用户名: 密码: 验证码:
水稻灌区新型农田水利系统防污减污试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国南方水稻灌区农业面源污染问题,在长江流域、珠江流域两个水稻灌区的试点上,构建了“四道防线”减污降污农田水利系统,并针对“四道防线”系统中的每个环节,开展实地观测试验,根据试验结果进行分析及模拟,研究各个环节及综合系统的降污、减污效果及机理,最后提出基于减污型农田水利系统的构建方法。主要研究内容和结论如下:
     (1)“四道防线”系统构成及降污作用试验研究。通过构建“水稻田节水灌溉Ⅰ-农田排水草沟Ⅱ-塘堰湿地Ⅲ-生态骨干排水沟Ⅳ”四道防线系统,以及在湖北漳河灌区、广西青狮潭灌区的观测试验结果,评价“四道防线”系统处理稻田排水水质效果。
     第一道防线—田间节水灌溉:通过节水减排和水肥高效利用,可减少氮、磷排放约20%-30%。第二道防线—田间排水草沟:排出农田的面源污染物首先进入田间排水草沟,通过田间排水草沟的拦截和净化达到对污染物进入塘堰湿地前的二次去除,可降低氮、磷约35%-50%。第三道防线—塘堰湿地:由田间排水草沟净化后的水进入塘堰湿地,通过物理沉降、化学吸附、植物吸收、微生物降解等作用,使面源污染物得到进一步消减,可降低氮、磷约40%-60%。第四道防线—生态骨干排水沟:塘堰湿地排出之水进入生态骨干排水沟系,生态骨干排水沟再次净化入此沟系的水质,可降低氮、磷约15%-50%。“四道防线”综合系统可降低稻田排水中氮、磷污染约60-70%,极大地提高了农田排水质量,使之可以被回收利用,从而在原有节水效果的基础上还可再节水20%-30%。
     (2)以不同的环境因子(不同底泥、不同上覆水水深及不同上覆水水质)分别进行了底泥释放试验,了解不同的环境条件下底泥释放的变化情况,为塘堰湿地的管理提供参考。
     水流的扰动会加速底泥中磷的释放;不稳定的水-泥环境以及溶解氧含量会影响微生物的生长及硝化/反硝化作用的进行,良好的好氧-厌氧根区环境对于保持湿地的净化能力非常重要;不同的水质指标的净化,其适宜的湿地水深是不同的。45cm水深条件下,底泥对于上覆水中TP具有较好的净化效果,而对于TN,底泥则在25cm水深条件下具有较好的净化效果。当底泥中营养物质富集到一定程度时,有可能形成二次污染,所以周期性的疏浚对于保证湿地的稳定运行至关重要。
     (3)利用DrainMOD模型模拟了漳河灌区中稻生育期试验区农田排水量及氮素流失量,并验证了模型在南方湿润地区的适用性;在参数率定和模型改进的基础上,利用DrainMOD模型模拟了不同水平年、不同灌溉方式及不同施肥量条件下的稻田排水过程和排水中氮素流失过程。
     稻田地表排水中铵氮的流失量主要集中在水稻生育前中期,硝氮的流失量主要集中在水稻生育中后期。湿地面积设计中宜考虑所承受稻田排水铵氮和硝氮负荷的上限值分别为14.1kg/hm2和6.6kg/hm2。施肥对稻田地表铵氮和硝氮流失影响较大,稻田产生地表排水流失的铵氮和硝氮量随施肥量的增多而增大。
     (4)应用TN、NH4+-N、NO3--N及TP的塘堰湿地水质模型,模拟了湿地出口水质,通过与实测值的对比,验证了模型的可信度;结合漳河灌区、青狮潭灌区人工湿地多年的实际运行情况,研究了基于控制农业面源污染的人工湿地的选型及优化设计。
     塘堰湿地TN、NH4+-N、NO3--N及TP一级动力学模型的模拟值与实测值较接近,误差基本上小于30%,模拟结果可信度较高。用DrainMOD模型模拟的农田排水量和排水污染物含量作为湿地水质模型的输入项,将两种模型耦合起来,形成一个综合系统,来模拟预测塘堰湿地出水水质。结果表明,耦合后的模型模拟效果较好,通过区域的土壤和气象等基础资料,便可模拟预测排水水质的净化效果,为“四道防线”综合系统提供了理论依据。
     (5)将“四道防线”技术理念应用于新型农田水利系统构建中,以生态排水沟道和塘堰湿地削减农田排水污染物措施的角度,总结了当前的研究成果,对构建水稻灌区防污、减污功能新型农田水利系统的理论、方法和效益进行了探讨。新型农田水利系统,具有建造及运行成本低、污染物去除效率高、出水水质好和操作简单等优点,兼顾了可操作性和经济性,产生了较好的环境效益、经济效益和社会效益。
Focuses on the problem of agricultural non-point source pollution in the rice-based irrigation area in South China, Two experimental sites of irrigation and drainage system with "Four Defense Lines" for pollution mitigation were established in the rice-based irrigation area located in the Yangtze River and Pearl River Basins respectively. The field experiment for each link of the "Four Defense Lines" system is engaged. The analysis and simulation are conduct on the basis of the results of the experiment. The effect of the pollution reduction and its mechanism of each link and the comprehensive system are studied. And then, the methods for establishment of the new irrigation and drainage system with pollution mitigation function are presented. The main research contents and conclusions are as follows:
     (1) The experiment and research of the composition of" Four Defense Lines' system and the effect on the pollution mitigation were engaged. The " Four Defense Lines " system which composed by water-saving irrigation in paddy field, field grass ditch, pond wetland and ecological trunk ditch has been constructed in Hubei Zhanghe and Guangxi Qingshitan irrigation districts. According to the results of the experiment, the effect on improving the drainage water quality from paddy field with "Four Defense Lines " system is evaluated.
     The first defense line—Water-saving irrigation:Through field water-saving irrigation, controlling discharge and combining with high utilization rate of water manure, the first defense line can reduce discharge of the nitrogen and phosphorus by20%-30%. The second defense line—field grass ditch:The non-point pollutants discharged from farmland firstly enter into field grass ditch, and then it is removed again through the field grass ditch before enter into pond wetland. The second defense line can mitigate nitrogen and phosphor by35%~50%. The third defense line—Pond wetland:Water is purified by field grass ditch and enters into the pond wetland, further reducing the contamination again through physical filtration, settling, chemical adsorption, botanical absorption, micro-biological degradation. The third defense line can mitigate nitrogen and phosphor by40%~60%. The fourth defense line—Ecological trunk ditch:Through collecting the discharged water from pond wetland and then discharge to all kinds of drainage receiver, ecological trunk discharge ditch re-purifies the water discharged from the wetland. The fourth defense line can mitigate nitrogen and phosphor by15%~50%. The" Four Defense Lines "comprehensive system can reduce nitrogen and phosphor60%~70%form paddy field drainage. Because the drainage water quality is improved significantly, it can be recycle-used in irrigation area, so the comprehensive system can further save water 20%~30%on the base of its original effect of water saving.
     (2) In order to provide the reference for the management of the pond wetland, the influence of sediment in pond wetland on reducing pollution under the conditions of different soil, water depth and water quality has been experimented and studied.
     The flow turbulence will accelerate the release of phosphorus from sediment. Unstable water-soil environment and the content of dissolved oxygen can affect the growth of microorganisms and the rate of nitrification/denitrification, good aerobic-anaerobic environment in the root zone is very important for maintaining the purification capacity of wetland. For different water quality indicators, the appropriate water depth of wetland is different. As for total phosphorus, the purification effect is better when the water depth is45cm, for total nitrogen, the better water depth is25cm. When the nutrients in sediment accumulate to a certain extent, secondary pollution may occur, so the periodic dredging to ensure the treatment capacity and stable operation of wetland is very important.
     (3) DrainMOD model was applied to simulate the paddy fields displacement and nitrogen loss form the experimental farmland in Zhanghe irrigation district during the growing season of middle rice. Its adaptability in the humid regions in South China was verified. Based on the parameter calibration and model improvement, DrainMOD model was utilized to simulate the process of the drainage discharge and nitrogen loss from paddy fields during the drainage in different hydrologic years, different irrigation manners and amounts of fertilizer.
     The ammonium nitrogen loss during the surface drainage form paddy fields mainly occurred in the early and middle growth stages of rice, while the nitrate nitrogen loss mainly occurred in the middle and late growth stages of rice. The upper limits of ammonium nitrogen load and nitrate nitrogen load during the drainage of paddy field are designed to be14.1kg/hm2and6.6kg/hm2respectively in the wetland area design. Fertilization had a significant influence on the ammonium nitrogen and nitrate nitrogen loss from the surfaces of paddy fields, and the ammonium nitrogen and nitrate nitrogen loss along with the drainage from paddy fields increased with the increase in amount of fertilizer.
     (4) Water quality at the outlet of wetland was simulated by using pond wetland water quality models for TN, NH4+-N, NO3--N and TP. The reliability of model was verified by the comparison of measured and calculated values. The selection and optimization design of pond wetland for controlling agricultural non-point pollution was studied in combination with practical operation situations of the pond wetlands in Zhanghe irrigation district and Qingshitan Irrigation district in the multiple years.
     The simulated values gained with the first-order kinetic model for TN, NH4+-N, NO3--N and TP of pond wetland are closer to the measured values, with an error less than30%, so the simulated result is of high reliability. The displacement of the farmland and pollutant content in the drainage that were simulated with the DrainMOD model were taken as the inputs of wetland water quality model, and then the two models were coupled to form a comprehensive system to simulate and forecast the quality of water from the pond wetland. The results showed that the coupled model had good simulation effect, and only the basic data such as soil and meteorological data of the region is needed to simulate and forecast the purifying effect of the drainage water, which provided theoretical basis for the "Four Defense Lines " comprehensive system.
     (5) The technology concept of "Four Defense Lines" was applied in the establishment of new irrigation and drainage system, current research achievements were concluded in terms of the technologies for removal of pollutant from the farmland drainage in ecological drainage ditches and pond wetland of irrigation districts. The theories, methods, and efficiency of this new irrigation and drainage system with pollution mitigation function in rice-based irrigation districts were discussed. This new system possesses the advantages of low construction and operation cost, high efficiency in pollutant removal, good drained water quality, and simple operation. It also considers the operability and economical efficiency, and produces good environmental, economical, and social benefits.
引文
[1]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(1):11-17.
    [2]陈敏建,梁瑞驹,刘玉龙.我国二十一世纪的水和粮食问题[J].水利学报,1999,(1):1-6.
    [3]李东发,李窿海,张秋英.我国农业水资源可持续利用面临的问题与对策[J].节水灌溉,2001,(4):1-3.
    [4]王燕.安徽省农业分区及模式研究[D].合肥:合肥工业大学,2000.5
    [5]李英能,黄修桥,吴景社.水土资源评价与节水灌溉规划[M].北京:水利水电出版社,1998
    [6]水利电力部水文局;中国水资源评价[M].北京:水利水电出版社,1987.12
    [7]汪恕诚.解决水资源短缺的根本出路[J].南水北调与水利科技,2006,4(4):1-2.
    [8]Corwin D L, Loague K, Ellsworth T R. GIS-based modeling of non-point source pollutants in the vadose zone [J]. Soil and Water Conservation,1998,53(1):34-38.
    [9]郭鸿鹏,朱静雅,杨印生.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,24(4):290-295.
    [10]Boers, P.C.M. Nutrient emissions from agriculture in the Netherlands, causes and remedies [J]. Water Science and Technology,1996,33(4/5):183-189.
    [11]中华人民共和国环境保护部.第一次全国污染源普查公报[R].北京:2010.
    [12]宋蕾,王永胜.关中抽渭灌区农田面源污染对渭河水体的影响[J].自然生态保护,2001,12(8):231-237.
    [13]焦荔USLE模型及营养物流失方程在西湖非点源污染调查中的应用[J].环境污染与防治,1991,13(6):2-5.
    [14]李斌.农业面源污染与防治对策[J].吉林农业,2005(08):214-219.
    [15]茆智.提倡建设一个节水型、生态型灌区[J].中国水利,2004.18:22-23.
    [16]FAO. Modernization of irrigation Schemes:Past experiences and future options[M]. Bangkote:RAP Publication,1997:1-3.
    [17]刘仲桂.水利现代化的内涵及其实施的研讨[C]//水资源可持续利用.水利现代化论文集.广 西科协,广西水利协会,2003:94-106.
    [18]顾斌杰.生态灌区构建原理及关键技术研究[D].南京:河海大学,2006.10
    [19]茆智.水稻节水灌溉及其对环境的影响[J].中国工程科学,2002,4(7):8-16.
    [20]彭世彰,朱成立.作物节水灌溉需水规律研究[J].节水灌溉,2003,2:5-7.
    [21]王笑影,闻大中等.不同土壤水分条件下北方稻田耗水规律研究[J].应用生态学报,2003,14(6):925-929.
    [22]马永生,张淑英,邓兰萍.氮磷在农田沟渠湿地系统中的迁移转化机理及其模型研究进展[J].甘肃科技,2005,02.
    [23]崔远来,李远华,吕国安等.不同水肥条件下水稻氮素转移与转化规律研究[J].水科学进展,2004,15(3):280-285.
    [24]马立珊,汪祖强,张水铭,等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    [25]李荣刚,夏源凌,吴安之.太湖地区水稻节水灌溉与氮素淋失[J].河海大学学报,2001,29(2):21-25.
    [26]吕国安,李远华,沙宗尧,等.节水灌溉对水稻磷素营养的影响[J].灌溉排水,2000,19(4):10-12.
    [27]朱成立,张展羽.灌溉模式对稻田氮磷损失及环境影响研究展望[J].水资源保护,2006,6:56-58.
    [28]李跃勋,徐晓梅,等.表面流人工湿地在滇池湖滨区面源污染控制中的应用研究[J].农业环境科学学报,2009,28(10):2155-2160.
    [29]杨林章,周小平,王建国,等.用于农田非点源污染控制的生态拦截沟渠系统及其效果[J].生态学杂志,2005,24(11):1371-1374.
    [30]邵东国,刘武艺,刘欢欢,等一种生态减污型排水沟渠设计方法[P].中国专利:CN101705672A,2010-05-12.
    [31]崔远来,董斌,郑世宗,等.用水稻灌区节水增产高效减污综合技术研究与应用[R].武汉大学,湖北漳河工程管理局,浙江省水利河口研究院,江西省灌溉试验中心站.2010.5.
    [32]王沛芳,王超,徐海波.自然水塘湿地系统对农业非点源氮的净化截留效应研究[J].农业环境科学学报,2006,25(3):782-785.
    [33]徐红灯,王京刚,等.降雨径流时农田沟渠水体中氮、磷迁移转化规律研究[J].环境污染与防治,2007,29(1):18-21.
    [34]彭世彰,张正良,罗玉峰,等.灌排调控的稻田排水中氮素浓度变化规律[J].农业工程学报,2009,25(9):21-26.
    [35]彭世彰,高焕之,张正良.灌区沟塘湿地对稻田排水中氮磷的原位消减效果及机理研究[J].水利学报,2010,41(4):406-411.
    [36]Ray B.Bryant, Anthony B, Peter K.etc.Using FGD Gypsum to Remove Soluble Phoshorus Form Agricultural Drainage Waters [J].2010 Annual Meetings theme:"Green Revolution 2.0: Food+Energy and Environmental Security."CA.US,2010,11.
    [37]Meuleman AFM, Beltman B. The use of vegetated ditches for water quality improment. [J].Hydrobiologia,1993,253-375.
    [38]Braskerud B C. Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution [J]. Ecological Engincering,2002,18:351-370.
    [39]Maurizio Borin, Davide Tochetto. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters. Science of the Total Environment, 2007(3)56-78.
    [40]Ingrid Wesstrom, Ingmar Messing. Controlled drainage-effects on drain out flow and water quality. Agricultural Water Management,2001,47:85-100.
    [41]G Raisin, D. Mitchell. The use of wetlands for the control of non-point source pollution[J], Water Science and Technology,1995,32(3):177-186
    [42]Borin M, Bonaiti G, Giardini L. Controlled drainage and wetlands to reduce agricultural pollution:a lysimetric study[[J]. Journal of Environmental quanlity,2001,30:1330-1340.
    [43]Mateos D M, Pedrocchi C, Comi'n FA, et al. Effects of wetland construction on water quality in a semi-arid catchment degraded by intensive agricultural use[J]. Ecological Engineering,2009, 36(5):631-639.
    [52]尹澄清,邵霞,王星.白洋淀水路交错带土壤对磷氮截留容量的初步探究[J].生态学杂志,1999,18(5):7-11.
    [53]Yin C Q, Shan B Q. Multipond systems:A sustainable way to control diffuse phosphorus pollution[J]. AMB1O,2001,30(6):369-375.
    [44]Thomas, D. L., P. G. Hunt and J. W. Gilliam.1992. Water Table Management for Water Quality Improvement. Soil and Water Cons.47(1):65:70.
    [45]M. B. orin, and L. Giardini. Controlled drainage and wetlands to reduce agricultural pollution. J. Environ. Qual. VOL,30, July-Augrst 2001.
    [46]L.C Brown, B.J.Czarotosk,N.R.Fausey,2004.Integrating Constructed Wetlands, Water Supply Reservoirs, and Subirrigation System into a High Yield Potential Corn and Soybean Production System. ASAE paper No.972038.
    [47]L.M.Luckydoo, L.C.Brown, etc,2002. Early Development of Vascular Vegetation of Constructed Wetlands in North Ohio Receiving Agricultural waters. Agriculture, Ecosystems and Environment,88(2008), pp.88-94.
    [48]刘文祥.人工湿地在农业面源污染控制中的应用研究[J].环境科学研究,1997,7(10):235-241.
    [49]扬扬等.人工湿地对洱海湖滨地区农业非点源污染控制示范研究[J].大理科技,2003,8(22):147-150.
    [50]尹澄清,邵霞,王星.白洋淀水路交错带土壤对磷氮截留容量的初步探究[J].生态学杂志,1999,18(5):7-11.
    [51]Yin C Q, Shan B Q. Multipond systems:A sustainable way to control diffuse phosphorus pollution[J]. AMBIO,2001,30(6):369-375.
    [52]武汉大学水利水电学院.水稻地区“灌溉-排水-小型湿地综合系统”对控制农业面源污染和调蓄径流的作用及其在水环境修复中的应用[A].武汉大学,2007.
    [53]何晓科,乔鹏,赵尤高.滨海湿地综合处理城市污水的模式研究[C].//现代农业水十资源高效利用理论与实践.北京:中国科学文化出版社,2008:754-757.
    [54]李志国,罗纨.湿地对农业生态环境的影响[C].//现代农业水资源高效利用理论与实践.北京:中国科学文化出版社,2008:779-782.
    [55]姜翠玲.沟渠湿地对农业非点源污染物的截留和去除效应[D].//南京.河海大学,2003:23-60.
    [56]翟丽华,刘鸿亮,席北斗,等.农业源头沟渠沉积物氮磷吸附特性研究[J].农业环境科学学报,2008,27(04):1359-1363.
    [57]杨林章,周小平,王建国,等.用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J].生态学杂志,2005,24(11):1371-1374.
    [58]Meuleman, A F M, Beltman B. The use of vegetated ditches for water quality improvement[J]. Hydrobiologia,1993,253:375.
    [59]Kroger R, Holland M M, Moore M T, et al. Agricultural Drainage Ditches Mitigate Phosphorus Loads as a Function of Hydrological Variability[J]. Journal of Environmental Quality, 2008,37:107-113.
    [60]M.T.Moore, R Kroger, M.A.Locke, et al. Nutrient mitigation capacity in Mississippi Delta, USA drainage ditches[J]. Environmental Pollution,2009,158(1):175-184.
    [61]Kroger R, Holland M M, Moore M T, et al. Hydrological Variability and Agricultural Drainage Ditch Inorganic Nitrogen Reduction Capacity[J]. Journal of Environmental Quality, 2007,36:1646-1652.
    [62]毛战坡.非点源污染物在多水塘系统中的流失特征研究[J].农业环境科学学报,2004,23(3):530-535.
    [63]Luckeydoo L M, Fausey N R, Brown L C, et al. Early development of vascular vegetation of constructed wetlands in northwest Ohio receiving agricultural waters [J]. Agriculture, Ecosystems and Environment,2002,88:89-94.
    [64]高焕芝,彭世彰,孙勇,缴锡云.稻田排水在沟塘湿地净化中总氮浓度的周期性特征[J].河海大学学报(自然科学版).2010,38(2):220-224.
    [65]U.S.EPA. Design Manual-Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment. EPA/625/1-88/022, U.S.EPA, Office of Research and Development, OH,1988.
    [66]Skaggs R.W. A Water management model for shallow water table soils [M]. Univ. of North Carolina Water Resource. Res. Inst. Tech. Rep.1978.
    [67]Breve, M.A., R.W. Skaggs, J.E. Parsons, and J.W. Gilliam.1997. DRAINMOD-N, A Nitrogen Model for Artificially Drained Soils [J]. Trans, of the ASAE, Vol.40(4):1067-1075.
    [68]Breve, M.A., R.W. Skaggs, J.W. Gilliam. J.E. Parsons, A.T. Mohammad, G.M. Chescheir, and R.O. Evans.1997. Field Testing of DRAINMOD-N [J]. Trans, of the ASAE, Vol. 40(4):1077-1085.
    [69]Chun-Chieh Yang, Shiv O. Prasher, Shaoli Wang, Seung Hyun Kim, Chin S. Tan, Craig Drury, Ramanbhai M. Patel.2007. Simulation of nitrate-N movement in southern Ontario, Canada with DRAINMOD-N [J]. Agricultural Water Management, Vol.87:299-306.
    [70]M.A.Youssef, R.W.Skaggs.2005. The Nitrogen Simulation Model, DRAINMOD-N II:Field Testing and Model Application for Contrasting Soil Types and Climatological Conditions [J]. Transactions of the American Society of Agricultural Engineers, Vol.48(2):611-626.
    [71]罗纨,贾忠华,Skaggs RW等.利用DrainMOD模型模拟银南灌区稻田排水过程[J].农业工程学报,2006,22(9):53-59.
    [72]Kadlec R H, Knisht R L. Treatment Wetlands[M]. Boca Raton:CRC Press,1996.
    [73]Mitsch W J, Crunk J K, Wu X, et al. Phosphorus retention in constructed freshwater riparian marches[J]. Ecol Appl,1995,5(3):830-845.
    [74]Robert H Kadlec. The inadequacy of first order treatment wetland models[J]. Ecol Eng, 2000,15(12):105-119.
    [75]Cooper P F, Job G D, Green M B, et al. Reed beds and constructed wetlands for wastewater treatment[M]. Wiltshire:WRcPublications.1996.
    [76]Reed S C. Subsurface flow constructed wetlands for wastewater treatment:atechnology assessment(EPA832-R-93-008)[R]. US Environmental ProtectionAgency, W as hington, DC,1993.
    [77]Reed S C, Crites R W, Middlebroks E W. Natural systems for waste management and treatment[M]. New York:2nd ed Mc-Graw-Hill,1998.
    [78]IWA. Constructed wetlands for pollution control:processes, performance, design and operation. Scientific and Technical Report NO.8[R]. IWA Publishing, London, UK,2000.
    [79]USEPA. Constructed wetlands and aquatic plant systems for municipal wastewater treatment. Design Manual, EPA 625/1-88/022[R]. Office of research and development, Washington, DC,1988.
    [80]Upton J, Green M B. A successful strategy for small treatment plants[J]. Water Qua] Int, 1995,4(2):12-14.
    [81]Naiming Wang, William J. Mitsch. A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecological Modelling,2000 (126):101-130.
    [1]李远华,崔远来,杨常武等.漳河灌区实时灌溉预报研究[J].水科学进展,1997,8(1):71-77.
    [2]赵金河,陈崇德.漳河水库调度运用手册.[M].荆门:湖北省漳河工程管理局.2001
    [3]茆智.灌溉管理手册第三篇灌溉试验[S].水力电力出版社,1994.
    [4]中华人民共和国水利部,灌溉试验规范(SL13-2004)[S].2004.10.
    [5]崔远来,董斌,郑世宗,等.用水稻灌区节水增产高效减污综合技术研究与应用[R].武汉大学,湖北漳河工程管理局,广西桂林试验中心站等.2010.5.
    [6]张晓辉.湖北漳河塘堰湿地处理稻田排水效果研究[D].武汉大学硕士论文.2010.
    [7]吴振斌等.复合垂直流人工湿地,科学出版社,2008.
    [8]董斌等.灌溉-排水-湿地综合管理系统(WRSIS)的引进技术报告,2010.3.
    [9]国家环境保护总局,水废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科出版社,2002.
    [10]国家环境保护总局,地表水环境质量标准(GB 3838-2002).[M].北京:中国环境科学出版社,2002.
    [1]茆智,水稻节水灌溉及其对环境的影响,[J].中国工程科学,2002,7:8-16.
    [2]茆智,孙宁宁,董斌.水稻节水灌溉与粮食安全—水稻节水灌溉及其在节水增产防污中的作用[C].农业节水与粮食安全高级论坛征文,2010.
    [3]茆智,崔远来,董斌等.水稻高效节水与持续高产的灌排技术.[J].水利水电技术.2002,33(2)
    [4]崔远来,董斌,郑世宗,等.用水稻灌区节水增产高效减污综合技术研究与应用[R].武汉大学,湖北漳河工程管理局,广西桂林试验中心站等.2010.5.
    [5]吴振斌等.复合垂直流人工湿地,科学出版社,2008.
    [6]吴振斌,任明迅等.垂直流人工湿地水力学特点对污水净化效果的影响.[J].环境科学,2001,22(5):45-49.
    [7]吴振斌,成水平,贺锋.垂直流人工湿地的设计及净化功能初探.[J].应用生态学报,2002,13(6):715-718.
    [8]尹军,崔玉波.人工浊地污水处理技术[M].北京:化学工业出版社.2006.
    [9]徐红灯.农田排水沟渠对流失氮磷的截留和去除效应[D].北京化工大学硕士学位论文,2007.
    [10]Margaret Greenway, Anne woolley. Constructed wetlands in Queensland:Performance efficiency and nutrient bioaccumulation[J]. Ecological Engineering.1999,12:39-55.
    [11]Borin M, Bonaiti G and Giardini. Controlled drainage and wetlands to reduce agricultural pollution:A lysimetric study[J]. J. Environ. Qual.2001.30:1330-1340.
    [12]李强坤,胡亚伟,孙娟.农业非点源污染物在排水沟渠中的迁移转化研究进展水[J].中国生态农业学报,2010,18(1):210-214.
    [13]Cheseheir G M, Skaggs R w, Gilliam J W. Evaluation of wetland buffer areas for treatment of pumped agricultural drainage water[J]. Transactions of the American Society of Agricultural Engineers,1992,35:175-182.
    [14]]玉海.人工湿地的除污机理及提高氮磷去除率的方法[J].新疆钢铁,2004(2):42-46.
    [15]GACHTER R, MEYER J S. The role of microorganisms in mobilization and fixation of phosphorus in sediments[J]. Hydrobiologia,1993,253:103-121.
    [16]REDDYKR, KADLECRH, FLAIGE, et al. Phosphorus assimilation in streams and wetland: critical reviews[J]. Environ Sci Tech,1996,31:4-18.
    [1]ANNY, REDDYKR, DELFINO J J. et al. Influence of chemical amendments on phosphorus immobilization in soil from a constructed wetland[J]. Ecological Engineering,2000,14:157-167.
    [2]吴存笃,王悦,韩建刚,赵如金,汪松美.北固湿地底泥氮磷释放特征初步研究[J].环境科学与技术,2008,31(4):10-12.
    [3]利锋,韦献革,黄雁云等.佛山水道底泥的污染物释放动态模拟[J].中国给水排水,2006,22(]7):88-95.
    [4]张修峰,何文珊,陆健健.温州三祥湿地底泥氮、磷含量及其对水质的影响[J].湿地科学,2009,2(3):192-196.
    [5]张辽飞,麦继婷,林联泉.底泥二次污染的研究现状[J].科技资讯,2007,28:118.
    [6]朱健,李捍东,王平.环境因子对底泥释放COD、TN和TP的影响研究[J].水处理技术,2009,35(8):44-49.
    [1]Shen S M. Contribution of nitrogen fertilizer to the development of agriculture and its loss in China[J]. Actapedol sin(土壤学报),2002.39(supp.):12-25.
    [2]Parton J W, Mosier A R, Ojima D S, et al. Generalized model for N2 and N2O production from nitrification and denitrification[J]. Global Biogeochemical Cycles,1996,10(3):401-412.
    [3]朱兆良.中国土壤氮素[J].南京:江苏科学技术出版社,1992:213-249.
    [4]Skaggs R.W.1990. DrainMOD User's manual [M]. University of North Carolina Water Resource Research Institute.
    [5]M.A.Youssef, R.W.Skaggs.2005. The Nitrogen Simulation Model, DRAINMOD-N Ⅱ:Field Testing and Model Application for Contrasting Soil Types and Climatological Conditions [J]. Transactions of the American Society of Agricultural Engineers, Vol.48(2):611-626.
    [6]郭元裕.农田水利学(第三版)[M].北京:中国水利水电出版社,2007:33.
    [1]Cooper P F, Job G D, Green M B, et al. Reed beds and constructed wetlands for wastewater treatment[M]. Wiltshire:WRcPublications.1996.
    [2]Reed S C. Subsurface flow constructed wetlands for wastewater treatment:atechnology assessment(EPA832-R-93-008)[R].US Environmental ProtectionAgency, W as hington, DC 1993.
    [3]Reed S C, Crites R W, Middlebroks E W. Natural systems for waste management and treatment[M]. New York:2nd ed Mc-Graw-Hill,1998.
    [4]IWA. Constructed wetlands for pollution control:processes, performance, design and operation. Scientific and Technical Report NO.8[R]. IWA Publishing, London, UK,2000.
    [5]Kadlec, R.H., and R. L. Knight.1996. Treatment Wetlands. CRC/Lewis Press, Boca Raton, FL. 893pp.
    [6]KADLEC R H. Overview:surface flow constructed wetLands[J]. Wat Sei Tech,1995,32(3): 1-12.
    [7]Adcock P.W. Growth characteristics of two macrophyte spices frowning in natural and constructed wetland system. Water Science and Technology,1994,29(4):95-102.
    [8]Mitsch W J, Crunk J K, Wu X, et al. Phosphorus retention in constructed freshwater riparian marches[J]. Ecol Appl,1995,5(3):830-845.
    [9]吴振斌等.复合垂直流人工湿地,科学出版社,2008.
    [10]高拯民、李宪法,城市污水土地处理利用手册,中国标准出版社.
    [11]彭丽媛,董斌,Mark Wahl,孙宁宁,Larry Brown等.水塘湿地示踪试验测定水力停留时间[J].灌溉排水学报,2009,42(5):30-34.
    [12]张荣社等.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备,2002,3(12):9-11.
    [13]United States EPA,2000. Constructed wetlands treatment of municipal wastewater. United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.
    [1]顾斌杰.生态灌区构建原理及关键技术研究[D].南京,河海大学博士论文,2006.
    [2]茆智.提倡建一个节水型、生态型灌区[J].中国水利.2004,18:22.
    [3]茆智.构建节水防污型生态灌区[J].中国水利.2009.19:28.
    [4]何军.节水灌溉条件下稻田氮磷迁移转化规律及其尺度效应[D].武汉大学博士论文.2011.
    [5]高焕之.稻田-沟-塘系统灌排调控的氮磷消减效果与作用机理[D].河海大学博士论文.2010.
    [6]邵东国,刘武艺,刘欢欢,等.一种生态减污型排水沟渠设计方法[P].中国专利:CN101705672A,2010-05-12.
    [7]高学睿.灌溉-排水-湿地系统在湖北漳河灌区的应用研究[D].武汉大学硕士论文.2009.
    [8]彭丽媛,董斌,Mark Wahl,孙宁宁Larry Brown等.水塘湿地示踪试验测定水力停留时间[J].灌溉排水学报,2009,42(5):30-34.
    [9]Borin M, Bonaiti G, Giardini L. Controlled drainage and wetlands to reduce agricultural pollution:a lysimetric study[[J]. Journal of Environmental quanlity,2001,30:1330-1340.
    [10]Mateos D M, Pedrocchi C, Comin FA, et al. Effects of wetland construction on water quality in a semi-arid catchment degraded by intensive agricultural use[J]. Ecological Engineering,2009, 36(5):631-639.
    [11]姜翠玲.沟渠湿地对农业非点源污染物的截留和去除效应[D].河海大学博士论文.2003.
    [12]茆智.在扩大内需支持小型农田水利建设中构建节水防污型农田水利系统.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700