, Virtual PowerPlant (VPP), MicroGrid and Energy Hub are compared and analyzed. Then, usingelectric vehicles to contribute to the primary frequency response is investigated indepth. On this basis, a voltage stability control stragety is presented when emergencyhappens, which uses the complementary characteristics between wind farms and electric vehicles to improve the voltage stability of system by exerting controls.
     3. The interface power flow control strategy of power system with intermittentpower injections is studied in-depth in order to develop new power flow controltechnologies for operators to control the operation of power system effectively. Themain works are divded into the following two parts:
     1) A new interface power control method based on DC power flow and sensitivityanalysis is presented. Firstly, DC power flow is used to calculate the matrix ofgeneration shift distribution factor (GSDF). Further, according to the needs of powercontrol, using the information of GSDF matrix, the control scheme is obtainedthrough nonlinear optimization. It is revealed that, the method not only can control thetotal power of the interface accurately, but also can take the directional variation ofpower flow on each interface line into considersation, with a good applicationprospect.
     2) The above linearized DC power flow can not consider the error caused by thevoltage problem on the power transmission of power system. As a result, an interfacepower flow control method based on surface approximation is proposed. This methodcan take fully account of the nonlinear relationship between power flow and thevariation of power generation as well as the impacts from reactive power. The controlprecision is further improved.
引文
[1]2010年度发电业情况通报,国家电力监管委员会,2011.8.获取:http://www.serc.gov.cn/zwgk/jggg/201109/t20110901_15293.htm
    [2]李俊峰,蔡丰波,唐文倩等.风光无限,2011中国风电发展报告.北京,中国环境科学出版社,2011.
    [3] R. D. Richardson and G. M. McNerney,“Wind energy systems,” in Proc. IEEE, vol.81, no.3,pp.378-389, Mar.1993.
    [4] I. M. de Alegria, J. Andreu, J. L. Martin, P. Ibanez, J. L. Villate, and H. Camblong,“Connection requirements for wind farms: A survey on technical requirements andregulation,” Renew. Sustain. Energy Rev., vol.11, no.8, pp.1858-1872, Oct.2007.
    [5] M. Tsili and S. Papathanassiou,“A review of grid code technical requirements for windfarms,” IET Renewable Power Generation, vol.3, no.3, pp.308-332, Sep.2009.
    [6]雷亚洲.与风电并网相关的研究课题.电力系统自动化,2003,27(8):84-89.
    [7] P. Kundur, Power System Stability and Control. New York: McGraw-Hill,1994.
    [8] G. Lalor, A. Mullane, and M. O’Malley,“Frequency control and wind turbine technologies,”IEEE Trans. Power Syst., vol.20, no.4, pp.1905-1913, Nov.2005.
    [9] J. Ekanayake and N. Jenkins,“Comparison of the response of doubly fed and fixed-speedinduction generator wind turbines to changes in network frequency,” IEEE Trans. EnergyConvers., vol.19, no.4, pp.800-802, Dec.2004.
    [10]关宏亮,迟永宁,王伟胜等.双馈风电机组控制的仿真研究.电力系统自动化,2007,31(7):61-65.
    [11] G. Ramtharan, J. B. Ekanayake and N. Jenkins,“Frequency support from doubly fedinduction generator wind turbines,” IET Renew. Power Gen., vol.1, no.1, pp.3-9,2007.
    [12] A. Mullane and M. O’Malley,“The inertial response of induction-machine-based windturbines,” IEEE Trans. Power Syst., vol.20, no.3, pp.1496-1503, Aug.2005.
    [13] O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac,“Contribution of DFIG-based windfarms to power system short-term frequency regulation,” in Proc. Inst. Elect. Eng., Elect.Power Appl., vol.153, no.2, pp.164-170, Mar.2006.
    [14] R. G. de Almeida and J. A. Pe as Lopes,“Participation of doubly fed induction windgenerators in system frequency regulation,” IEEE Trans. Power Syst., vol.22, no.3, pp.944-950, Aug.2007.
    [15] J. F. Conroy and R. Watson,“Frequency response capability of full converter wind turbinegenerators in comparison to conventional generation,” IEEE Trans. Energy Syst., vol.23, no.2, pp.649–656, May2008.
    [16] A. Oudalov, D. Chartouni, and C.Ohler,“Optimizing a battery energy storage system forprimary frequency control,” IEEE Trans. Power Syst., vol.22, no.3, pp.1259-1266, Aug.2007.
    [17] M. Pascal, C. Rachid, and O. Alexandre,“Optimizing a battery energy storage system forfrequency control application in an isolated power system,” IEEE Trans. Power Syst., vol.24,no.3, pp.1469-1477, Aug.2009.
    [18] System dynamic performance subcommittee of the Power System Engineering Committee ofthe Power Engineering Society. Voltage Stability of Power Systems: Concepts, Analyticaltools, and industry experience. IEEE90TH0358-2-PWR, Piscataway, NJ, USA,1990.
    [19]周双喜,朱凌志,郭锡玖,王小海.电力系统电压稳定性及其控制.北京.中国电力出版社.2004.
    [20] L. T. Ha and T. K. Saha,“Investigation of power loss and voltage stability limits for largewind farm connections to a subtransmission network,” in Proc. IEEE PES Gen. Meeting, Jun.6–10,2004, vol.2, pp.2251-2256.
    [21] F. Zhou, G. Joos, and C. Abbey,“Voltage stability in weak connection wind farm,” in IEEEPES Gen. Meeting,2005, vol.2, pp.1483-1488.
    [22] J. W. Smith and D. L. Brooks,“Voltage impacts of distributed wind generation on ruraldistribution feeders,” in Proc. Transm. Distrib. Conf. Expo.,2001, vol.1, pp.492-497.
    [23]迟永宁.大型风电场接入电网的稳定性问题研究.中国电力科学研究院博士学位论文,2006.
    [24] F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac,“Control of DFIG-based windgeneration for power network support,” IEEE Trans. Power Syst., vol.20, no.4, pp.1958-1966, Nov.2005.
    [25] B. C. Rabelo, W. Hofmann, R. G. de Oliveira, J. L. da Silva, and S. R. Silva,“Reactive powercontrol design in doubly-fed induction generators for wind turbines,” IEEE Trans. Ind.Electron., vol.56, no.10, pp.4154-4162, Oct.2009.
    [26]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究.中国电机工程学报,2003,23(11):122-125.
    [27]伍小杰,柴建云,王祥晰.变速恒频双馈风力发电系统交流励磁综述.电力系统自动化,2004,28(23):92-96.
    [28]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降下双馈风力发电机建模与控制.电力系统自动化,2006,30(8):21-26.
    [29] A. G. Boulanger, A. C. Chu, S. Maxx, and D. L.Waltz,“Vehicle electrification: Status andissues,” Proc. IEEE, vol.99, no.6, pp.1116-1138, Jun.2011.
    [30] C. C. Chan,“The state of the art of electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol.95, no.4, pp.704–718, Apr.2007.
    [31]张文亮,武斌,李武峰,来小康.我国纯电动汽车的发展方向及能源供给模式的探讨.电网技术,2009,33(4):1-5.
    [32]古丽萍.前景广阔的电动汽车.节能与环保,2003(08):40-42.
    [33]孙逢春.电动汽车发展现状及趋势.科学中国人,2006(8):44-47.
    [34]罗卓伟,胡春泽,宋永华等.电动汽车充电负荷计算方法.电力系统自动化,2011,35(14):36-42.
    [35]万钢.中国“十五”电动汽车重大科技专项进展综述.中国科技产业,2006(2):110-117.
    [36] J. A. P. Lopes, F.J. Soares, P.M.R. Almeida,“Integration of electric vehicles in the electricpower system,” Proc. IEEE, Jan.2011, vol.99, no.1, pp.168-183.
    [37] J. T. Salihi,“Energy requirements for electric cars and their impacts on electric generationand distribution systems,” IEEE Trans. Ind. Appl., vol.1A-9, no.5, pp.516-531, Sep./Oct.1973.
    [38]赵俊华,文福拴,杨爱民,辛建波.电动汽车对电力系统影响及调度与控制问题.电力系统自动化,2007,35(14):2-10,29.
    [39] U. K. Madawala and D. J. Thrimawithana,“A bidirectional inductive power interface forelectric vehicles in V2G Systems,” IEEE Trans. Ind. Electron., vol.58, no.10, pp.4789-4796,Oct.2011.
    [40] S. B. Peterson, J. F. Whitacre, and J. Apt,“The economics of using plug-in hybrid electricvehicle battery packs for grid storage,” J. Power Sources, vol.195, no.8, pp.2377-2384,2010.
    [41] K. J. Qian, C. Z. Zhou, M. Allan and Y. Yuan,“Modeling of load demand due to EV batterycharging in distribution systems,” IEEE Trans. Syst., vol.26, no.2, pp.802-810, May2011.
    [42]田立亭,史双龙,贾卓.电动汽车充电需求功率的统计学建模方法.电网技术,2010,34(11):126-130.
    [43] S. Rahman and G. B. Shrestha,“An investigation into the impact of electric vehicle load onthe electric utility distribution system,” IEEE Trans. Power Del., vol.8, no.2, pp.591-597,Apr.1993.
    [44] G. Li, X. P. Zhang,“Modeling of plug-in hybrid electric vehicle charging demand inprobabilistic power plow calculations,” IEEE Trans. Smart Grid, vol.3no.1, pp.492-499,Mar.2012.
    [45] K. Mets T.,Verschueren, W. Haerick, C. Develder, and F. De Turck,“Optimizing smart energycontrol strategies for plug-in hybrid electric vehicle charging,” in Proc.12th IEEE/IFIP Netw.Oper. Manage. Symp. Workshops, Osaka, Japan, Apr.2010, pp.293-299.
    [46] N. Rotering and M. Ilic,“Optimal charge control of plug-in hybrid electric vehicles inderegulated electricity markets,” IEEE Trans. Power Syst., vol.26, no.3, pp.1021–1029,2011.
    [47] K. C. Nyns, E. Haesen, and J. Driesen,“The impact of charging plug-in hybrid electricvehicles on a residential distribution grid,” IEEE Trans. Syst., vol.25, no.1, pp.371-380, Feb.2010.
    [48] Y. J. Cao, S. W. Tang and C. Li, et al.,“An optimized EV charging model considering TOUprice and SOC curve,” IEEE Trans. Smart Grid, vol.3, no.1, pp.388-393, Mar.2012.
    [49] K. Clement, E. Haesen and J. Driesen,“Coordinated charging of multiple plug-in hybridelectric vehicles in residential distribution grids,” in Proc. IEEE/PES Power Syst. Conf. Expo.(PSCE), Seattle, WA,2009, pp.1-7.
    [50] L. P. Fernan′dez;, T. Román, R. Cossent, C. M. Domingo, and P. Frías,“Assessment of theimpact of plug-in electric vehicles on distribution networks,” IEEE Trans. Power Syst., vol.26, no.1, pp.206-213, Feb.2011.
    [51] P. T. Staats, W. M. Grady, A. Arapostathis, and R. S. Thallam,“A statistical analysis of theeffect of electric vehicle battery charging on distribution system harmonic voltages,” IEEETrans. Power Del., vol.13, no.2, pp.640-646, Apr.1998.
    [52] J. C. Gomez and M. M. Morcos,“Impact of EV battery chargers on the power quality ofdistribution systems,” IEEE Trans. Power Del., vol.18, no.3, pp.975-981, Jul.2003.
    [53] P. Kaymaz, J. Valenzula, and C. S. Park,“Transmission congestion and competition on powergeneration expansion,” IEEE Trans. Power Syst., vol.22, no.1, pp.156-163, Feb.2007.
    [54] E. Bompard, p. Correia, G. Gross, M. Amelin,"Congestion-management schemes: acomparative analysis under a unified framework," IEEE Trans. Power Syst., vol.18, no.1, pp.346-352, Feb.2003.
    [55]赵金利,赵晶,贾宏杰,余晓丹.基于潮流追踪和机组再调度的割集断面功率控制方法.电力系统自动化,2009,33(6):16-20.
    [56] P. Mitra and G. K.Venayagamoorthy,“Wide area control for improving stability of a powersystem with plug-in electric vehicles,” IET Generat., Transmiss. Distrib., vol.4, pp.1151-1163, Oct.2010.
    [57] J. Makasa, G. K. Venayagamoorthy,“Estimation of Voltage Stability Index in a Power Systemwith Plug-in Electric Vehicles,” Bulk Power System Dynamics and Control-VIII, Buzios, RJ,Brazil, August1-6,2010, pp.1-7.
    [58] H. J. Jia, X. D. Yu, Y. X. Yu,“An improved voltage stability index and its application,” Int JElectr Power Energy Syst., vol.27, no.8, pp.567-574, Oct.2005.
    [59] M. E. Chehaly, O. Saadeh, C. C. Martinez, and G. Joos,“Advantages and applications ofvehicle to grid mode of operation in plug-in hybrid electric vehicles,”in IEEE Elect. PowerEnergy Conf., Montreal, QC, Canada, Oct.2009, pp.1-6.
    [60] W. Kempton and S. E. Letendre,“Electric vehicles as a new power source for electricutilities,” Transp. Res. D, Transp. Environ., vol.2D, no.3, pp.157-175, Sep.1997.
    [61] W. Kempton and J. Tomi,“Vehicle-to-grid power fundamentals: Calculating capacity andnet revenue,” J. Power Sources, vol.144, no.1, pp.268-279,2005.
    [62] W. Kempton and J. Tomic,“Vehicle-to-grid power implementation: From stabilizing the gridto supporting large-scale renewable energy,” J. Power Sources, vol.144, no.1, pp.280-294,Jun.2005.
    [63] C. Guille and G. Gross,“A conceptual framework for the vehicle-to-grid implementation,”Energy Policy, vol.37, no.11, pp.4379-4390,2009.
    [64] A. F. Raab, M. Ferdowsi, E. Karfopoulos, et al.,“Virtual power plant control concepts withelectric vehicles,” in ISAP2011, Hersonisos, Crete, Greece,2011, pp.1-7.
    [65] A. Karnama, F. O. Resende and J. A. Pe as Lopes,“Optimal management of battery chargingof electric vehicles: a new microgrid feature,” in2011IEEE PES PowerTech, Trondheim,Norway,2011, pp.1-8.
    [66] M. D. Galus and G. Andersson,“Integration of plug-in hybrid electric vehicles into energysystems,” in Proc. IEEE Bucharest Powertech, Bucharest, Romania,2009, pp.1-8.
    [67] A. Cheimanoff and C. Curroyer “The power failure of december19,1978,” Revue Generalede l’electricite, vol.89, no.4, pp.280-320, Apr.1980.
    [68]J. A Casazza,“Interim report on the French blackout of december’9,1978,” DOE Report, Feb.8,1979.
    [69] IEEE Working Group on Voltage Stability “Voltage stability of power system: concepts,analytical tools, and industry experience,” IEEE Committee Technical Report, IEEEpublication90TH0358-2-PWR,1990.
    [70] A. Kurita and T. Sakurai “The Power System Failure on July23,1987in Tokyo” inProceedings of the27th Conference on Decision and Control. Austin, Texas, Dec.1988, pp.2093-2097.
    [71] K. Morison and S. Yirga “System Disturbance Stability Studies for Western SystemCoordinating Council (WSCC)” EPRI TR-108256, Final Report, Sept.1997.
    [72]何大愚.“对于美国西部电力系统1996年7月2日大停电事故的初步认识”电网技术,1996,20(9), pp.35-39.
    [73]何大愚.关于美加等国严重电力事故彰显的教训及其引发的对我国电网安全的反思,北京电机工程学会&华北电力大学(北京)联合学术报告会,2003.
    [74]余贻鑫,冯飞.电力系统有功静态安全域,中国科学,1990,6:664-672.
    [75] T. E DyLiacco “The Adaptive Reliability Control System,” IEEE Transactions on PowerApparatus and Systems, May.1967, vol. PAS-86, no.5, pp.517-531.
    [76] Y. Sekine and A. Yokoyama “Multisolutions for Load Flow Problem of Power System andTheir Physical Stability” in Proceedings of the7th Power Systems Computation Conference.1981, pp.819-826.
    [77] Y. Tamura, H. Mori and S. Iwamoto “Relationship between Voltage Instability and MultipleLoad Flow Solutions in Electric Power Systems,” IEEE Transactions on Power Apparatusand Systems, Vol. PAS-102, no.5, pp.1115-1125, May.1983.
    [78] O. Kohshi, T. Kenji and K. Akira “Solution of ill-conditioned load flow equation byhomotopy continuation method,” in IEEE International Symposium on Circuits and Systems,Jun.1991, vol.5, pp.2897-2899.
    [79] K. Iba, H. Suzuki, M. Egawa and T. Watanabe “Calculation of critical loading condition withnose curve using homotopy continuation method,” IEEE Trans. Power Syst., vol.6, no.2, pp.584-593, May.1991.
    [80] V. Ajjarapu and C. Christy “The Continuation Power Flow: A tool for steady-state voltagestability analysis,” IEEE Trans. Power Syst., vol.7, no.1, pp.416-423, Feb.1992.
    [81] R. J Jumeau and H. D Chaing “Parameterizations of the load flow equation for eliminatingill-condition load flow solution,” IEEE Trans. Power Syst., vol.8, no.3, pp.1004-1012, Aug.1993,.
    [82] V. Ajjarapu, V. Venkataramana and J. Nirlesh “Optimal continuation power flow,” ElectricPower Systems Research, vol.35, no.1, pp.17-24, Oct.1995,.
    [83]郭瑞鹏,韩祯祥.“电压稳定分析的改进连续潮流法”,电力系统自动化,1999,23(14):13-16.
    [84] EPRI.“VSTAB2-2User’s Manual” EPRI Final Report, Nov.1993.
    [85] EPRI “Interactive Power Flow(IPFLOW)” EPRI Final Report, Apr.1992.
    [86] H. D Chiang,“CPFLOW: A practical tool for tracing power system steady-state stationarybehavior due to load and generation variations,” IEEE Trans. Power Syst., vol.10, no.2pp.623-634, May.1995,.
    [87] C. A Canizares and F. L Alvarado “Point of collapse and continuation methods for largeAC/DC systems,” IEEE Trans. Power Syst., vol.8, no.1, pp.1-8, Feb.1993.
    [88]段献忠,袁骏,何仰赞,等,电力系统电压稳定灵敏度分析方法,电力系统自动化,1997,21(4):9~125.
    [89] H. Wan, J. D. Mccalley.“Risk based voltage security assessment,” IEEE Transactions onPower Systems, vol.15, no.4, pp.1247-1254,2000.
    [90] P. A. L f, G. Anderson and D. J. Hill,“Voltage stability indices for stressed power systems,”IEEE Trans. Power Syst., vol.8, pp.326–335, Feb.1993.
    [91] P. Kessel, H. Glavitsch.“Estimating the voltage stability of a power system,” IEEE TransonPower Delivery, vol.1, no.3, pp.364-354,1986.
    [92]余贻鑫,贾宏杰,严雪飞,可准确跟踪节点分岔的改进局部电压稳定指标LI,电网技术,1999,23(5):19~23.
    [93] I. Dobson.“Observations on the geometry of the saddle node bifurcation and voltage collapsein electrical power systems,” IEEE Transactions on Circuits and Systems I: FundamentalTheory and Applications, vol.39, no.3, pp.240-243,1992.
    [94] H. D. Chiang, I. Dobson.“On voltage collapse in electric power systems,” in Power IndustryComputer Application Conference,1989. PICA89, pp.342-349.
    [95]张元鹏,周双喜,静态电压稳定性分析模型的理论基础,中国电机工程学报,1999,19(10):55~58.
    [96]韦化,丁晓莺,基于现代内点理论的电压稳定临界点算法,中国电机工程学报,2002,22(3):27~31.
    [97]曾嵘,程浩忠,面向电压稳定分析的局部分岔理论及数值计算综述,电网技术,1999,23(6):47~49.
    [98] R. A Gawler, D. C Smith and K. Morsztyn “Hybrid computer simulation of dynamic stabilityof power system with stochastic load and voltage variations,” Institution of Engineers,Australia, Electrical Engineering Transactions, vol. EE-15, no.1, pp.7-11, Jan.1979,.
    [99] Z. El-Razaz, A. A El-Sulaiman and M. Sebbaah “Modelling and simulation of rapiddeveloping power system for steady-state stability studies,” Journal of Engineering Sciences,vol.13, no.1, pp.155-170, Jan.1987.
    [100] P. L Dandeno “Current usage&suggested practices in power system stability simulationsfor synchronous machines,” IEEE Transactions on Energy Conversion, vol. EC-1, no.1, pp.77-93, Mar.1986.
    [101] Anon “Electromagnetic Transients Program (EMTP) Application Guide, Workbook andPrimer” EPRI Final Report, Nov.1986.
    [102] Ontario Hydro “Extended Transient-Midterm Stability Package: Final Report” EPRI FinalReport EL-4610, Nov.1992.
    [103] Ontario Hydro “Small Signal Stability Analysis Program Package Version2” EPRI FinalReport, EL-6678, Jan.1990.
    [104] J. M. Smith “Power system simulator for engineers (PSS/E) in the operations environment,”in Proceedings of the American Power Conference, Chicago, IL, Apr.1993, vol.55, no.2,pp.1615-1622.
    [105] M. Stubbe, A. Bihain, J Deuse and J.C Baader “STAG-a new unified software program forthe study of the dynamic behaviour of electrical power systems,” IEEE Trans. Power Syst.,vol.4, no.1, pp.129-138, Feb.1989.
    [106] Anon “Simpow.“A digital power system simulator,” ABB Review, Jul.1990, no.7, pp.27-38.
    [107]中国电力科学院,“电力系统综合稳定分析程序(PSASP)用户手册”,1993.10.
    [108] Y. Qi, H. J. Jia,“Research on a new voltage control strategy for photovoltaic grid-connected system,” in2011International Conference on Electrical Machines andSystems.2011, pp.1-6.
    [109]李鹏.分布式发电微网系统暂态仿真方法研究,天津大学博士学位论文,2010.
    [110] N. Bhattacharjee, S. Deodhar and F Dinshaw.“Distributed microcomputer systemarchitecture for power plant simulation,” Simulation Series, vol.17, no.2, pp.220-224, Apr.1986.
    [111] M Rafian, M. J. H. Sterling and M.R.N Irving.“Parallel processor algorithm for powersystem simulation,” in IEE Proceedings, Part C: Generation, Transmission and Distribution,Vancouver, BC, Canada, Jul.1988, vol.135, no.4, pp.285-290.
    [112] M. Lavoie, V. Que-Do, J. L Houle and J. Davidson “Real-time simulation of power systemstability using parallel digital signal processors,” Mathematics and Computers in Simulation,vol.38, pp.283-292, Aug.1995.
    [113] Y. Harada and T. Oyama “Fast algorithm for multiple time-scale simulation of power systemusing parallel processing,” Electrical Engineering in Japan, vol.120, no.4, pp.14-22, Sep.1997.
    [114] J. Deuse and M. Stubbe “Dynamic ssimulation of voltage collapses,” IEEE Trans. PowerSyst., vol.8, no.3, pp.894-904, Aug.1993.
    [115] J. Tamura, and I. Takeda “New model of saturated synchronous machines for power systemtransient stability simulations,” IEEE Transactions on Energy Conversion, vol.EC-10, no.2,pp.218-224, Jun.1995.
    [116] R. S Kumar, L. Jenkins, H. P Khincha et al.“Transient stability simulation of unbalancedlarge scale power systems,” Electric Machines and Power Systems, vol.23, no.1, pp.93-102,Jan.-Feb.1995.
    [117] S. Arabi, P. Kundur and J. H Sawada “Appropriate HVDC transmission simulation modelsfor various power system stability studies,” IEEE Trans. Power Syst., vol.13, no.4, pp.1292-1297, Nov.1998.
    [118]余贻鑫,安全域的方法学及实用性结果,天津大学学报,2003,36(5):525-528.
    [119]余贻鑫,陈礼义“电力系统的安全性与稳定性”,科学出版社,北京,1988.
    [120] T. E DyLiacco “Real time computer control of power systems,” in Proceedings of the IEEE,New York, USA, BC, Apr.1974, vol.62, no.4, pp.884-891.
    [121]T. E DyLiacco “System security: the computer’s role,” in IEEE Spectrum, Jun.1978, vol.15,no.6, pp.43-50.
    [122] F. F Wu “Real-time network security monitoring, assessment and optimization,”International Journal of Electrical Power and Energy Systems, vol.10, no.2, pp.83-100,Apr.1987.
    [123] F. F Wu and Y. K Tsai “Probabalistic dynamic security assessment of power systems: Part I.basic model,” IEEE Transactions on Circuits and Systems, vol. CAS-30, no.3, pp.148-159,Mar.1983.
    [124] F. F Wu, Y. K Tsai and Y. X Yu “Probabilistic steady-state and dynamic securityassessment,” IEEE Trans. Power Syst., vol.3, no.1, pp.1-8, Feb.1988,.
    [125]范孟华,基于域、分岔以及递归投影方法的电力系统稳定性分析,天津大学博士学位论文,2010.
    [126]余贻鑫,宿吉锋,贾宏杰等,电力系统电压稳定域可视化初探,电力系统自动化,2001,25(22):1-5.
    [127]王成山,许晓菲,余贻鑫等,电力系统电压稳定域的局部可视化描述及其应用,中国电机工程学报,2004,24(3):1-5.
    [128]韩琪,余贻鑫,李慧玲等,电力系统注入空间静态电压稳定域边界的实用表达式,中国电机工程学报,2005,25(5):8-14.
    [129]韩琪,余贻鑫,贾宏杰等,静态电压稳定域边界的非线性近似解析表达,电力系统自动化,2005,29(11):10-14.
    [130]常乃超,何光宇,梅生伟等,注入空间中电压安全域最短半径的估计,电力系统自动化,2008,32(3):1-3,86.
    [131]李慧玲,余贻鑫,韩琪等,割集功率空间上的静态电压稳定域实用边界,电力系统自动化,2005,29(4):18-23.
    [132]王成山,许晓菲,余贻鑫等,基于割集功率空间上的静态电压稳定域局部可视化方法,中国电机工程学报,2004,24(9):13-18.
    [133]王刚,梅生伟,静态电压稳定域边界的切平面分析,电力系统自动化,2007,31(11):6-11.
    [134]王刚,张雪敏,梅生伟,静态电压稳定域边界的二次近似分析,中国电机工程学报,2008,28(19):30-35.
    [135]王刚,张雪敏,梅生伟,基于随机优化的割集空间电压稳定域可视化,电力系自动化,2008,32(2):1-5,39.
    [136]牛犇,余贻鑫,贾宏杰等,静态电压稳定域的三维可视化技术,电网技术,2005,29(7):56-59.
    [137]李响,输电断面传送功率极限的研究,哈尔滨工业大学博士论文,2005.
    [138] North American Electricity Reliability Council. Transmission transfer capability: AReference document for calculating and reporting the electric power transfer capability ofinterconnected electric systems. In: Technical Report. USA:1995.
    [139] W. Wei, H. J. Jia, P. zhang, et al.,“Development of power system voltage stability region(PSVSR) for static voltage security assessment,” in Proc of IEEE Int. Conference on PowerSystem Technology-PowerCon2006,2006.10.22-10.26, Chongqing, China, vol.2, pp.1440-1445.
    [140]余贻鑫,王成山,电力系统稳定性理论与方法,北京,科学出版社,1999.
    [141] Power system voltage stability region (PSVSR) program, EPRI Report-1012479. EPRI,Palo Alto, CA:2006.
    [142] Direct method for voltage and transient stability regions, EPRI Report-1010553. EPRI, PaloAlto, CA:2005.
    [143] J. Bialek.“Tracing the flow of electricity,” IEEE Proceeding Generation TransmissionDistribution,1996,143(4):313-320.
    [144]孙洪波,常宝波,周家启,网损分摊研究,电力系统自动化,1999,23(2):59~62.
    [145] D. Kischen, R. Allab, G. Strbac,“Contribution of individual generators to loads and flows,”IEEE Trans. Power Syst.,1997,12(1):52-60.
    [146]李卫,孙武,武亚光,潮流追踪迭代算法,中国电机工程学报,2001,21(11):38~42.
    [147] P. Wei, B. Yuan B, Y. X. Ni, et al.“Power flow tracing for transmission open access,”Proceedings of International Conference on Electric Utility Deregulation and Restructuringand Power Technologies. London: DRPT,2000.476-481.
    [148]谢开贵,周家启,自环流网络潮流跟踪算法,中国科学(E辑),2003,33(1):74~81.
    [149]魏炜,张忠华,贾宏杰等.一种利用潮流追踪的电压稳定紧急控制方法,中国电机工程学报,2008,28(1):1-5.
    [150]魏萍,倪以信等,基于图论的输电线路功率组成和发电机与负荷间功率传输关系的快速分析,中国电机工程学报,2000,20(6):21~25.
    [151]张义斌,王伟胜,戴慧珠.基于P-V曲线的风电场接入系统稳态分析.电网技术,2004,28(23):61-65.
    [152]李作红,李建华,李常信等.风电场静态电压稳定性研究.电网与清洁能源,2008,24(3):49-50.
    [153]宋联庆,何进武,闫广新等.并网风电场穿透功率极限确定方法探讨.可再生能源,2009,27(3):36-39.
    [154]王海超,戴剑锋,周双喜等.含风场电力系统电压稳定裕度模型.清华大学学报,2006,46(7):1185-1188.
    [155]张义斌,王伟胜.风电场输出功率的概率分布及其应用.电力设备,2004,5(8):38-40.
    [156]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究.中国电机工程学报,2005,25(11):1-5.
    [157]陈宁,于继来.基于电气剖分信息的风电系统有功调度与控制.中国电机工程学报,2008,28(16):51-58.
    [158] X. D. Yu, H. J. Jia, J. L. Zhao, et al.,“Interface control based on power flow tracing andgenerator re-dispatching,” in Proc. of2008IEEE Asia Pacific Conference on Circuits andSystems (APCCAS’08),2008.11.30-12.3, Macao, China:1-8
    [159]雷亚洲,王伟圣,印永华等.基于机会约束规划的风电穿透功率极限计算.中国电机工程学报,2002,22(5):32-35.
    [160]陈金富,陈海焱,段献忠.含大型风电场的电力系统多时段动态优化潮流.中国电机工程学报,2006,26(3):31-35.
    [161] M. Papadopolos, P. Malatestas, N. Hatziargyriou.“Simulation and analysis of small andmedium size power systems containing wind turbine,” IEEE Trans. Power Syst.,1991,6(4):1453~1458
    [162]吉兴全,王成山.电力系统并行计算方法比较研究.电网技术,2003,27(4):22-26.
    [163]房大中,杨晓东.基于模块双向迭代的电力系统仿真新算法研究.中国科学E辑:技术科学,2005,35(9):981-995.
    [164] Y. Zhao,“Mobile phone location determination and its impact on intelligent transportationsystems,” IEEE Trans. Intell. Transp. Syst., vol.1, no.1, pp.55-64, Mar.2000.
    [165] J. de Dios Ortuzar and L. G. Willumsen, Modelling Transport,3rd ed. Hoboken, NJ: Wiley,2001.
    [166] Z. R. Peng and M. H. Tsou, Internet GIS: Distributed Geographic Information Services forthe Internet and Wireless Network. Hoboken, NJ: Wiley,2003.
    [167] S. R. Hu and C. M. Wang,“Vehicle detector deployment strategies for the estimation ofnetwork Origin destination demands using partial link traffic counts,” IEEE Trans. Intell.Transp. Syst., vol.9, no.2, pp.288-300, Jun.2008
    [168] B. Seungkirl, K. Hyunmyung, and L. Yongtaek,“Multiple-vehicle origin-destination matrixestimation from traffic counts using genetic algorithm,” J. Transp. Eng., vol.130, no.3, pp.339-347, May.2004.
    [169] J. Dobals, and F. G. Benitez,“An approach to estimating and updating origin-destinationmatrices based upon traffic counts preserving the prior structure of a survey matrix,” Transp.Res. B, vol.39, no.7, pp.569-591, Aug.2005.
    [170] M. J. Bernard,“Using nationwide personal transportation survey data to indicate electricvehicle market potential in rural areas,” Transp Res Rec. vol.1537, no.0316, pp.70-73, Nov.1996.
    [171] T. H. Bradley, C. W. Quinn,“Analysis of plug-in hybrid vehicle utility factors,” J. PowerSources., vol.195, no.16, pp.5399-5408, Aug.2010.
    [172] EU Merge Project, Deliverable2.1: Modelling Electric Storage devices for electric vehicles,2010, Task. Rep.[Online]. Available:http://www.ev-merge.eu/images/stories/uploads/MERGE_WP2_D2.1.pdf.
    [173] C. Foote, P. Djapic, and G. Ault, et al.,“Summary of EHV Networks,” United KingdomGeneric Distribution Systems (UKGDS),2006.[Online]. Available:http://monaco.eee.strath.ac.uk/ukgds/.
    [174](Handbook style) Caliper TransCAD Version5.0GIS User’s Guide, Caliper Corporation,Oct,2007.
    [175](Handbook style) IPSA LFEngine Version2.3Programming Reference Manual, IPSA Power.TNEI Services Ltd,2010.
    [176] National Statistics, Department for Transport, Transport Statistics Bulletin-VehicleLicensing Statistics:2010, Apr.9,2011.[Online]. Available:http://www2.dft.gov.uk/pgr/statistics/datatablespublications/vehicles/licensing/latest/vls2010.pdf.
    [177] A. M. William and A. M. Martin,“Travel estimation techniques for urban planning,”Transport Research Board National Research Council, U.S., NCHRP365Rep. B8-29.6,1998.[Online]. Available: http://ntl.bts.gov/lib/21000/21500/21563/PB99126724.pdf.
    [178] A. Mendoza and J. Argueta,“Performance characterization—GMEV1Panasonic lead acidbattery,” Southern California EDISON, Apr.2000.
    [179] C. Marid, J. Argueta. And J. Smith,“Performance characterization—1999Nissan Altra-EVwith lithium-ion battery,” Southern California EDISON, Sep.1999.
    [180]“Metered half-hourly electricity demands,”2010.[Online]. Available:http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/.
    [181] EN50160:2007,“Voltage characteristics of electricity supplied by public distributionsystems,” European Committee for Electrotecnical Standardization-CENELEC.
    [182] C. Sandels, U. Franke, N. Ingvar, et al.,“Vehicle-to-Grid-Monte Carlo simulations foroptimal aggregator strategies,” in2010International Conference on Power SystemTechnology,2010, Hangzhou, China.
    [183] A. Bandyopadhyay, L. Wang, V. K. Devabhaktuni, et al.,“Aggregator analysis for efficientday-time charging of plug-in hybrid electric vehicles,” in2011IEEE Power&EnergySociety General Meeting,2011, Piscataway, NJ, USA.
    [184] S. Han, K. Sezaki,“Development of an optimal vehicle-to-grid aggregator for frequencyregulation,” IEEE Trans. Smart Grid, vol.1, no.1, pp.65-72, Jun.2010.
    [185] C. Wu, H. M. Rad, J. Huang,“Vehicle-to-Grid interaction game,” IEEE Trans. Smart Grid,vol.3, no.1, Mar.2012.
    [186] J. Xu, V. W. Wong,“An approximate dynamic programming approach for coordinatedcharging control at vehicle-to-grid aggregator,” in SmartGridComm2011, Brussels,Belgium,2011.
    [187] K. M. Liyanage, A. Yokoyama, Y. Ota, T. Nakajima, et al.,“Impacts of CommunicationDelay on the Performance of a Control Scheme to Minimize Power Fluctuations Introducedby Renewable Generation under Varying V2G Vehicle Pool Size,” in20101st IEEEInternational Conference on Smart Grid Communications, pp.85-90,2010, Piscataway, NJ,USA.
    [188] H. Guo, Y. Wu, F. Bao, H. Chen, M. Ma,“UBAPV2G: A Unique Batch AuthenticationProtocol for Vehicle-to-Grid Communications,” IEEE Trans. Smart Grid, vol.2, no.4, pp.707-714, Dec.2011.
    [189] L. Qiao, X. Liu, B. Jiang,“Design and implementation of the smart meter invehicle-to-grid,” in DRPT2011, pp.618-621, Piscataway, NJ, USA.
    [190] EU Fenix project. Flexible electricity network to integrate the expected energy evolution.Available: http://www.fenix-porject.org.
    [191] M. Ferdowsi, I. Grau Unda, E. Karfopoulos, P. Papadopoulos, S. Skarvelis-Kazakos, L.Cipcigan, A. F. Raab, A. Dimeas, E. Abbasi, K. Strunz,"Controls and EV Aggregation forVirtual Power Plants,"Mobile Energy Resources in Grids of Electricity, Deliverable Dl.3,Oct.2010. Available: http://www.ev-merge.eu
    [192]杨黎晖,许昭等,电动汽车在含大规模风电的丹麦电力系统中的应用,电力系统自动化,2011,35(14):43-47.
    [193] G. Binding, D. Gantenbein, B. Jansen, et al.,“Electric Vehicle Fleet Integration in theDanish EDISON Project-A Virtual Power Plant on the Island of Bornholm,” in IEEE PESGen. Meet., Minneapolis, MN, United states.
    [194] N. D. Hatziargyriou, A. Dimeas, A. G. Tsikalakis, et al.”Management of Microgrids inMarket Environment,” International Conference on Future Power Systems,2005International Conference on Future Power Systems.
    [195] Lasseter R.H,Paigi P.Microgrid:a Conceptual Solution[A].IEEE35thAnnual PowerElectronics Specialists Conference PESC[C],2002.
    [196]王成山,王守相.分布式发电供能系统若干问题研究.电力系统自动化,2008,32(20):1-4,31.
    [197] A. Karnama, F. O. Resende, J. A. P. Lopes,“Optimal management of battery charging ofelectric vehicles: A new microgrid feature,” in2011IEEE PES PowerTech, Piscataway, NJ,USA.
    [198] V. R. Roberto, L. G. Pau, H. P. Daniel, et al.,“Electric vehicles in power systems withdistributed generation: Vehicle to microgrid (V2M) project,” in Proc. Int. Conf. Electr.Power Qual. Util., EPQU, pp.612-617, Lisbon, Portugal.
    [199] M. Geidl, M. Koeppel, G. Favre-Perrod, P. Kl ckl, B. Andersson, G. Fr hlich,“Energy hubsfor the future,” IEEE Power and Energy Magazine,5(1), pp.24-30.
    [200] D. G. Matthias, K. Stephan, A. G¨oran,“Provision of load frequency control by PHEVs,controllable loads, and a cogeneration unit,” IEEE Trans Ind Electron, vol.58. no.10, pp.4568-4582, Oct.2011.
    [201] D. G. Matthias, L. F. Raffael, A. G¨oran,“Investigating PHEV wind balancing capabilitiesusing heuristics and model predictive control,” in IEEE PES Gen. Meet., PES, Minneapolis,MN, United states,2010.
    [202]“National Electricity Transmission System Security and Quality of Supply Standard Version2.0,”24-Jun-2009.[Online]. Available:http://www.nationalgrid.com/uk/Electricity/Codes/gbsqsscode/DocLibrary/.[Accessed:07-Mar-2011].
    [203] I. A. Erinmez, D. O. Bickers, G. F. Wood, and W. W. Hung,“NGC experience withfrequency control in England and Wales-provision of frequency response by generators,” inPower Engineering Society1999Winter Meeting, IEEE,1999, vol.1, pp.590-596.
    [204]“Report of the investigation into the automatic demand disconnection following multiplegeneration losses and the demand control response that occurred on the27th May2008.”[Online]. Available:http://www.nationalgrid.com/NR/rdonlyres/D680C70A-F73D-4484-BA54-95656534B52D/26917/PublicReportIssue1.pdf.[Accessed:21-Feb-2011].
    [205]“Future balancing services requirements: Reserve,”http://www.nationalgrid.com/uk/Electricity/Balancing/demandside/.[Online]. Available:http://www.nationalgrid.com/NR/rdonlyres/55610D9A-C53A-4E28-88C6-29AE5DF72EF2/42697/Future_Balancing_Services_Requirements_Reserve1.pdf.
    [206] J. B. Ekanayake, N. Jenkins, G. Strbac,“Frequency response from wind turbines,” WindEngineering,32(6):573-586,2008.
    [207] L. D. Sousa, B. Silvestre, and B. Bouchez,“A Combined Multiphase Electric Drive and FastBattery Charger for Electric Vehicles,” IEEE Vehicle Power and Propulsion Conference,2010, pp.1-6
    [208] J. A. P. Lopes, P. M. R. Almeida and F. J. Soares,“Using vehicle-to-grid to maximize theintegration of intermittent renewable energy resources in islanded electric grids,”International Conference on Clean Electrical Power, June2009, pp.290-295
    [209] Y. Zhao, X. Hu, Z. He, G. Tang,“A Study of Mathematic Modeling of VSC forElectromechanical Transient Analysis,” China International Conference on ElectricityDistribution,2008, pp.1-6
    [210] M. Yin, G. Li, G. Li, H. Liang, M. Zhou,“Modeling of VSC-HVDC and Its Active PowerControl Scheme,” International Conference on Power System Technology,2004, vol.2, pp.1351-1355
    [211] S. Jaganathan and W. Cao,“Battery charging power electronics converter and control forplug-in hybrid electric vehicles,” IEEE Conference on Vehicle Power and Propulsion, Sept.2009, pp.440-447
    [212] O. Tremblay, L. A. Dessaint, and A. I. Dekkiche,“A generic battery model for the dynamicsimulation of hybrid electric vehicles,” in Proc. IEEE Vehicle Power Propul. Conf., TX,2007, pp.284-289.
    [213]“National Grid: Demand Data.”[Online]. Available:http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/.[Accessed:07-Jul-2009]
    [214] S. Teleke, M. E. Baran, A. Q. Huang, et al.“Control strategies for battery energy storage forwind farm dispatching,” IEEE Transactions on Energy Conversion,2009,24(3):725–732.
    [215] Typical wind speed, Available: http://monaco.eee.strath.ac.uk/ukgds/.
    [216]李国庆,王威,贾伟等.基于负荷裕度灵敏度的电压稳定控制方法,电机与控制学报,2002,6(2):173-178.
    [217] F. Capitanescu, T. V. Cutsem.“Preventive control of voltage security margins: amulti-contingency sensitivity-based approach,” IEEE Trans. Power Syst.2002,17(2):358-364.
    [218] S. Green, I. Dobson, and F. L. Alvarado,“Sensitivity of transfer capability margins with afast formula,” IEEE Trans. Power Syst., vol.17, no.1, pp.34-40, Feb.2002.
    [219] X. Wang, G. C. Ejebe, J. Tong, and J. G.Waight,“Preventive/corrective control for voltagestability using direct interior point method,” IEEE Trans. Power Syst., vol.13, pp.878–883,Aug.1998.
    [220]孙元章,杨新林,王海凤.考虑暂态稳定性约束的最优潮流问题,电力系统自动化,2005,29(16):56-59,83.
    [221] T. Masuta and A. Yokoyama,“ATC enhancement considering transient stability based onoptimal power flow control by UPFC,” in Proc. of2006IEEE International Conference onPower System Technology, Chongqing,2006, pp.1-6.
    [222] M. Larsson M. C. Rehtani,基于最优潮流的广域FACTS控制提高输电功能力,电力系统自动化,2005,29(16):35-41.
    [223] J. Bialek.“Tracing the flow of electricity,” IEE Proc-Generation, Transmission andDistribution,1996,143(4):313-320.
    [224] Y. Xiao, Y. H. Song, C. C. Liu and Y. Z. Sun,“Available transfer capability enhancementusing FACTS devices,” IEEE Trans. Power Syst., vol.18, no.1, pp.305-312, Feb.2003.
    [225] T. Orfanogianni and R. Bacher,“Steady-state optimization in power systems with seriesFACTS devices,” IEEE Trans. Power Syst., vol.18, no.1, pp.19-26, Feb.2003.
    [226]李响,郭志忠. N-1静态安全潮流约束下的输电断面有功潮流控制,电网技术,2005,29(3):29-32.
    [227]王锡凡,方万良,杜正春.现代电力系统分析,北京:科学出版社,2003.
    [228] B. Lee, H. Song, S. H. Kwon, G. Jang, J. H. Kim and V. A. Ajjarapu,“A study ondetermination of interface flow limits in the KEPCO system using modified continuationpower flow (MCPF),” IEEE Trans. Power Syst., vol.17, no.3, pp.557-564, Aug.2002.
    [229]何洋,洪潮,陈昆薇等,稀疏向量技术在静态安全分析中的应用,中国电机工程学报,2003,23(1):41-44.
    [230] F. Cazals and M. Pouget,“Estimating differential quantities using polynomial fitting ofosculating jets,” in Proc. Eurographics/ACMSIGGRAPH Symp. Geometry Processing,Aachen, Germany,2003, pp.177-187.
    [231] F. J. Flanigan and J. L. Kazdan, Calculus Two: Linear and Nonlinear Functions. EnglewoodCliffs, NJ: Prentice-Hall,1971.
    [232] R. E. Perez, K. Behdinan,“Particle swarm approach for structure design optimization,”Computers and Structures, vol.85, no.19-20, pp.1579-1588, Oct.,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700