用户名: 密码: 验证码:
锂电池极片干燥箱流场特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂电池应用广泛,极片是其重要组成部件,涂布后的干燥过程是极片生产的关键工艺,干燥箱是极片干燥的核心设备,干燥箱内的流场特性,尤其是均匀性,对极片干燥效果影响巨大,另外,干燥箱的阻力特性、换热特性是关乎极片干燥能耗的主要因素,本文旨在通过理论分析、数值模拟、实验验证等方法,深入研究干燥箱内部流场特性,以改善干燥箱结构、提高其工作效率、减少干燥弊病。
     在充分分析了大量参数场均匀性指标及其计算方法的基础上,提出了适用于干燥箱参数场的均匀性统一指标,依照参数在空间场的分布特性,对干燥箱参数场进行了必要的分类,并藉此提出了对应于各类别参数场的均匀性附加指标。这些指标具有描述准确、意义明确、实用性强等特点,可用来恰当描述干燥箱内关键位置的参数分布特性。
     利用SolidWorks软件建立了三种风刀(干燥箱内主要均流元件)的数值模拟计算模型,通过有限体积法并求得其稳态流场,对比分析了三种风刀的阻力特性;以参数场均匀性统一指标及附加指标为评判标准对比分析了三种风刀的均流效果;择取了阻力小、均流能力强的风刀型式用于干燥箱的研究。
     分析了风刀阻力与均流效果之间的关系;提出了干燥箱风刀的设计原则,对风刀设计过程中涉及的通道截面特性、均流环节特性、均流环节个数及各均流环节间的连续等问题提出了相应的要求。
     利用数值模拟方法,以参数场均匀性统一指标及部分附加指标为依据,找出了典型干燥箱存在的结构问题,对干燥箱结构进行了改进,提出的新的上下排风式干燥箱结构型式具有均匀性较高的流场特性,而且阻力小。
     对上下排风式干燥箱,进行了风刀间距、高度等结构参数的研究;综合分析了干燥箱干燥能耗、阻力能耗、场协同性,建立了干燥需风量计算模型,进而提出了一种恰当选择干燥箱进口流量的方法。
     根据相似原理,用有机玻璃制作了风刀、干燥箱性能实验模型,确定了实验边界条件;对风刀、干燥箱进行了实验研究,进一步验证了数值模拟、理论研究工作的正确性与合理性。
Lithium batteries are widely used. Pole pieces are important components of lithiumbatteries. The drying process after coating is the key technology of the pole pieceproduction. Drying cabinets are the core equipments used in pole piece drying process. Indrying cabinets, the flow field characteristics, especially the uniformity, have a huge effecton drying effectiveness. In addition, the resistance characteristics and heat transfercharacteristics of drying cabinets are the main factors in drying energy consumption. Thispaper aims to research deeply the internal flow field characteristics of drying cabinets bymeans of theoretical analysis, numerical simulation and experimental verification methodsand improve the drying cabinet structure, increase the work efficiency, reduce the dryingdefects.
     Under the intensive analysis of the large parameter field uniformity indexes and theircalculation methods, the unified index of parameter field uniformity for drying cabinets isproposed. The parameter field in drying cabinets is classified according to the distributioncharacteristics of parameters in the space field. According to the classes of the parameterfield the additional indexes of parameter field uniformity are proposed. These indexes areaccurate, definite in meaning, strong practicality and can be used to properly describe theparameter distribution characteristics at the key positions in drying cabinets.
     Numerical simulation models of three kinds of air nozzles are built using thecommercial software (SolidWorks2007), and the steady state flow fields are obtained bynumerical computation with finite volume method. Comparative analysis of the threekinds of air nozzle’s resistance characteristics is developed. Use the parameter fielduniformity index and additional indexes as the evaluation criteria, the comparativeanalysis of three kinds of air nozzle’s uniform flow effect is developed. The air nozzlewith lower resistance and height uniform flow capability is chosen for the study ofcabinets.
     The relationship between resistance and flow equalization effect of the air nozzles isanalysed. The design principles of air nozzles are put forward. The requirements on the channel cross section characteristics, flow equalization links characteristics, flowequalization links number and the transition of the flow equalization links in the designprocess are proposed.
     Using numerical simulation method, basis on the parameter field uniformity indexand some additional index, structural problems of the typical drying cabinet are found andthe integral structure of drying cabinet is improved. New drying cabinet has higher flowcharacteristics and low resistance. This type drying cabinet is called upper and lower airexhaust drying cabinet.
     The height and space length of the upper and lower air exhaust drying cabinet aredetermined. The comprehensive analysis on drying energy consumption, resistance energyconsumption and the synergism of flowing and temperature field of the drying cabinet aredeveloped. Then, a method for the selection of the proper inlet flow is put forward.
     Based on the similarity principle, the experimental models of air nozzles and dryingcabinet are made of organic glass and the boundary conditions of experimental facility aredetermined. The experimental studies of air nozzles and drying cabinet are carried out andthe correctness and rationality of numerical simulation and theoretical study are furthervalidation of verified.
引文
[1]吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社,2002:3-8.
    [2] H.Y. Chen, A.J. Li, D.E. Finlow. The lead and lead-acid battery industries during2002and2007in China[J]. Journal of Power Sources,2009,191(1):22-27.
    [3]郭炳琨,徐徽,王先友,徐立新.锂离子电池[M].长沙:中南大学出版社,2002:1-15.
    [4] Bruno Scrosati, Jürgen Garche. Lithium batteries: Status, prospects and future[J]. Journal ofPower Sources,2010,195(9):2419-2430.
    [5]李岩.锂电池市场将迅速扩大[J].中国金属通报,2010,(2):16-17.
    [6]乾坤,小磊,麦肯桥.中国成为锂电池制造大国[J].时代汽车,2010,(1):46-48.
    [7]赵晏强,李金坡.基于中国专利的锂电池发展趋势分析[J].情报杂志,2012,31(1):35-40.
    [8]施能树.如何评价和提高层流流型气流速度场的均匀性[J].建筑科学,1987,(1):51-55.
    [9] Wuxi Bi, Jiayu Li, Zijing Lin. Flow uniformity optimization for large size planar solid oxide fuelcells with U-type parallel channel designs[J]. Journal of Power Sources,2010,195(10):3207-3214.
    [10] Wuxi Bi, Daifen Chen, Zijing Lin. A key geometric parameter for the flow uniformity in planarsolid oxide fuel cell stacks[J]. Hydrogen Energy,2009,34(9):3873-3884.
    [11]高广德,何璐璐,张泽虎.脉冲袋式除尘器内流场均匀性研究[J].煤矿机械,2009,30(12):40-42.
    [12]杨娟.贵州年降水量和年最大月降水量多年一遇的极值计算[J].贵州气象,2008,32(6):10-12.
    [13] Zhiwei Lian, Guirong Zhang, Hongmin Liu, et al. Presentation and evaluation of a new type of airsupply system in a passenger carriage in China[J]. Applied Thermal Engineering,2004,24(5):703-715.
    [14] C.M. Huang, S.S. Shy, C.H. Lee. On flow uniformity in various interconnects and its influence tocell performance of planar SOFC[J]. Journal of Power Sources,2008,183(1):205-213.
    [15] M.A. Habib, R. Ben-Mansour, et al. Evaluation of flow maldistribution in air-cooled heatexchangers[J]. Computers&Fluids,2009,38(3):677-690
    [16] Hong Liu, Peiwen Li, Jon Van Lew, et al. Experimental study of the flow distribution uniformityin flow distributors having novel flow channel bifurcation structures[J]. Experimental Thermaland Fluid Science,2012,37(1):142-153.
    [17]谢蓄芬,张伟,智喜洋等.基于场景的红外焦平面阵列非均匀性评价方法[J].光学学报,2012,32(6):1-6.
    [18] Daniel Tondeur, YilinFan, LingaiLuo. Flow distribution and pressure drop in2D meshed channelcircuits[J]. Chemical Engineering Science,2011,66(1):15-26.
    [19]周健,阎维平等. SCR反应器入口段流场均匀性的数值模拟[J].热力发电,2009,38(4):22-25.
    [20]徐芙蓉,平恒,姜柏卿等.三河电厂二期工程SCR脱硝装置流场的模型试验和数值分析[J].热力发电,2007,36(11):28-32.
    [21] O. Macchion, N. Lior, A. Rizzi. Computational study of velocity distribution and pressure drop fordesigning some gas quench chamber and furnace ducts[J]. Journal of Materials ProcessingTechnology,2004,155:1727-1733.
    [22] Kwang-Chul Noha, Myung-Do Oha, Seung-Chul Lee. A numerical study on airflow and dynamiccross contamination in the super cleanroom for photolithography process[J]. Building andEnvironment,2005,40(11):1431-1440.
    [23]罗翌,刘光远.垂直单向流洁净室速度场均匀性的影响因素[J].扬州大学学报,2006,9(2):61-64.
    [24]刘光辉,黄震,乔信起等.汽车催化转化器中气体流动的研究(二)[J].内燃机,2002,(1):13-15.
    [25]王兴海等.内燃机排气净化器流场均匀性的研究[J].西安理工大学学报,2008,24(1):47-51.
    [26]李爽,王建国,谢海燕等.腔体形状对混响室内场均匀性的影响[J].电波科学学报,2011,27(4):598-603.
    [27]吴永国,尹吴海,何永清等.三维观测系统属性均匀性的定量分析[J].石油地球物理学报,2012,47(3):361-365.
    [28]陶红歌,陈焕新,谢军龙等.基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J].化工学报,2010,61(S2):116-120.
    [29] Hong-Ge Tao, Huan-Xin Chen, Jun-Long Xie, et al. An alternative approach to quantifying fluidflow uniformity based on area-weighted average velocity and mass-weighted average velocity[J].Energy and Buildings,2012,45(1):116-123.
    [30]唐帅,刘永启,毛明明等.乏风氧化装置进气导流的流动均匀性研究[J].煤炭工程,2012,(1):107-110.
    [31]刘时贤,李小伟,吴莘馨.高温气冷堆堆芯球床流动与温度分布均匀性研究[J].工程热物理学报,2012,33(4):639-643.
    [32]赵海龙,刁永发.速差射流引射型喷吹管气流分布均匀性研究[J].东华大学学报,2011,37(5):639-643.
    [33]闫一野,刘美爽.木材干燥窑内风速与流场均匀性的数值模拟[J].东北林业大学学报,2012,40(6):134-136.
    [34]王敬欢,黄虎,张忠斌.不同型式的翅片管式换热器迎风面风速不均匀性实验研究[J].建筑科学,2012,28(2):32-36.
    [35]曹恒武,田振山.干燥技术及其工业应用[M].北京:中国石化出版社,2004:1-1.
    [36]赵伯元.现代涂布干燥技术[M].北京:中国轻工业出版社,1999:186-202.
    [37]徐颖.薄膜干燥过程传热分析计算及干燥箱优化设计[D].大庆石油学院,2008:47-50.
    [38]李玉刚.多烘缸造纸机干燥部能量系统分析建模与优化研究[D].华南理工大学,2011:82-97.
    [39]樊宁,高子辉.玻璃清洗机风刀流场分析[J].门窗,2011,(7):57-59.
    [40]陈石,王鹏,沈胜强.旋流喷嘴缩放型出口的流动特性[J].热科学与技术,2012,11(2):176-180.
    [41]邱庆刚.一种中空离心式喷嘴流场特性的研究[J].热能动力工程,2011,26(5):599-603.
    [42]山天涯,黄芸,安琦.轧辊冷却用扇形喷嘴的射流性能[J].华东理工大学学报,2012,38(2):259-264.
    [43]龚岩,张婷,郭庆华等.多喷嘴对置式气化炉撞击火焰三维温度场[J].燃烧科学与技术,2012,18(2):149-155.
    [44]龙新平,姚鑫,杨雪龙.多孔喷嘴射流泵流动模拟与涡结构分析[J].排灌机械工程学报,2012,30(2):136-140.
    [45]付祥钊,蒋斌,王勇等.内混式扇形空气雾化喷嘴参数分析[J].重庆大学学报,2010,33(3):87-91.
    [46]马洪安,张宝诚,刘凯.某型航空发动机燃油喷嘴对比试验研究[J].航空发动机,2009,35(3):53-57.
    [47] CHO Nam-Cheol1, HWANG In-Ju, LEE Chae-Moon et al. An experimental study on the airliftpump with air jet nozzle and booster pump[J]. Journal of Environmental Sciences,2009,21(1):S19-S23.
    [48] Puneet Gulati, Vadiraj Katti, S.V. Prabhu. Influence of the shape of the nozzle on local heattransfer distribution between smooth flat surface and impinging air jet [J]. International Journal ofThermal Sciences,2009,48(3):602-617.
    [49] Z.Y. Guo, D.Y. Li, B.X. Wang. A novel concept for convective heat transfer enhancement[J]. Int. J.Heat Mass Transfer,1998,41(14):2221–2225.
    [50]过增元.对流换热的物理机制及其控制-速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122.
    [51]徐艳芳,王松平,于大文等.强化对流换热场协同唯象理论[J].青岛大学学报,2002,15(4):57-61.
    [52] W.Q. Tao, Y.L. He, Q.W. Wang, et al. A unified analysis on enhancing single phase convective heattransfer with field synergy principle[J]. Int. J. Heat Mass Transfer,2002,45(24):4871–4879.
    [53] Wen-Quan Tao, Zeng-Yuan Guo, Bu-Xuan Wang. Field synergy principle for enhancingconvective heat transfer-its extension and numerical verifications[J]. International Journal of Heatand Mass Transfer,2002,45(18):3849–3856.
    [54] S. Shen, W. Liu, W. Q. Tao. Analysis of field synergy on natural convective heat transfer in porousmedia[J]. International Communications in Heat and Mass Transfer,2003,30(8):1081–1090.
    [55]申盛,刘伟,陶文铃.多孔介质中自然对流传热的场协同分析[J].自然科学进展,2003,13(4):439-443.
    [56] Ji-An Meng, Xin-Gang Liang, Zhi-Xin Li. Field synergy optimization and enhanced heat transferby multi-longitudinal vortexes flow in tube[J]. International Communications in Heat and MassTransfer,2005,48(16):3331–3337.
    [57] Z.Y. Guo, W.Q. Tao b, R.K. Shah. The field synergy (coordination) principle and its applications inenhancing single phase convective heat transfer[J]. International Journal of Heat and MassTransfer,2005,48(9):1797–1807.
    [58] Y.L. He, W.Q. Tao, F.Q. Song, W. Zhang. Three-dimensional numerical study of heat transfercharacteristics of plain plate fin-and-tube heat exchangers from view point of field synergyprinciple [J]. International Journal of Heat and Fluid Flow,2005,26(3):459–473.
    [59]刘志春,刘伟,杨金国等. CLP蒸发器毛细芯中流动与传热的场协同分析[J].工程热物理学报,2006,27(2):295-297.
    [60] Liang-Dong Ma, Zeng-Yao Li, Wen-Quan Tao. Experimental verification of the field synergyprinciple[J]. International Communications in Heat and Mass Transfer,2007,34(3):269–276.
    [61] Ruixian Cai, Chenhua Gou. Discussion on the convective heat transfer and field synergyprinciple[J]. International Journal of Heat and Mass Transfer,2007,50(25-26):5168–5176.
    [62] Qun Chen, Jianxun Ren, Ji-an Meng. Field synergy equation for turbulent heat transfer and itsapplication[J]. International Journal of Heat and Mass Transfer,2007,50(25-26):5334-5339.
    [63]熊少武,罗小平,高贵良.强化传热的场协同理论研究进展[J].石油化工设备,2007,36(1):50-54.
    [64] Qun Chen, Jianxun Ren, Zengyuan Guo. Field synergy analysis and optimization ofdecontamination ventilation designs[J]. International Journal of Heat and Mass Transfer,2008,51(3-4):873–881.
    [65] J.M. Wu, W.Q. Tao. Numerical study on laminar convection heat transfer in a rectangular channelwith longitudinal vortex generator. Part A: Verification of field synergy principle[J]. InternationalJournal of Heat and Mass Transfer,2008,51(5-6):1179–1191.
    [66] Li-Ting Tian, Ya-Ling He, Yong-Gang Lei, Wen-Quan Tao. Numerical study of fluid flow and heattransfer in a flat-plate channel with longitudinal vortex generators by applying field synergyprinciple analysis[J]. International Communications in Heat and Mass Transfer,2009,36(2):111–120.
    [67] Chenhua Gou, Ruixian Cai, Qibin Liu. Field synergy analysis of laminar forced convectionbetween two parallel penetrable walls[J]. International Journal of Heat and Mass Transfer,2009,52(3-4):1044–1052.
    [68] Jiangfeng Guo, Mingtian Xu, Lin Cheng. The application of field synergy number inshell-and-tube heat exchanger optimization design[J]. Applied Energy,2009,86(10):2079–2087.
    [69] Ruixian Cai, Qibin Liu, Chenhua Gou. The non-synergy field of convection[J]. InternationalJournal of Heat and Mass Transfer,2009,52(19-20):4343–4349.
    [70]何雅玲,雷勇刚,田丽亭等.高效低阻强化换热技术的三场协同性探讨[J].工程热物理学报,2009,30(11):1904-1906.
    [71]吴良柏,李震,宋耀祖.热质传递过程的场协同原理[J].科学通报,2009,54(14):2045-2050.
    [72] Qun Chen, MoranWang, and Zeng-Yuan Guo. Field Synergy Principle for Energy ConservationAnalysis and Application[J]. Advances in Mechanical Engineering,2010,2010(129313):1–9.
    [73]姚征,陈康民. CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144.
    [74]张师帅.计算流体动力学及其应用-CFD软件软件的原理与应用[M].武汉:华中科技大学出版社,2011:380-425.
    [75]纪兵兵,陈金瓶. ANSYS ICEM CFD网格划分技术实例详解[M].北京:水利电力出版社,2012:1-343.
    [76]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:1-272.
    [77]舒才,郁钟铭. COSMOSFloWorks在矿井通风系统可视化仿真中的应用[J].采矿技术,2010,10(5):80-82.
    [78]刘晓阳,李原. COSMOSFloWorks在汽车功率设计中的应用[J]. CAD/CAM与制造业信息化,2008,(9):63-64.
    [79]叶伟,张红霞.基于Floworks统收式采棉机正压输送系统模拟试验研究[J].佳木斯大学学报(自然科学版),2011,29(2):252-255.
    [80]欧协锋,何凯,李赳华等.一种新型取胚机械手用瓶胚冷却装置设计及其仿真分析[J].机械设计,2011,28(1):16-24.
    [81]王波,朱宏武,李壮.一种增油器内部流场的三维数值模拟[J].石油矿场机械,2007,36(12):27-29.
    [82]刘贵根,栾振辉.渐缩管过渡段型面对其流量影响的有限元分析[J].煤矿机械,2005,(11):66-68.
    [83]杨敏.基于SolidWorks的管内水流摩擦力的优化分析[J].机床与液压,2008,36(11):167-171.
    [84]罗瑜林,陶爱华,田志宾等.基于COSMOSFloWorks的测井仪器压力平衡设计计算[J].石油矿场机械,2009,38(5):41-43.
    [85]周伟,王庆明.管壳式换热器流动特性仿真模拟及结构优化[J].装备制造技术,2009,(1):22-24.
    [86]晏宇,崔硕,陈洋等.船用消防阀流阻系数模拟测定方法的探讨[J].阀门,2009,(5):26-28.
    [87]李淼,胡兆燕,陈正龙等. CPAP呼吸机压力发生器的设计[J].中国医疗器械信息,2008,14(10):40-44.
    [88] Flomerics.com. More use EFD software for education and research[J]. World Pumps,2008,2008(502):4-4.
    [89] P. HOFFMANN, S. JAWORSKI, A. KOZ OWSKA. Comparison of EFD and CFD investigationsof velocity fields for selected body-propeller configurations[J]. Archives of Civil and MechanicalEngineering,2007,7(3):135-141.
    [90] Hamid Sadat-Hosseini, PabloCarrica, et al. FrederickStern CFD, system-based and EFD study ofship dynamic instability events: Surf-riding, periodic motion, and broaching[J]. OceanEngineering,2011,38(1):88-110.
    [91]谢树艺.矢量分析与场论[M].北京:高等教育出版社,2005:17-18.
    [92]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2008:136-137.
    [93]孙尚拱,潘恩沛.实用判别分析[M].北京:科学出版社,1990: v-vi.
    [94]巴克豪斯等.多元统计分析方法[M].上海:格致出版社,2009:74-201.
    [95]同济大学数学系.高等数学(上册)[M].北京:高等教育出版社,2007:12-14.
    [96]罗惕乾.流体力学[M].北京:机械工业出版社,2011:56-57.
    [97]刘向军.工程流体力学[M].北京:中国电力出版社,2007:95-97.
    [98]张淑佳,李贤华,朱保林等. k-ε涡粘湍流模型用于离心泵数值模拟的适用性[J].机械工程学报,2009,45(4):238-242.
    [99]李亮,李晓锋,林波荣等.用带源项k-ε两方程湍流模型模拟树冠流[J].清华大学学报(自然科学版),2006,46(6):753-756.
    [100]李徐佳,高殿荣,邸立明等.基于流场数值模拟的锂电池极片干燥箱结构改进[J].中国机械工程,2010,21(18):2183-2187.
    [101]李志信,过增元.对流传热优化的场协同理论[M].北京:科学出版社,2010:54-116.
    [102]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:202-205.
    [103]沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社,2001:341-362.
    [104]曾丹苓,敖越,张新铭等.工程热力学[M].北京:高等教育出版社,2004:182-195.
    [105]吴君理,袁荣坤,项新耀.工程热力学[M].北京:石油工业出版社,1992:266-293.
    [106]施明恒,李鹤立,王素美.工程热力学[M].南京:东南大学出版社,2003:95-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700