用户名: 密码: 验证码:
重度混合动力汽车油耗和排放综合控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车在模式切换过程中发动机频繁起停,造成排气温度和三元催化器蜂窝层温度下降,催化转化效率降低,影响其排放性能。混合动力汽车装备有发动机和电动机两个动力源,电动机辅助发动机进行转矩输出或者发电,可以在满足动力性要求的前提下对发动机工作点进行优化,为加快三元催化器起燃、降低发动机冷起动阶段的排放提供了更灵活的控制自由度;利用混合动力电动汽车上的大容量电池和高电压设备为三元催化器提供大功率的外接热源,也可以为解决冷起动阶段的排放问题提供一种新的解决方案。研究混合动力汽车油耗和排放、尤其是冷起动阶段三元催化器出口排放的综合控制,对于进一步提高油耗和排放水平具有重要的现实意义。
     本文以某双离合器重度混合动力汽车为研究对象,以提高燃油经济性和改善冷起动阶段排放水平为研究目标,开展了混合动力汽车能量管理策略的优化设计,具体研究工作概括如下:
     (1)建立了重度混合动力汽车整车动力学模型。以发动机平均值理论为基础,结合热力学定律,建立了计算发动机输出转矩、油耗与排放的发动机动力学模型和计算HC/CO催化转化效率的三元催化器动力学模型;在此基础之上,基于经典车辆纵向动力学理论,建立了在NEDC工况下AMT以经济性换挡规律进行换挡的整车冷起动排放仿真模型,并且分析了燃油补偿控制对空燃比和三元催化器效率的影响。
     (2)建立了重度混合动力汽车油耗和排放多目标全局优化控制策略。首先建立了重度混合动力汽车油耗和排放综合控制数学模型,针对重度混合动力汽车在运行模式切换时发动机频繁起停的特点,在建立油耗模型时考虑了发动机起停的影响。然后依据Bellman最优性原理,将混合动力汽车在特定工况下的全局最优控制问题转化为一个单步、多阶段决策问题,采用动态规划算法建立递归方程并进行求解,得到最优控制量。最后将最优控制量在整车动力学模型中正向求解,得到最优状态变量和多目标函数的最优值。
     (3)建立了重度混合动力汽车油耗和排放多目标实时控制策略。首先提出以加快三元催化器起燃为目的的能量管理模糊控制策略,通过提高发动机排气温度加快催化器起燃,改善冷起动阶段的排放。然后提出利用重度混合动力汽车的大功率电池对三元催化器进行加热以缩短其起燃时间的电加热控制策略,并计算了电加热型三元催化器EHCS(electrically heated catalyst system)冷起动阶段的蓄电池电量等效油耗,同时分析了EHCS电加热功率和安装位置对催化器温度、起燃时间、HC/CO排放量、等效油耗和整车运行模式的影响;最后依据庞特里亚金极小值原理,分别针对加速三元催化器起燃、降低油耗与三元催化器出口处排放两个不同的优化目标函数,依次应用时间最短控制和燃料最少控制方法,对目标泛函求极值以得到相应的最优控制策略,并且对制动、停机工况下的控制策略进行比较,以分析发动机起停优化控制对整车油耗和排放的影响。
     (4)建立了重度混合动力汽车油耗和排放多目标随机最优控制策略。首先在对沿固定线路上采集到的实际车速进行分析的基础上,提出将实际路况等效为一段标准路况与白噪声随机干扰的叠加,从而将实际道路条件下的混合动力汽车油耗和排放的控制问题转化为标准路况条件下的随机白噪声干扰最优控制问题。然后以发动机油耗和三元催化器出口排放为多目标优化函数,建立了包含三元催化器温度状态的重度混合动力汽车二次型状态方程。最后采用随机线性二次型最优控制方法,对蓄电池SOC(state of charge)、车速、三元催化器温度和出口排放等实际状态进行卡尔曼滤波估计,以对电机功率和发动机功率等输出变量进行最优反馈,从而实现了重度混合动力汽车的油耗与排放优化控制。
     (5)完成了重度混合动力传动系统台架实验。搭建了重度混合动力传动系统硬件在环实验台,基于MATLAB/Simulink/dSPACE仿真平台开发了相应数据采集与控制程序,实现了对被测试对象的数据采集及控制,完成了重度混合动力传动系统的行车充电等工况下的油耗和排放综合控制台架实验。实验结果验证了所建立的混合动力汽车仿真模型的正确性,也部分验证了所开发的控制策略的有效性。
The engine’s frequent start/stop of full hybrid vehicle dropped the temperature ofcatalytic converter and emission exhaust in urban driving cycle. As a result, thethree-way catalyst’s efficiency was lowered and the vehicle’s emission performance wasdecreased. Hybrid vehicle was equipped with two power sources, which were engineand electric motor. As an auxiliary power source, the motor can output or generatepower, which can optimize the engine’s operation under the premise of the powerrequirements. In this way, the increase of the three-way catalyst’s light-off was providedwith flexible measures in order to reduce the engine’s emission during cold start stage.The high-capacity batteries and high voltage facilities in hybrid electric vehiclessupplied the catalyst with high-power external heat source which offered a new solutionto decrease the emission. Therefore, the research of the integrated control strategy forthe hybrid vehicle’s fuel consumption and emission have important practicalsignificance for decreasing fuel consumption and emission exhaust furtherly, especiallythe emission during catalytic converter’s cold start stage.
     The paper took the dual clutch full hybrid vehicle (DCFHV) as the object of study.In order to improve fuel economy and decrease emission during cold start, the energymanagement strategy had been designed and then optimized. The specific studies weresummarized as follows.
     (1) The full hybrid vehicle’s mathematical model had been established. Both theengine model which can calculate torque and fuel consumption as well as emission, andthe three-way catalyst reflecting the catalytic efficiency had been established based onthe engine mean value theory and the thermodynamics law. Based on classic vehicle’slongitudinal driving dynamics, the model of vehicle’s cold start emission in NEDCdriving cycle had been established, which includes a mechanical automatic transmissionshifted by economy schedule.
     (2) The multi-objective global optimization of the fuel consumption and emissionof hybrid vehicle had been proposed by means of dynamic programming algorithm. Themathematical model of optimal controller for full hybrid vehicle had been established.Focusing on the characteristic of the engine’s frequent start/stop when the DCFHEV’soperation modes changed, the additional fuel consumption caused by engine’s star/stopwas considered in the model. After that, the optimal control problem of the hybrid vehicle in the specific driving cycle was converted to a single-step, multi-stage decisionproblem. According to the Bellman principle, a recursive equation was created and thencalculated using the dynamic programming algorithm to obtain the optimum controller.Finally, the optimal control variables were transferred into the vehicle dynamic modelforwardly to obtain the optimal state variables and the optimal value of objectivefunction.
     (3) The real-time control strategy for multi-objective optimization of hybridvehicle’s fuel consumption and emission had been established. In order to accelerate thecatalytic converter’s light-off, the fuzzy logic control strategy was presented. Controllercan reduce the cold start emission through improving the engine’s exhaust temperature.The electric heated control strategy which took advantage of the high power capacitybattery in hybrid vehicle to increase the catalytic converter’s light-off was proposed aswell. The equivalent fuel consumption of the battery in EHCS (electrically heatedcatalyst system) during cold-start was calculated. Some of the effects of EHCS’s heaterpower and location had been analyzed such as catalytic converter’s temperature andlight-off, HC/CO emission, equivalent fuel consumption and vehicle’s operating mode.In order to accelerate catalytic converter’s light-off and reduce fuel consumptionrespectively, the corresponding time shortest and fuel optimum control strategy wereapplied for different extrem objective function to obtain different optimum controlstrategy in according to the Pontryagin Minimum Principle.
     (4) The multi-objective stochastic linear optimal control strategy for fuelconsumption and emission of hybrid vehicle was established. On the basis of analyzingthe data collected along a fixed road, the actual driving cycle was equivalent to thesuperposition of a standard driving cycle with white noise interference. Thus control offuel consumption and emission for hybrid vehicle under actual road condition wastransformed to the optimal control in a standard driving cycle interfered with randomwhite noise. The quadratic state equation of full hybrid vehicle with three-way catalyticconverter’s temperature status was created. The multi-objective optimization functionwhich consists of engine’s fuel consumption and catalytic converter’s outlet emissionwas solved by stochastic linear quadratic optimal control method. The battery SOC(state of charge), speed, the actual state of the catalytic converter’s temperature andoutlet’s emission was estimated by Kalman filter so as to the optimal feedback of motoror engine power and other output variables can be realized. The optimal control strategyof the fuel consumption and emission of hybrid vehicle can be achieved therefore.
     (5) The tests of dual clutch full hybrid vehicle’s powertrain in test rig had beenaccomplished. The hardware-in-loop experiment test rig of the powertrain was set up.The test model based on the MATLAB/Simulink/dSPACE platform was founded andthe corresponding data acquisition and controller was developed. Some tests foroptimization of fuel consumption and emission in specific working mode such ascombined driving had been finished in the test rig. The accuracy and effectiveness of thesimulation and part of the control strategy of hybrid vehicle had been verified byexperiment results.
引文
[1] Abolhassani M, Acharya P, Asadi P, Ashmun T,etc.Impact of hybrid electric vehicles on theworld's petroleum consumption and supply[J].SAE technical paper,2003-01-2310.
    [2] Federal and califonia/Exhaust and evaporative/emissions standard for light-duty vehicle andlight-duty trucks. http://www.Epa.gov/oms/cert veh-cen/b00001.pdf.
    [3] Worldwide emissions standards2010/2011.http://delphi.com/pdf/emissions/Delphi-Passenger-Car-Light-Duty-Truck-Emissions-Brochure-2010-2011.pdf.
    [4]全国文献工作标准化技术委员会.GB18352.3-2005轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)[S].北京:中国标准出版社,2005.
    [5]田硕.柴油机ISG混合动力系统瞬态过程优化控制研究[D].北京:清华大学博士论文.2008.
    [6] Chan C C.The state of the art of electric, hybrid, and fuel cell vehicles [J]. Proceedings ofthe IEEE,2007,95(4):704-718.
    [7]中美新能源汽车论,http://www.cse.anl.gov/us_china_workshop.
    [8] Zeraoulia M, Benbouzid M E H, Diallo D. Electric motor drive selection issues for HEVpropulsion systems: A comparative study [J]. IEEE Transactions on Vehicular Technology,2006,55(6):1756-1764.
    [9] Katra nik T.Hybridization of powertrain and downsizing of IC engine–a way to reduce fuelconsumption and pollutant emissions–part1[J]. Energy Conversion and Management,2007,48(5):1411–1423.
    [10] Katra nik T.Hybridization of powertrain and downsizing of IC engine–analysis andparametric study–part2[J]. Energy Conversion and Management,2007,48(5):1424–1434.
    [11] Sundstrom O, Guzzella L, Soltic P. Optimal hybridization in two parallel hybrid electricvehicles using dynamic programming[C].//Proceedings of the17th IFAC World Congress,seoul, South Korea,2008:4642-4647.
    [12] Liao G Y, Weber T R, Pfaff D P.Modelling and analysis of powertrain hybridization onmodelling and analysis of powertrain hybridization on all-wheel-drive sport utility vehicles[J]. Journal of Automobile Engineering,2004,218(10):1125-1134.
    [13] Chau K T, Wong Y S.Overview of power management in hybrid electric vehicles [J]. EnergyConversion and Management,2002.43(15):1953-1968.
    [14]周毅,刘新宇,高卫民.三元催化器冷起动研究分析[J].内燃机工程,2002,23(3):43-49.
    [15] Andrianov D I, Keynejad F, Dingli R, etc. A cold-start emissions model of an engine andaftertreatment system for optimisation studies [J]. SAE technical paper,2010-01-1274.
    [16] Neil R C, Martyn V T. Three-way catalyst emissions control technologies for spark-ignitionengines—recent trends and future developments [J]. Chemistry and Materials Science.Topics in Catalysis,2007,42(10):323-332.
    [17]熊伟威.混联式混合动力客车能量优化管理策略研究[D].上海:上海交通大学博士学位论文,2009.
    [18] Wipke K B, Cuddy M R, Burch S D.ADVISOR2.1: a user-friendly advanced powertrainsimulation using a combined backward/forward approach [J].IEEE Transactions onVehicular Technology,1999,48(6):1751-1761.
    [19] Lin C C, Kang J M, Grizzle J W,etc.Energy management strategy for a parallel hybridelectric truck[C].//Proceedings of the American Control Conference, Arlington, VA,2001,4:2878-2883.
    [20]王庆年,孙树韬,曾小华等.并联混合动力客车广义最优工作曲线控制研究[J].汽车工程,2008,30(5):391-394.
    [21]胡明辉. CVT轻度混合动力汽车能量管理策略研究[D].重庆:重庆大学博士学位论文,2007.
    [22]秦大同,叶心,胡明辉等.ISG型中度混合动力汽车驱动工况控制策略优化[J].机械工程学报,2010,46(12):86-92.
    [23] Jalil N, Kheir N A, Salman M. Rule-based energy management strategy for a series hybridvehicle[C].//Proceedings of the American Control Conference. Albuquerque,1997,1:689-695.
    [24] Morteza M G, Amir P, Babak,G. Application of genetic algorithm for optimization of controlstrategy in parallel hybrid electric vehicles [J]. Journal of the Franklin Institute,2006,343(7).420-435.
    [25] Ao Guoqiang, Zhong H, Yang L,et al. Fuzzy logic based control for ISG hybrid electricvehicle[C].//Proceedings of Sixth International Conference on Intelligent Systems Designand Applications.Jinan, China,2006:274-279.
    [26]姚明亮,秦大同,胡明辉等.基于模糊逻辑控制策略的混合动力汽车仿真研究[J].汽车工程,2007,29(11):934-937,941.
    [27] Delprat S, Guerra T M. Optimal control of a parallel powertrain from global optimization toreal time control strategy[C].//IEEE55th Vehicular Technology Conference,2002,4:2082-2088.
    [28] Paganelli G, Delprat S. Equivalent consumption minimization strategy for parallel hybridpowertrains [C].//IEEE55th Vehicular Technology Conference, Birmingham, England,2002,4:2076-2081.
    [29] Gao J P. Equivalent fuel consumption optimal control of a series hybrid electric vehicle [J].Proceedings of the Institution of Mechanical Engineers Part D-Journal of AutomobileEngineering,2009,223(8):1003-1018.
    [30] Huang Y J, Yin C L, Zhang J W. Design of an energy management strategy for parallelhybrid electric vehicles using a logic threshold and instantaneous optimization method [J].Internatinal Journal of Automotive Technology,2009,10(4):513-521.
    [31]黄援军,殷承良,张建武.并联式混合动力城市客车最优转矩分配策略[J].上海交通大学学报,2011,10(43):1536-1540.
    [32]张炳力,张平平,赵韩等.基于离散动态规划的PHEV燃油经济性全局最优控制[J].汽车工程,2010,32(11):923-927.
    [33]欧阳易时,金达锋,罗禹贡等.并联混合动力汽车功率分配最优控制及其动态规划性能指标的研究[J].汽车工程,2006,28(2):117-121.
    [34]浦金欢,殷承良,张建武等.并联型混合动力汽车燃油经济性最优控制[J].上海交通大学学报,2006,40(6):947-957.
    [35] Lin C C, Peng H, Grizzle J W. A stochastic control strategy for hybrid electric vehicles
    [C].//Proceedings of the2004American Control Conference, Boston, Massachusetts,2004:4710-4715.
    [36]张炳力,代康伟,赵韩等.基于随机动态规划的燃料电池城市客车能量管理策略优化[J].系统仿真学报,2008,20(17):4664-4667.
    [37] Johannesson L, Mattias A, Bo. Assessing the potential of predictive control for hybridvehicle powertrains using stochastic dynamic programming [J]. IEEE Transactions onIntelligent Transportation Systems,2007,8(1):71-83.
    [38]浦金欢,混合动力汽车能量优化管理与控制策略研究[D]上海:上海交通大学博士学位论文,2006.
    [39] Bin Y, Reama A, Cela A. On fast dynamic programming for power splitting control ofPlug-In hybrid electric vehicles[C]//ASME2009Dynamic Systems and Control Conference,Hollywood, California,2009,10:229-236.
    [40] Lin C C, Jeon S, Peng H, etc. Driving pattern recognition for control of hybrid electrictrucks [J]. Vehicle System Dynamics,2004,42(1-2):41-58.
    [41] Serrao L, Onori S, Rizzoni G. ECMS as a realization of pontryagin's minimum principle forHEV control[C].//IEEE American Control Conference, St. Louis,USA,2009:964-969.
    [42] Tulpule P, Marano V, Rizzoni G. Effects of different PHEV control strategies on vehicleperformance[C].//IEEE American Control Conference, St. Louis, USA,2009:950-955.
    [43] Kessels J T B A, Foster D L, F,Van Den Bosch P P J.Integrated powertrain control for hybridelectric vehicles with electric variable transmission[C].//IEEE Vehicle Power and PropulsionConference, Dearborn, MI,2009:376-381.
    [44] Lescot J, Sciarretta A, etc. On the integration of optimal energy management and thermalmanagement of hybrid electric vehicles[C].//IEEE Vehicle Power and PropulsionConference, Lille,2010,1:1-6.
    [45] Kim N, Cha S, Peng H. Optimal control of hybrid electric vehicles Based on pontryagin'sminimum principle [J]. IEEE Transactions on Control Systems Technology,2011,19(5):1279-1287.
    [46] Kim N, Rousseau A, Lee D.A jump condition of PMP-based control for PHEVs [J].Journalof Power Source,2011,196(23):10380-10386.
    [47] Wei X, Guzzella L, Utkinet V I. Model-based fuel optimal control of hybrid electric vehicleusing variable structure control systems [J]. Journal of Dynamic Systems Measurement andControl,2007.129(1):13-19.
    [48]马志雄,朱西产,李孟良等.动态聚类法在车辆实际行驶工况开发中的应用[J].武汉理工大学学报,2005,27(11):69-81.
    [49] Jeon S L, Park Y L, Lee J M.Multi-mode driving control of a parallel hybrid electricvehicle using driving pattern recognition [J]. Journal of Dynamic Systems Measurement andControl,2002,124(1):141-149.
    [50]庄继晖,谢辉,严英等.基于GPRS的电动汽车道路行驶工况自学习[J].天津大学学报,2010.43(4).
    [51] Lin C C, Jeon S, Peng H, etc. Driving pattern recognition for control of hybrid electrictrucks [J]. Vehicle System Dynamics,2004.42(1-2):41-58.
    [52] Johannesson L, Pettersson S. Predictive energy management of a4QT series-parallel hybridelectric bus [J]. Control Engineering Practice,2009,17(12):1440-1453.
    [53] Moura S J, Fathy H K, Callaway D S, Stein J L. A Stochastic optimal control approach forpower management in Plug-In hybrid electric vehicles [J]. IEEE Transactions on VehicularTechnology,2011,19(3):545-555.
    [54] Gong Q, Tulpule P, Marano V, Midlam-Mohler S, Rizzoni G. The role of ITS in PHEVperformance improvement[C].//2011American Control Conference, San Francisco, CA,2011:2119-2128.
    [55] Koot M, Kessels, J T B A. Energy management strategies for vehicular electric powersystems [J]. IEEE Transactions on Vehicular Technology,2005,54(3):771-782.
    [56] Sciarretta A, Back M, Guzzella L. Optimal control of parallel hybrid electric vehicles [J].IEEE Transactions on Control System Technology,2004,12(3):352-363.
    [57] Park J M, Chen Z H, Kiliaris L, Kuang M L. Intelligent vehicle power control based onmachine learning of optimal control parameters and prediction of road type and trafficcongestion[J]. IEEE Transactions on Vehicular Technology,2009,58(9):4741-4756.
    [58] Won J-S, Langari R. Intelligent energy management agent for a parallel hybrid vehicle-PartII: torque distribution, charge sustenance strategies, and performance results [J]. IEEETransactions on Vehicular Technology,2005,54(3):935-953.
    [59] Manzie C, Watson H, Halgamuge S.Fuel economy improvements for urban driving hybridvs. intelligent vehicles [J]. Transportation Research part C-Emerging Technologies,2007.15(1):1-16.
    [60] Manzie C, Watson H, Halgamuge S. A Comparison of fuelconsumption between hybrid andintelligent vehicles during urban driving [J].Journal of Automobile Engineering,2006,220(1):167-76.
    [61] Yang B, Yao L, Pen Z R.Multiple traffic information based trip model and optimal powermanagement for Plug-In hybrid electric vehicles[C].//2009American Control Conference, St.Louis, MO,2009,75(6):3393-341.
    [62] Mohamad Abdul-Hak, Nizar Al-Holou, ITS based predictive intelligent battery managementsystem for plug-in Hybrid and Electric[C].//Vehicle Power and Propulsion Conference, CA,2009:138-144.
    [63] Rajagopalan A, Washington G.Intelligent control of hybrid electric vehicles using GPSinformation [J]. SAE technical paper,2002-01-19362.
    [64] Musardo C, Rizzoni G, Staccia B.A-ECMS: An adaptive algorithm for hybrid electricvehicle energy management decision and control[C].//European Control Conference, IEEE,2005:1816–1823.
    [65] Gong Q, Li Y, Peng, Z.Trip-Based Optimal power management of plug-in hybrid electricvehicles [J]. IEEE Transactions on vehicular technology,2008.57(6):3393-3401.
    [66] Gong Q, Li Y, Peng, Z.-R.Optimal power managemen optimal power management ofplug-In hybrid electric vehicles with trip modeling[C].//International MechanicalEngineering Congress and Exposition, Seattle, Washington,2007,11:53-62.
    [67] Gong Q, Li Y, Peng, Z.-R.Optimal power management of plug-in HEV with intelligenttransportation system[C].//Advanced intelligent mechatronics,2007IEEE/ASMEinternational conference, Zurich,2007,9:1-6.
    [68] Yi L, Murphey. Intelligent vehicle power management-an overview [J]. ComputationalIntelligence in Automotive Applications,2008,132:169-190.
    [69] Kimura A.Drive force control of a parallel-series hybrid system [J]. JSAE Review,1999,20(3):337-341.
    [70]童毅.并联式混合动力系统动态协调控制问题的研究[D].北京:清华大学博士学位论文,2004.
    [71]罗禹贡,杨殿阁,李孟海等.并联式混合动力汽车(PHEV)动态协调控制方法硬件在环仿真[J].机械工程学报,2008,44(5):80-85.
    [72]古艳春,殷承良,张建武等.并联混合动力汽车扭矩协调控制策略仿真研究[J].系统仿真学报,2007,19(3):631-636.
    [73]杨阳,杨文辉,杨亚联等.ISG混合动力再生制动系统压力协调控制策略[J].重庆大学学报(自然科学版),2009,32(5):493-498.
    [74]彭栋,殷承良,张建武等.混合动力汽车制动力矩动态分配控制策略研究[J].系统仿真学报,2007,19(22):5254-5259.
    [75]赵峰,罗禹贡,李克强等.基于动态协调控制的ISG型混合动力电动汽车牵引力控制方法[J].汽车工程,2011,33(6):463-467.
    [76] Schmidt M., Isermann R, Lenzen B, Hohenberg G. Potential of regenerative braking usingan integrated starter alternator[J].SAE Technical Paper,2000-01-1020.
    [77] Kusumi H, Yahi K, Ny Y,etc.42V Power control system for mild hybrid vehicle[J].SAETechnical Paper,2002-01-0519.
    [78] Kuang M L. An Investigation of engine start-stop NVH in a power split powertrain hybridelectric vehicle [J].SAE Technical Paper,2006-01-1500.
    [79]李红朋,秦大同,杨阳等.汽车发动机起动过程的动力学仿真[J].重庆大学学报(自然科学版),2005,28(6):4-8.
    [80] Canova M, Guezennec Y, Yurkovich S. On the control of engine start/stop dynamics in ahybrid electric vehicle [J]. Journal of Dynamic Systems Measurement and Control,2009,131(6):061005.1-061005.12.
    [81] Hu X, Wang Z, Liao L.Multi-objective optimization of HEV fuel economy and emissionsusing evolutionary computation [J]. SAE Technical Paper,2004-01-1153.
    [82] Kheir NA, Salman MA, Schouten NJ, et al. Emissions and fuel economy trade-off forhybrid vehicles using fuzzy logic[J].Mathematics and Computers in Simulation,2004,66(2/3):155-172.
    [83] FayazS A, Farhangi S, Asaei B. Fuel consumption and emission reduction of a mild hybridvehicle[C].//Industrial Electronics,34th Annual Conference of IEEE, Orlando, USA,2008:216-221.
    [84]张昕,宋建峰,田毅.基于多目标遗传算法的混合动力电动汽车控制策略优化[J].机械工程学报,2009,45(2):36-40.
    [85] Dongsuk Kum, Peng H, Bucknor M. Modeling and control of hybrid electric vehicles forfuel and emission reduction[C].//Dynamic Systems and Control Conference, ASME,2008(43352):553-560.
    [86]梁海波,高卫民,朱军等.混合动力Start/Stop控制策略对整车排放影响的研究[J].内燃机工程,2008,29(2):15-18.
    [87]陈绍刚,李孟良,徐达等.基于PEMS的混合动力客车发动机起动/停止对排放影响的研究[J].汽车工程,2010,32(3):198-202.
    [88] Yu S, Dong G, Li L.Transient characteristics of emissions during engine start/stop operationemploying a conventional gasoline engine for HEV application [J].International Journal ofAutomotive Technology,2008,9(5):543-549.
    [89]李孟良,聂彦鑫.装配SCR系统的混合动力公交车排放特征研究[J].汽车技术,2010,(3):34-36.
    [90]周光伟,蔡忆昔,张彤.点火提前角对混合动力发动机起动工况HC排放的影响[J].车用发动机,2008,(6):64-67.
    [91]张君鸿,梁海波.混合动力控制策略对排放影响的试验研究[J].车用发动机,2008,(5):81-84.
    [92] Nevius T, Porter S, Rauker D, Rooney, R. Techniques for improved correlation betweenconstant volume and partial flow sample systems [J]. SAE Technical Paper2009-01-1351.
    [93]隗寒冰,秦大同,段志辉等.重度混合动力汽车燃油经济性和排放多目标优化[J].汽车工程,2011,11(33):937-941.
    [94]戴一凡,罗禹贡,边明远等.一种新型强混合动力结构的控制策略[J].汽车工程,2009,31(10):919-923,951.
    [95]谢辉,孙艳辉,夏超英等.基于动态递归神经网络的HCCI发动机燃烧相位辨识模型[J].内燃机学报,2007,25(4):352-357.
    [96] Thompson G J, Atkinson C M, Clark N N, et al. Neural network modeling of the emissionsand performance of a heavy-duty diesel engine [J]. Proceedings of the Institution ofMechanical Engineers, Part D: Journal of Automobile Engineering,2000,214(2):111-126.
    [97] Toth-Nagy C, Conley J J, Jarrett R P, etc. Further validation of artificial neuralnetwork-based emissions simulation models for conventional and hybrid electric vehicles [J].Journal of the Air and Waste Management Association,2006,56(7):898-910.
    [98] Brahma A, Upadhyay D, Serrani A, Rizzoni G. Modeling, identification and state estimationof diesel engine torque and NOx dynamics in response to fuel quantity and timingexcitations [C].//2004American Control Conference, Boston, MA,2004,3:2166-2171.
    [99] Arsie I, Pianes C, Rizzo G. Identification of emission models in a spark ignition engine forcontrol applications[C].//5th IEEE Mediterranean Conference on Control Systems, Paphos,Cyprus,1997,7:21-23.
    [100] Gao Z, Conklin J C, Daw C S, Chakravarthy V K. A proposed methodology for estimatingtransient engine-out temperature and emissions from steady-state maps[J].InternationalJournal of Engine Research,2010,11(2):137-151.
    [101]舒咏强.汽油机油膜动态效应及瞬态空燃比控制的研究[D].武汉:华中科技大学博士学位论文,2009.
    [102] Narayanan G, Shrestha, S O B. A simulation model of a four-stroke spark ignition enginefueled with landfill gases and hydrogen mixtures [J].Journal of Energy ResourcesTechnology-Transaction of ASME.2009,131(03):032203-032211.
    [103] Ma Q, Yurkovich S., Dudek K P. Predictive fuel dynamic control during engine start andcrank-to-run transition for port fuel injected gasoline engines[C].//American ControlConference, Seattle: WA,2008:994-1001.
    [104]刘金武,龚金科,谭理刚等.基于多维模型的电喷汽油机MAP图的数值生成[J].汽车工程,2006,28(8):719-724.
    [105] Pannag R, Sanketi C Z K H. Automotive engine hybrid modeling and control for reductionof hydrocarbon emissions [J]. International Journal of Control,2006,79(5):449-464.
    [106]马凡华,刘传李.火花点火发动机准维湍流卷吸燃烧模型[C].//中国内燃机学会首届青年学术年会论文集.1994:143~147.
    [107]李岳林.汽油机多区燃烧模型的建立及应用研究[D].西安:长安大学博士学位论文,2002.
    [108]宋金瓯,姚春德,姚广涛等.汽油机废气滚流分层技术燃烧放热规律的研究[J].内燃机学报,2006,24(2):157-161.
    [109]李立君,尹泽勇,乔渭阳等.汽油转子发动机燃烧过程模拟技术研究[J].内燃机学报,2005,23(5):457-462.
    [110]林建生,尚秀镜,李志军等.汽油机射流燃烧系统放热规律及燃烧完善性的分析与探讨[J].内燃机学报,2000,13(4):391-394.
    [111]王海刚,刘石.不同湍流模型在内燃机缸内流动过程数值模拟中的应用和比较[J].燃烧科学与技术,2004,10(1):66-71.
    [112] Carlos Z J, Dietmar G, Pannag S, Mark W, etc. Fuel dynamics model for enginecoldstart[C].//International Mechanical Engineering Congress and Exposition, ASMEConference Proceedings,Chicago, Illinois,2006(47683):1201-1208.
    [113] Hendricks E, Sorenson S C. Mean value modeling of spark ignition engines [J]. SAETechnical Paper, No.900616,1990.
    [114]谢茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版,2005.
    [115] Chan S H, Hoang D L, Zhou P L.Heat transfer and chemical kinetics in the exhaust systemof a cold-start engine fitted with a three-way catalytic converter [J]. Proceeding of theInstitution of Mechanical Engineers,2000,214,(7):765-777.
    [116] Chan S H, Hoang D L.Heat transfer and chemical reactions in exhaust system of a cold-startengine [J]. International Journal of Heat and Mass Transfer,1999,42(22):4165-4183.
    [117] Chan S H, Zhu J. Modeling of cold-start engine exhaust heat transfer and catalysts light off[J]. Journal of the Institute of Energy,1999,72(490):11-19.
    [118] Brandt E P, Yanying Wang, Grizzle J W. Dynamic modeling of a three-way catalyst for SIengine exhausts emission Control [J]. IEEE Transactions on Control Systems Technology,2000,8(5):767-776.
    [119]叶明,秦大同,刘振军等.轻度混合动力AMT系统经济性换挡规律优化[J].系统仿真学报,2008,20(11):3012-3015.
    [120]叶明,秦大同,刘振军等.轻度混合动力AMT汽车动力性换挡规律研究[J].汽车工程,2006,28(7):671-675.
    [121]申水文.AMT控制技术的应用研究[D].长春:吉林工业大学,1996.
    [122] Montazeri-Gh M, Poursamad A, Ghalichi B. Application of genetic algorithm foroptimization of control strategy in parallel hybrid electric vehicles[J].Journal of the FranklinInstitute-Engineering and Applied Mathematics.2006,343(4-5):420-435.
    [123] Desai C, Williamson S. Optimal design of a parallel hybrid electric vehicle usingmulti-objective genetic algorithms[C].//Vehicle Power and Propulsion Conference,Dearborn, MI,2009:871–876.
    [124]何海.混合动力汽车控制系统设计与仿真[D].武汉:华中科技大学博士学位论文,2005.
    [125] Buller s, Karden E, Kok D, etc. Artificial neural network based energy storage systemmodeling for hybrid electric vehicles [J]. SAE technical paper2000-01-1564.
    [126] Cheng, C.Alication of artificial neural betworks in the power split controller for a serieshydraulic hybrid vehicle [D]. Ohio: University of Toledo,2010.
    [127] YANG Qing, WANG Shang-yong, LI Xue-song, etc. Research and application of MPC555to high pressure common rail fuel injection system on diesel rotary piston engine [J].Chinese Internal Combustion Engine Engineering,2005,26(2):215-223.
    [128] Moritaka Matsuura, Koji Korematsu, Junya Tanaka. Fuel consumption improvement ofvehicles by idling stop [J]. SAE technical paper2004-01-1896.
    [129] Ao G-Q, Qiang J-X, Zhong H, etc. Fuel economy and NOx emission potential investigationand trade-off of a hybrid electric vehicle based on dynamic programming [J]. Journal ofAutomobile Engineering,2008,222(10).1851-1864.
    [130] Ambuhl D, Sundstrom O, Guzzell L.On Implementation of dynamic programming foroptimal control problems with final state constraints [J]. Oil&Gas Science and Technology,2010,65(1):91-102.
    [131] Ambuhl D, Sundstrom O, Sciarretta A. Explicit optimal control policy and its practicalapplication for hybrid electric powertrains [J] Control Engineering Practice,2010,18(12):1429-1439.
    [132] De Madrid A P, Dormido S, Morilla F. Reduction of the dimensionality of dynamicprogramming: a case study[C].//American Control Conference, San Diego, California,1999:2852-2856.
    [133] Luus R. Optimal control by dynamic programming using systematic reduction in grid size[J]. Journal of Control,1990,51(5):995-1013.
    [134] Luus R. Application of dynamic programming to high-dimensional non-linear optimalcontrol problems [J]. International Journal of Control,1990,52(1):239-250.
    [135] Kirk D. Optimal Control Theory: An Introduction [M]. New Jersey: Prentice-Hall,1970.
    [136] Coello C A. A Comprehensive survey of evolutionary-based multi objective optimizationtechniques [J]. Knowledge and Information Systems,1999,3(1):269-308.
    [137] Richardson M, Hancock M, Whiffin P. Hybrid vehicles: The system and control systemchallenges [J]. Measurement&Control,2010,43(10):306-311.
    [138] Horng R F. Effect of input energy on the cold start characteristics of an EHC with heatstoring material on a motorcycle engine [J]. Energy Conversion and Management,2005,46(7-8):1043-1057.
    [139] Kirchner T, Eigenberger G. Optimization of the cold-start behaviour of automotive catalystsusing an electrically heated pre-catalyst [J]. Chemical Engineering Science,1996,51(10).2409-2418.
    [140] Yaegashi T, Yoshizaki K, Nagami T, Sugiura S, etc. New technology for reducing the powerconsumption of electrically heated catalysts [J]. SAE Technical Paper940464.
    [141] Miao Y, Chen L D, Kuo T W. Study of SCR cold-start by energy method [J]. ChemicalEngineering Journal,2009,155(1-2):260-265.
    [142] Collins N R, Twigg V. Three-way catalyst emissions control technologies for spark-ignitionengines—recent trends and future developments [J]. Chemistry and Materials Science.Topics in Catalysis,2007,42-43:323-332.
    [143] Horng R F. Effect of input energy on the emission of a motorcycle engine with anelectrically heated catalyst in cold-start conditions [J]. Applied Thermal Engineering,2004,24(14-15):2017–2028.
    [144] Horng R F, Chou H M, Hsu T C. Effects of heating energy and heating position on theconversion characteristics of the catalyst of a four-stroke motorcycle engine in cold startconditions [J]. Energy conversion and management,2004,45(13-14):2113-2126.
    [145] Kessels J D, Foster L. Fuel penalty comparison for (electrically) heated catalyst technology[J].Oil&Gas Science and Technology,2010,65(1):47-54.
    [146] Chasse A, Corde G, Del Mastro A, et al. Online optimal control of a parallel hybrid withafter-treatment constraint integration[C].//Vehicle Power and PropulsionConference,France,Lille,2010:1-3.
    [147]马志雄.主成分分析法在车辆实际行驶工况开发中的应用[D].武汉:武汉理工大学硕士学位论文,2006.
    [148]石琴,郑与波,姜平.基于运动学片段的城市道路行驶工况的研究[J].汽车工程.2011.33(3).256-261.
    [149]朱道伟,谢辉,严英等.基于道路工况自学习的混合动力城市客车控制策略动态优化[J].机械工程学报,2010,46(6):33-38.
    [150]周楠,王庆年,曾小华等.基于工况识别的HEV自适应能量管理算法[J].湖南大学学报(自然科学版),2009,36(9):37-41.
    [151] Ambuhl D, Guzzella L. Predictive reference signal generator for hybrid electric vehicles [J].IEEE Transaction on Vehicle Technology,2009,58(9):4730-4740.
    [152] Borhan H A, Vahidi A, Phillips A M., Kuang M L, etc. Predictive energy management of apower-split hybrid electric vehicle[C].//American Control Conference, St. Louis, Missouri,2009:3970-3976.
    [153] Bubna P, Doug B, Suresh G. Prediction-based optimal power management in a fuelcell/battery plug-in hybrid vehicle [J]. Journal of Power Sources,2010.195(19).6699-6708.
    [154]舒红,高银平,杨为,蒋勇.中度混合动力汽车燃油经济性预测控制研究[J].公路交通科技.2009,26(1):149-158.
    [155]林洪桦.动态测试数据处理[M].北京:北京理工大学出版社,1995.
    [156] Schwarzer V, Ghorbani R, Rocheleau R. Drive cycle generation for stochastic optimizationof energy management controller for hybrid vehicles[C].//2010IEEE InternationalConference on Control Applications,Yokohama, Japan,2010:536-540.
    [157]叶心.ISG型中度混合动力AMT汽车综合控制策略研究[D].重庆:重庆大学博士学位论文,2011.
    [158]胡建军,赵玉省,秦大同等.基于CAN通信的混合动力系统硬件在环仿真实验[J].中国机械工程,2008,19(3):300-304.
    [159]秦大同,杨阳,詹迅等.ISG混合动力再生制动系统硬件在环仿真[J].重庆大学学报(自然科学版),2006,29(3):1-5.
    [160]张欣,李国岫,宋建锋等.并联式混合动力汽车多能源动力总成控制单元的研究与开发[J.]高技术通讯,2003,13(2):92-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700