用户名: 密码: 验证码:
基于μ综合的ICPT系统鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应耦合电能传输(ICPT)技术是一种基于高频电磁场近场耦合原理实现电能近距离无线传输的技术,涉及了电磁耦合、电力电子、自动控制等多个领域。由于谐振网络、高频变换以及磁路耦合等环节的存在,ICPT系统具有的自治振荡特性、高维非线性、不确定性等复杂的数学特性,显著增加了对系统建模及综合分析的难度。通过文献检索发现,目前尚无一种有效的方法可以解决ICPT系统的不确定非线性动力学行为建模及综合分析问题。
     本文旨在针对ICPT系统的复杂动力学行为特性,提出一种可普遍适用于这类不确定非线性系统的建模与控制、稳定性与性能分析的鲁棒综合方法,并通过将这种方法应用到实际ICPT系统中以验证该方法的有效性。作者主要从以下几个方面展开研究工作:
     1.提出一种改进型广义状态空间平均(GSSA)建模方法
     针对ICPT系统的自治振荡特性、高维非线性、不确定性等复杂动力学行为的建模问题,文中综合考虑系统的动态不确定性(高频未建模部分)、参数不确定性及可能存在的外部扰动,在传统GSSA模型的基础上,通过应用线性分式变换方法分离系统不确定性,以及附加反映各类摄动频谱特性的性能加权函数,形成一种改进型GSSA建模方法。
     2.研究并分析在结构化不确定性下ICPT系统的鲁棒综合控制问题
     文中以系统的鲁棒稳定性和鲁棒性能为设计指标,将ICPT系统在各类摄动因素影响下的鲁棒综合问题转化为一个系统结构奇异值的最小化问题,并采用D-K迭代算法求解出一个高阶、连续的μ综合鲁棒控制器。基于最优Hankel范数逼近方法和离散相似法,文中还分别对高阶、连续的μ综合控制器进行了降阶及离散化处理,以使该复杂的控制律更加易于在实际工程中实现。
     3.研究ICPT系统在各类摄动因素影响下的稳定性与性能分析问题,并提出一种电路参数鲁棒优化方法
     文中分别从标称性能、鲁棒稳定性及鲁棒性能三个方面对闭环摄动系统进行了检验和分析,得出了结构化不确定性下系统维持鲁棒稳定性和鲁棒性能的不确定参数边界条件,并进一步提出了一种以提高系统鲁棒性为目标的电路参数优化方法,其核心思想就是通过增加闭环摄动系统的稳定裕值(结构奇异值的倒数)来降低系统对电路参数摄动的敏感程度。
     4.通过实际的ICPT系统验证该鲁棒综合研究方法的有效性
     以一个LCL型ICPT系统为研究实例,根据其改进型GSSA模型及鲁棒优化电路参数,设计出一个基于μ综合理论的鲁棒控制器,并通过建立该μ综合控制系统的仿真模型和实验平台,分别对系统存在外部扰动、负载摄动以及参考电压变化情况下的瞬态响应过程进行了分析和研究。仿真及实验结果不仅说明了μ综合控制作用的有效性,而且还验证了理论研究成果的正确性。
     本文的创新性贡献在于:
     1.针对ICPT系统这一类具有自治振荡特性、高维非线性及不确定性的系统建模问题,创新性地将各种不确定性和外部扰动因素考虑到GSSA建模及分析过程中,以实现对这类系统复杂动力学行为更加客观及精确的描述。
     2.针对ICPT系统中各类摄动因素所带来的鲁棒综合问题,提出了一种基于结构奇异值的鲁棒控制策略。该控制策略以系统的鲁棒稳定性和鲁棒性能为设计指标,能保证所设计的闭环系统按照预设的性能指标稳定地运行。
     3.针对ICPT系统在各类摄动因素影响下的稳定性及性能分析问题,推导出系统维持鲁棒稳定性和鲁棒性能的不确定参数边界条件,并基于此边界判断条件,提出了一种以提高整个系统鲁棒性为目标的电路参数优化方法。
Inductively coupled power transfer (ICPT) technology can be defined as atechnology where power is transferred in wireless way between two electrical isolationsides by a high-frequency alternating magnetic-field. This novel technology involveselectromagnetic coupling, power electronics, automatic control and other field. Due tothe vital components including resonant network, high-frequency converter and coupledmagnetic circuit, ICPT systems have represented some complicated mathematicalproperties such as autonomous oscillating property, high dimensional nonlinearity,uncertainty, etc. These system properties lead to a significant increase in the complexityand difficulty for system modeling and synthesis. From the literature review, it can befound that there isn’t such one effective method so far to solve the problems ofuncertain nonlinear behaviors modelling and robust synthesis for ICPT systems.
     Aiming at the complex dynamical behavior characteristics of ICPT systems, thispaper is devoted to proposing a robust synthesis method which can be universallyapplied to the modeling, control, analyses of stability and performance for this kind ofuncertain nonlinear systems, and further researching a practical ICPT system in order toverify the validity of the proposed method. The main works of this paper are listed asfollows:
     1. Proposed an improved generalized state-space averaging (GSSA) modellingmethod
     To model the complex dynamical behaviors such as autonomous oscillatingproperty, high dimensional nonlinearity and uncertainty for ICPT systems, an improvedGSSA method is proposed by taking into account the system dynamic uncertainty(high-frequency unmodeled part), parameter uncertainty and external disturbances.Based on the system model described by traditional GSSA method, the system uncertainpart is first separated from the nominal part by means of the linear fractionaltransformation, and then the performance weighting functions are attached to the systemmodel for reflecting the spectrum characteristics of all the perturbations, and theimproved GSSA model is finally established to describe this augmented object.
     2. Studied and analyzed the robust synthesis control problem for ICPT system withstructured uncertainty
     Based on the design indexes of system robust stability and robust performance, the robust synthesis problem caused by all the perturbations in ICPT system is firsttransformed into a minimization problem of the structured singular values so that ahigh-order and continuous μ synthesis robust controller can be solved by D-K Iterativealgorithm. In order to make μ synthesis robust controller easy in implementation ofpractical engineering, the optimal Hankel-norm approximation and discrete similarmethod are given in the paper which are respectively used to reduce the order anddiscrete the algorithm for μ synthesis robust controller.
     3.Studied the stability and performance analysis problems for the perturbed ICPTsystem, and proposed a robust optimization method for circuit parameters
     To investigate the performance of closed-loop perturbed system, the nominalperformance, robust stability and robust performance are all tested and analyzed. Thenthe boundary condition of uncertain parameters to maintain the system robust stabilityand robust performance is further derived. On this basis, a robust optimization strategyof circuit parameters for the purpose of improving the system robustness is proposed.The core idea of robust optimization strategy is to reduce the system sensitivity tocircuit parameter perturbations by increasing the stability margin of closed-loop system,i.e. the reciprocal of structured singular value.
     4.Verified the validity of the proposed synthesis method via a practical ICPTsystem
     According to the improved GSSA model and circuit parameters obtained from therobust optimization for LCL type ICPT system, a robust controller is designed on thebasis of μ synthesis theory, and further the simulation model and experimental platformfor the μ synthesis control system are respectively established. From analyzing thesystem transient responses to external disturbances, load perturbations and referencevoltage changes, the simulation and experimental results can not only illustrate thevalidity of μ synthesis control, but also can verify the correctness of theoreticalresearch.
     The main contributions of the paper are as follows:
     1. Aiming at the modeling problem for a class of systems with autonomous oscillatingproperty, high dimensional nonlinearity and uncertainty such as ICPT systems, thevarious uncertainties and external disturbances have been innovatively taken intoaccount in the process of GSSA modeling and analysis, so that the complexdynamical behaviors of such systems can be described more objectively andaccurately.
     2. Aiming at the robust synthesis problem of ICPT systems caused by all theperturbations, a robust control strategy based on the structured singular values hasbeen proposed. This control strategy that uses the system robust stability and robustperformance as the design indexes can guarantee the closed-loop system operationaccording to the predetermined performance.
     3. Aiming at the stability and performance analysis problem for ICPT systems withthe perturbations, the boundary condition of uncertain parameters to maintain thesystem robust stability and robust performance is derived. According to theboundary condition, a robust optimization method of circuit parameters has beenproposed for the sake of improving the system robustness.
引文
[1] Boys J T, Green A W. Inductively coupled power transmission concept-design andapplication[J]. IPENZ Transactions,1995,22(1):1-9.
    [2] Madawala U K, Thrimawithana D J. A bidirectional inductive power interface for electricvehicles in V2G systems[J]. IEEE Transactions on Industrial Electronics.2011,58(10):4789-4796.
    [3] Qiang H X, Huang X L, Tan L L, et al. Achieving maximum power transfer of inductivelycoupled wireless power transfer system based on dynamic tuning control[J]. ScienceChina-Technological Sciences,2012,55(7):1886-1893.
    [4] Thrimawithana D J, Madawala U K, Neath M. A synchronization technique for bidirectionalIPT systems[J]. IEEE Transactions on Industrial Electronics,2013,60(1):301-309.
    [5] Kularatna N, Mc Dowall J, Melville B, et al. Low-cost autonomous3-D monitoring systemsfor hydraulic engineering environments and applications with limited accuracyrequirements[J]. IEEE Sensors Journal,2010,10(2):331-339.
    [6] Leung H Y, Budgett D M, Hu A P. Minimizing power loss in air-cored coils for TET heartpump systems[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems.2011,1(3):412-419.
    [7] Li H L, Hu A P, Covic G A. A direct AC-AC converter for inductive power-transfersystems[J]. IEEE Transactions on Power Electronics.2012,27(2):661-668.
    [8] Liu C, Hu A P, Covic G A, et al. Comparative study of CCPT systems with two differentinductor tuning positions[J]. IEEE Transactions on Power Electronics.2012,27(1):294-306.
    [9]马皓,孙轩.原副边串联补偿的电压型耦合电能传输系统设计[J].中国电机工程学报,2010(15):48-52.
    [10]于春来,朱春波,毛银花,等.谐振式无线能量传输系统驱动源[J].电工技术学报,2011(S1):177-181.
    [11]张献,杨庆新,陈海燕,等.电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J].中国电机工程学报,2012(21):153-158.
    [12]李阳,杨庆新,闫卓,等.磁耦合谐振式无线电能传输系统的频率特性[J].电机与控制学报,2012(07):7-11.
    [13]杨庆新,陈海燕,徐桂芝,等.无接触电能传输技术的研究进展[J].电工技术学报,2010(07):6-13.
    [14] Yang M, Wang Y, Ouyang H. Modeling and optimizing of a new contactless ICPT systemwith constant primary winding current[J]. Zhongguo Dianji Gongcheng Xuebao/Proceedingsof the Chinese Society of Electrical Engineering,2009,29(4):34-40.
    [15]王智慧,孙跃,戴欣,等. DC-AC型非接触电能传输系统变换器设计[J].重庆大学学报,2011(02):38-43.
    [16]孙跃,夏晨阳,赵志斌,等.电压型ICPT系统功率传输特性的分析与优化[J].电工电能新技术,2011(02):9-12.
    [17]苏玉刚,陈松,唐春森,等.能量注入式谐振型开关电源的研制[J].电源技术,2011(10):1262-1264.
    [18] Yuh-Shyan H, Bo-Han H, Ho-Cheng L, et al. PLL-based contactless energy transfer analogFSK demodulator using high-efficiency rectifier[J]. IEEE Transactions on IndustrialElectronics,2013,60(1):280-290.
    [19] Swain A K, Neath M J, Madawala U K, et al. A dynamic multivariable state-space model forbidirectional inductive power transfer systems[J]. IEEE Transactions on Power Electronics,2012,27(11):4772-4780.
    [20] Kissin M L G, Boys J T, Covic G A. Interphase mutual inductance in polyphase inductivepower transfer systems[J]. IEEE Transactions on Industrial Electronics,2009,56(7):2393-2400.
    [21] Innovation F, www.ecoupled.com.In.
    [22] Waffenschmidt E, Staring T. Limitation of inductive power transfer for consumerapplications[C]//200913th European Conference on Power Electronics and Applications,Barcelona, Spain,2009:1-10.
    [23] Spike Charger, www.spikecharger.com.In.
    [24] Wi-Power, www.wipower.com.In.
    [25] Epson S, www.epson.co.jp.In.
    [26] AG W, www.wampfler.com.In.
    [27] Nishimura M, Kawamura A, Kuroda G, et al. High efficient contact-less power transmissionsystem for the high speed trains[C]//Proceedings of IEEE36th Power Electronics SpecialistsConference,2005:547-553.
    [28] Song B M, Kratz R, Gurol S. Contactless inductive power pickup system for maglevapplications[C]//37th IAS Annual Meeting Conference Record of the Industry ApplicationsConference, Pittsburgh, PA, United states,2002:1586-1591.
    [29] Eskay Corporation A D C, www.eskay.com.In.
    [30] Budhia M, Vyatkin V, Covic G A. Powering flexible manufacturing systems with intelligentcontact-less power transfer[C]//Proceedings of IEEE International Conference on IndustrialInformatics, Daejeon, Korea, Republic of,2008:1160-1165.
    [31] Klontz K W, Divan D M, Novotny D W, et al. Contactless power delivery system for miningapplications[J]. IEEE Transactions on Industry Applications,1995,31(1):27-35.
    [32] Kojiya T, Sato F, Matsuki H, et al. Automatic power supply system to underwater vehiclesutilizing non-contacting technology[C]//Proceedings of IEEE Techno-Ocean Bridges OceansConference, Kobe, Japan,2004:2341-2345.
    [33] Li Z, Li D, Lin L, et al. A contactless power transmission system for underwatervehicles[C]//Proceedings of the2009International Conference on Mechanical and ElectricalTechnology, Beijing, China,2009:143-150.
    [34] Gao Q, Wu X, Liu J, et al. Modeling and simulation of contact-less power transformers forunderwater application[C]//Proceedings of IEEE International Conference on Mechatronicsand Automation, Changchun, China,2009:1213-1217.
    [35] Coulson R, Lambiotte J, Pantelakis T. Inductive power transfer system for underwaterapplications[P]. Utility Patent Application, US20080001696,2008.
    [36] Sato F, Nomoto T, Kano G, et al. A new contactless power-signal transmission device forimplanted functional electrical stimulation[J]. IEEE Transactions on Magnetics,2004,40(4):2964-2966.
    [37] Miura H, Arai S, Kakubari Y, et al. Improvement of the transcutaneous energy transmissionsystem utilizing ferrite cored coils for artificial hearts[J]. IEEE Transactions on Magnetics,2006,42(10):3578-3580.
    [38] Mansor H, Halim M A A, Mashor M Y, et al. Application on wireless power transmission forbiomedical implantable organ[C]//Proceedings of4th Kuala Lumpur International Conferenceon Biomedical Engineering, Kuala Lumpur, Malaysia,2008:40-43.
    [39] Fang W, Tang H, Liu W. Modeling and analyzing an inductive contactless power transfersystem for artificial hearts using the generalized state space averaging method[J]. Journal ofComputational and Theoretical Nanoscience,2007,4(7-8):1412-1416.
    [40] ABB,www.abb.de/stotz-kontakt.In.
    [41] Wild Charge, www.wildcharge.com.In.
    [42] Research T, www.telemetryresearch.com.In.
    [43]重庆大学与海尔集团建立联合实验室. http://news.cqu.edu.cn/news/article/show.php?itemid=36592,2011-07-12/2012-09-13.
    [44] Nokia, http://www.nokia.com/cn-zh/.
    [45]孙跃,杨芳勋,戴欣.基于改进型蚁群算法的无线电能传输网组网[J].华南理工大学学报(自然科学版),2011(10):146-151.
    [46]孙跃,戴欣,唐春森,等.分布式无线电能传输网[J].电力电子,2010(3):59-61.
    [47]杨芳勋,孙跃,夏晨阳.求解ICPT电源规划问题的改进混合蛙跳算法[J].重庆大学学报,2012(06):105-111.
    [48] Li H L, Hu A P, Covic G A, et al. Optimal coupling condition of IPT system for achievingmaximum power transfer[J]. Electronics Letters,2009,45(1):76-77.
    [49]吕潇,孙跃,王智慧,等.复合谐振型感应电能传输系统分析及参数优化[J].电力系统自动化,2012.
    [50]赵志斌,孙跃,周诗杰,等.非接触电能传输系统参数优化的改进遗传解法[J].西安交通大学学报,2012(02):106-112.
    [51]赵志斌,孙跃,苏玉刚,等. ICPT系统原边恒压控制及参数遗传优化[J].中国电机工程学报,2012(15):170-176.
    [52] Valtchev S, Borges B V, Brandisky K, et al. Efficient resonant inductive coupling energytransfer using new magnetic and design criteria[C]//IEEE36th Power Electronic SpecialistsConference, Recife, BRAZIL,2005:1293-1298.
    [53] Elliott G A, Covic G A, Kacprzak D, et al. A new concept: asymmetrical pick-ups forinductively coupled power transfer monorail systems[J]. IEEE Transactions on Magnetics,2006,42(10):3389-3391.
    [54] Zaheer A M, Budhia, Kacprzak D, et al. Magnetic design of a300W under-floor contactlesspower transfer system[C]//37th Annual Conference on Ieee Industrial Electronics Society,Melbourne, VIC, Australia,2011:1408-1413.
    [55] Ahn D, Hong S. A study on magnetic field repeater in wireless power transfer[J]. IEEETransactions on Industrial Electronics,2013,60(1):360-371.
    [56] Kacprzak D, Covic G A, Boys J T. An improved magnetic design for inductively coupledpower transfer system pickups[C]//Proceedings of the International Power EngineeringConference, Singapore,2005:265-272.
    [57] Hu A P, Boys J T, Covic G A. Frequency analysis and computation of a current-fed resonantconverter for ICPT power supplies[C]//International Conference on Power SystemTechnology, Perth,2000:327-332.
    [58] Boys J T, Covic G A, James J E. Switching frequencies in inductively coupled power transfesystems[C]//Proceedings of the6th International Power Engineering Conference,2003,1-2:686-691.
    [59] Hu A P, Hussmann S. A phase controlled variable inductor designed for frequencystabilization of current fed resonant converter power supplies[C]//Proceedings of the6thInternational Power Engineering Conference, Singapore,2003:175-180.
    [60] James J, Boys J, Covic G A. A variable inductor based tuning method for ICPTpickups[C]//The7th International Power Engineering Conference, Singapore,2005:1142-1146.
    [61]周诗杰,孙跃,戴欣,等.电压型CPT系统输出品质与频率稳定性分析[J].电机与控制学报,2012(06):25-29.
    [62] Boys J T, Elliott G A, Covic G A. An appropriate magnetic coupling co-efficient for thedesign and comparison of ICPT pickups[J]. IEEE Transactions on Power Electronics,2007,22(1):333-335.
    [63] Zhai Y, Sun Y, Dai X, et al. Modeling and analysis of magnetic resonance wireless powertransmission systems[J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the ChineseSociety of Electrical Engineering,2012,32(12):155-160.
    [64] Boys J T, Covic G A, Yongxiang X. DC analysis technique for inductive power transferpick-ups[J]. IEEE Power Electronics Letters,2003,1(2):51-53.
    [65] Xu Y X, Boys J T, Covic G A. Modeling and controller design of ICPT pick-ups[J]. IEEEPower System Technology,2002(3):1602-1606.
    [66] Boys J T, Hu A P, Covic G A. Critical Q analysis of a current-fed resonant converter for ICPTapplications[J]. Electronics Letters,2000,36(17):1440-1442.
    [67] Hu A P. Modeling a contactless power supply using GSSA method[C]//2009IEEEInternational Conference on Industrial Technology, Churchill, Australia,2009:1-6.
    [68] Li Y, Sun Y, Dai X, et al. Mixed-sensitivity H∞robust control of-type resonant IPT system[J].Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (NaturalScience),2011,39(2):12-19.
    [69] Smeets J P C, Overboom T T, Jansen J W, et al. Modeling framework for contactless energytransfer systems for linear actuators[J]. IEEE Transactions on Industrial Electronics,2013,60(1):391-399.
    [70]盛松涛,杜贵平,张波.感应耦合式无接触电能传输系统无接触变压器模型[C]//中国电工技术学会电力电子学会第十届学术年会论文集,西安,2006.
    [71]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报,2005(10):70-75.
    [72]林仲帆,杜贵平,盛松涛,等.感应耦合式无接触电能传输系统建模及仿真[C]//中国电工技术学会电力电子学会第十一届学术年会,杭州,2008:169-173.
    [73] Hu A P, Hussmann S. Improved power flow control for contactless moving sensorapplications[J]. IEEE Power Electronics Letters,2004,2(4):135-138.
    [74] Si P, Hu A P, Hsu J W, et al. Wireless power supply for implantable biomedical devicebasedon primary input voltage regulation[C]//2nd IEEE Conference on Industrial Electronics andApplications, Harbin, China,2007:235-239.
    [75] Hsu J U, Hu A P, Si P, et al. Power flow control of a3-D wireless power pick-up[C]//2ndIEEE Conference on Industrial Electronics and Applications, Harbin, China,2007:2172-2177.
    [76] Lu R, Wang T, Mao Y, et al. Analysis and design of a wireless closed-loop ICPT systemworking at ZVS mode[C]//IEEE Vehicle Power and Propulsion Conference, Lille, France,2010.
    [77] Van der Pijl F, Bauer P, Castilla M. Control method for wireless inductive energy transfersystems with relatively large air gap[J]. IEEE Transactions on Industrial Electronics,2013,60(1):382-390.
    [78] Madawala U K, Stichbury J, Walker S. Contactless power transfer with two-waycommunication[C]//30th Annual Conference of IEEE Industrial Electronics Society, Busan,Korea, Republic of,2004:3071-3075.
    [79]孙跃,王琛琛,唐春森,等. CPT系统能量与信号混合传输技术[J].电工电能新技术,2010(04):10-13.
    [80] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfersystems[J]. IEEE Proceedings-Electric Power Applications,2000,147(1):37-43.
    [81] Wang C S, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomena ofloosely coupled inductive power transfer systems[J]. IEEE Transactions on IndustrialElectronics,2004,51(1):148-157.
    [82] Tang C S, Dai X, Wang Z H, et al. Frequency bifurcation phenomenon study of a softswitched push-pull contactless power transfer system[C]//Proceedings of the20116th IEEEConference on Industrial Electronics and Applications, Beijing, China,2011:1981-1986.
    [83] Bai L, Tang H, Xu Y. Optimization model of the transcutaneous energy transmission systemfor achieving maximum power transfer capability[J]. Journal of Computers,2011(6):305-312.
    [84] Feng A, Qin H, Mao Z, et al. Analysis of bifurcation phenomena based on optimizedtransformer in loosely coupled inductive power transfer system[C]//Proceedings ofInternational Conference on Electrical and Control Engineering, Wuhan, China,2010:3324-3327.
    [85] Wang C, Covic G A, Stielau O H. General stability criterions for zero phase angle controlledloosely coupled inductive power transfer systems[C]//Proceedings of the IEEE IndustrialElectronics Society, Denver, CO, United states,2001:1049-1054.
    [86]戴欣.软开关变换电路离散映射建模方法及非线性行为研究[D].重庆大学,2006.
    [87] Villa J L, Sallan J, Sanz Osorio J F, et al. High-misalignment tolerant compensation topologyfor ICPT systems[J]. IEEE Transactions on Industrial Electronics,2012,59(2):945-951.
    [88] Yang M, Wang Y, Ouyang H. Analysis and design of an LCC-resonant inverter for ICPTsystems[J]. Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences,2010,37(4SUPPL.):195-199.
    [89] Sallan J, Villa J L, Llombart A, et al. Optimal design of ICPT systems applied to electricvehicle battery charge[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2140-2149.
    [90] Raval P, Kacprzak D, Hu A P. A wireless power transfer system for low power electronicscharging applications[C]//Proceedings of the20116th IEEE Conference on IndustrialElectronics and Applications, Beijing, China,2011:520-525.
    [91] Acero J, Carretero C, Lope I, et al. Analysis of the mutual inductance of planar-lumpedinductive power transfer systems [J]. IEEE Transactions on Industrial Electronics,2013,60(1):410-420.
    [92] Kurschner D, Rathge C, Jumar U. Design methodology for high efficient inductive powertransfer systems with high coil positioning flexibility[J]. Industrial Electronics, IEEETransactions on.2013,60(1):372-381.
    [93] Luis V J, Sallan J, Llombart A, et al. Design of a high frequency inductively coupled powertransfer system for electric vehicle battery charge[J]. Applied Energy,2009,86(3):355-363.
    [94]唐春森,孙跃,戴欣,等.感应电能传输系统多谐振点及其自治振荡稳定性分析[J].物理学报,2011(04):745-753.
    [95]戴欣,黄席樾,孙跃.自治分段线性振荡系统的离散映射数值建模与稳定性分析[J].自动化学报,2007(01):72-77.
    [96]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004(05):67-70.
    [97] Keeling N, Covic G A, Hao F, et al. Variable tuning in LCL compensated contactless powertransfer pickups[C]//2009IEEE Energy Conversion Congress and Exposition, San Jose, CA,United states,2009:1826-1832.
    [98] Sanders S R, Verghese G C. Synthesis of averaged circuit models for switched powerconverters[J]. IEEE Transactions on Circuits and Systems,1991,38(8):905-915.
    [99] Davoudi A, Jatskevich J, Chapman P L, et al. Averaged-switch modeling of fourth-orderPWM DC-DC converters considering conduction losses in discontinuous mode[J]. IEEETransactions on Power Electronics,2007,22(6):2410-2415.
    [100] Sun J, Mitchell D M, Greuel M F, et al. Averaged modeling of PWM converters operating indiscontinuous conduction mode[J]. IEEE Transactions on Power Electronics,2001,16(4):482-492.
    [101] Kanaan H, Al-Haddad K, Fnaiech F. Modelling and control of three-phase/switch/levelfixed-frequency PWM rectifier: state-space averaged model[J]. IEEE Proceedings: ElectricPower Applications,2005.152(3):551-557.
    [102] Daly K C. Some generalizations of state-space-averaged modelling in continuous mode[J].International Journal of Electronics,1986,60(2):191-198.
    [103] Bekir Yildiz A. Large-signal analysis of DC motor drive system using state-space averagingtechnique[J]. Energy Conversion and Management,2008,49(11):3069-3074.
    [104] Suntio T. Unified average and small-signal modeling of direct-on-time control[J]. IEEETransactions on Industrial Electronics,2006,53(1):287-295.
    [105] Suntio T. Average and small-signal modeling of self-oscillating flyback converter with appliedswitching delay[J]. IEEE Transactions on Power Electronics,2006,21(2):479-486.
    [106] Qu B, Lu Z. Small-signal modeling and controller design of three-phase voltage source PWMrectifier[J]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society,2010,25(5):103-108.
    [107] Liu Y. A unified large signal and small signal model for DC/DC converters with averagecurrent control[J]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society,2007,22(5):84-91.
    [108]钟小芬,吴捷.基于脉冲波形积分法的三电平变换器的统一建模[J].华南理工大学学报(自然科学版),2004(2):37-41.
    [109]邱关源,高潮.谐振型变流器建模的脉冲波形积分法[J].重庆大学学报(自然科学版),1994(5):1-9.
    [110] Tang N, Xiao X, Guo J, et al. Sliding mode variable structure direct power control ofpermanent-magnet direct drive generator[C]//2011International Conference on Electrical andControl EngineeringYichang, China,2011:828-831.
    [111] Van der Pijl F F A, Castilla M, Bauer P. Adaptive sliding-mode control for a multiple-userinductive power transfer system without need for communication[J]. IEEE Transactions onIndustrial Electronics,2013,60(1):271-279.
    [112] Ma H, Feng Q. Fixed-frequency PWM sliding-mode control of buck switching converterbased on precise feedback linearization[J]. Dianli Zidonghua Shebei/Electric PowerAutomation Equipment,2009,29(8):28-32.
    [113] Ojo O, Madhani V. Time-averaging equivalent circuit analysis and controller design offull-bridge parallel resonant DC/DC converters[C]//IEEE Industry Applications SocietyAnnual Meeting Part1(of2), Dearborn, MI, USA,1992:977-989.
    [114] Li X, Bhat Ashoka K S. AC equivalent circuit analysis for high-frequency isolated dual-bridgeseries resonant dc/dc converter[J]. IEEE Transactions on Power Electronics,2010,(25)4:850-862.
    [115] Lin B T, Qiu S S. Unified equivalent circuit analysis of quasi resonant converters-Highfrequency network averaging[C]//Proceedings of the IEEE Conference on IndustrialTechnology, Guangzhou, China,1994:490.
    [116] Jiang S, Peng F Z. Transmission-line theory based distributed z-source networks for powerconversion[C]//26th Annual IEEE Applied Power Electronics Conference and Exposition,Fort Worth, TX, United states,2011:1138-1145.
    [117] Yu M Y, Jiang X H. Numerical modeling and simulation of switching converter usingtransmission-line modeling technique[J]. Zhongguo Dianji Gongcheng Xuebao/Proceedingsof the Chinese Society of Electrical Engineering,2008,28(3):35-39.
    [118] Jezernik K, Horvat R. Application of hybrid system theory to switching control of athree-phase inverter[C]//IEEE International Symposium on Industrial Electronics, Gdansk,Poland,2011:1537-1542.
    [119] Zhao H S, Mi Z Q, Niu D X, et al. Power system modelling using hybrid system theory[J].Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of ElectricalEngineering,2003,23(1):20-25.
    [120]祁峰.基于混杂系统的电力电子电路建模与控制研究[D].浙江大学,2006.
    [121] Chen X, Niu W, Zhang X. Design and implement of a high-frequency bridge type AC-ACdirect converter for contactless power transfer systems[J]. Lecture Notes in ElectricalEngineering,2011,99(3):139-146.
    [122] Magdun O, Binder A. An iron core impedance model for calculating high frequency commonmode currents and shaft voltages in inverter-fed AC machines[C]//International Symposiumon Power Electronics, Electrical Drives, Automation and Motion,2012:135-140.
    [123] Jing H, Corzine K, Belkhayat M. Single-phase AC impedance modeling for stability ofintegrated power systems[C]//Electric Ship Technologies Symposium,2007:483-489.
    [124] Momma T, Matsunaga M, Mukoyama D, et al. AC impedance analysis of lithium ion batteryunder temperature control[J]. Journal of Power Sources,2012,216:304-307.
    [125] Middlebrook R D, Cuk S. General unified approach to modelling switching-converter powerstages[J]. International Journal of Electronics,1977,42(6):521-550.
    [126] Hamill D C, Deane J H, Jefferies D J. Modeling of chaotic DC-DC converters byiteratednonlinear mappings[J]. IEEE Transactions on Power Electronics,1992,7(1):25-36.
    [127] Liu W Z, Zhang H, Ma X K. Analysis of intermittent bifurcations and chaos phenomena inboost PFC converters by stroboscopic map[J]. Zhongguo Dianji GongchengXuebao/Proceedings of the Chinese Society of Electrical Engineering,2005,25(1):43-48.
    [128]戴欣,孙跃,苏玉刚,等.非接触电能双向推送模式研究[J].中国电机工程学报,2010(18):55-61.
    [129] Linhui C, Shuo L, Yong C Z, et al. An optimizable circuit structure for high-efficiencywireless power transfer[J]. IEEE Transactions on Industrial Electronics,2013,60(1):339-349.
    [130] Wang-Sang L, Wang-Ik S, Kyoung-Sub O, et al. Contactless energy transfer systems usingantiparallel resonant loops[J]. IEEE Transactions on Industrial Electronics,2013,60(1):350-359.
    [131] Sun Y, Wang Z H, Dai X, et al. Study of frequency stability of contactless power transmissionsystem[J]. Transactions of China Electrotechnical Society,2005(20):56-59.
    [132] Si P, Hu A P, Malpas S, et al. A frequency control method for regulating wireless power toimplantable devices[J]. IEEE Transactions on Biomedical Circuits and Systems,2008(2):22-29.
    [133] Hu A P, Boys J T, Covic G. A. ZVS frequency analysis of a current-fed resonantconverter[C]//Proceedings of International Power Electronics Congress, Acapulco, Mexico,2000:217-221.
    [134] Zaheer M, Patel N, Hu A P. Parallel tuned contactless power pickup using saturable corereactor[C]//Proceedings of IEEE International Conference on Sustainable EnergyTechnologies, Kandy, Sri lanka,2010:1-6.
    [135]傅文珍,张波,丘东元.频率跟踪式谐振耦合电能无线传输系统研究[J].变频器世界,2009(8):41-46.
    [136]王智慧.基于包络线调制的非接触电能传输模式研究[D].重庆大学,2009.
    [137]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆大学,2009.
    [138]戴欣,孙跃.感应电能传输系统能量注入控制方法研究[J].电子科技大学学报,2011(1):69-72.
    [139] Nemeth H, Palkovics L, Hangos K M. Feedforward bang-bang control design forelectro-pneumatic protection valves[J]. Periodica Polytechnica Transportation Engineering,2004,32(1-2):3-20.
    [140] Ge T, Chang J S. Bang-bang control class D amplifiers: total harmonic distortion and supplynoise[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2009,56(10):2353-2361.
    [141] Ge T, Chang J S. Bang-bang control class-D amplifiers: power-supply noise[J]. IEEETransactions on Circuits and Systems II: Express Briefs,2008,55(8):723-727.
    [142] Apkarian P, Ravanbod-Hosseini L, Noll D. Time domain constrained H-synthesis[J].International Journal of Robust and Nonlinear Control,2011(21):197-217.
    [143] Lin C L, Chen C L. Realisation of a Riccati equation-based controller using gradient-typeneural networks[J]. Control Engineering Practice,2001(9):329-341.
    [144] Li X, Rakkiyappan R, Pradeep C. Robust mu-stability analysis of Markovian switchinguncertain stochastic genetic regulatory networks with unbounded time-varying delays[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(10):3894-3905.
    [145] Castellanos B R, Messina A R. A robustness-based approach to determining preventive andemergency control zones[C]//Proceedings of IEEE Power and Energy Society GeneralMeeting,2010:1-8.
    [146] Zhou K M, Doyle J C, Glover K. Robust and optimal control[M]. Englewood Cliffs, NewJersey: Prentice Hall,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700