用户名: 密码: 验证码:
红椿生理特性与家系选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红椿(Toona ciliata),是楝科香椿属植物,为落叶大乔木,强阳性树种,生长迅速,树干通直,在国际市场上享有“中国桃花心木”(Chinese Mabogany)之美誉,被列为国家二级保护濒危种,是高档家具与装饰材树种,具有很高的经济价值和开发前景。随着家具产业发展,红椿木材供不应求,彰显红椿基地建设科技支撑供不应求。为了满足生产对红椿良种与基地建设技术的需要,研究红椿水分生理特性、光合生理特性及开展红椿优良家系综合选育就显得非常必要。
     本研究选用湖南省林业科学院初选出的红椿无性系和家系,采用完全随机区组试验设计方法,研究了红椿无性系苗木水分生理、红椿家系苗木光合生理及红椿家系树高生长、胸径生长、冠幅生长及木材基本密度以及相互关系并开展了多性状家系选择研究等。主要结论如下:
     1、红椿无性系幼苗干旱胁迫试验结论有:(1)重度十旱胁迫处理(正常浇水断水17d)下红椿无性系幼苗叶片相对含水量最低;重度干旱胁迫处理(正常浇水断水17d)下红椿无性系幼苗叶片叶绿素浓度和含量最高;中度干旱胁迫处理(正常浇水断水12d)和重度干旱胁迫处理(正常浇水断水17d)下,红椿幼苗叶片的质膜相对透性、超氧化物歧化酶(SOD)含量、过氧化物酶(POD)含量、以及MDA含量均有明显上升,重度胁迫(正常浇水断水17d)处理下红椿无性系幼苗叶片脯氨酸含量高达其他处理的3倍以上;而可溶性蛋白含量从CK对照(正常浇水断水2d)到中度胁迫(正常浇水断水12d)均处于上升趋势,而重度胁迫(正常浇水断水17d)时,则又急剧下降。(2)干旱胁迫处理下,17、18号无性系保持的光合色素浓度较高,而19、20号则较低;干旱胁迫处理下,红椿各无性系间幼苗叶片相对含水量、质膜相对透性、SOD含量、POD含量、MDA含量、脯氨酸含量和可溶性蛋白含量均不显著。(3)各周期之间红椿无性系幼苗叶片相对含水量差异显著(P<0.05),其均值大小顺序为周期2>周期3>周期1;各周期之间红椿无性系幼苗叶片叶绿素浓度和含量差异均显著,其均值大小顺序为周期3>周期2>周期1;各周期之间红椿无性系幼苗叶片SOD含量无显著差异,其值大小顺序为周期1>周期3>周期2,呈现出微弱的先降低后回升的趋势;各周期之间红椿无性系幼苗叶片POD含量具有显著差异(P<0.05),其值大小顺序为周期1>周期2>周期3,呈现出整体下降的趋势;各周期之间红椿无性系幼苗叶片质膜相对透性呈现“降-升”的趋势,其值大小顺序为周期3>周期1>周期2;各周期之间红椿无性系幼苗叶片MDA含量差异均显著,其均值大小顺序为周期3>周期1>周期2;红椿无性系幼苗叶片脯氨酸含量随着试验周期的持续逐渐增加;红椿无性系幼苗叶片蛋白质含量整体上遵循急剧上升又下降的趋势。(4)经主成分分析干旱胁迫下红椿幼苗叶片生理综合特征信息可知,色素作为维持整个干旱胁迫过程中红椿幼苗不死的重要因素,同时也是整个干旱胁迫试验影响红椿幼苗胁迫反应的最主要的因素。其次,膜系统和抗氧化酶体系也非常重要。
     2、红椿光合生理研究表明:(1)红椿光饱和点、补偿点及表观量子效率分别为1177.8μmol·m-2·s-1、20.0μmol·m-2·s-1,0.0345,说明红椿利用弱光的能力比较强。(2)光合速率与蒸腾速率、光合有效辐射、气温和叶温呈显著正相关,胞间CO2浓度与光合速率、蒸腾速率呈显著负相关关系,叶片水压亏缺受相对空气湿度的影响大,空气相对湿度受气温、光强影响显著,与蒸腾速率呈显著负相关。
     3、红椿家系选择研究得出:(1)20个参试家系的树高生长存在显著性差异,树高生长量最大值的家系是TC02,达5.4m。家系树高遗传力为0.4928,属中等水平,家系内单株间差异较小。(2)20个参试家系的胸径差异性非常显著,胸径生长量最大的家系是TC03,达5.63cm。胸径的遗传力为0.5838,大于树高的遗传力,(3)冠幅生长量最大的家系是TC03,达2.93m,家系间冠幅生长量差异性不显著。(4)20个参试家系的材积的差异非常显著,TC02材积生长量最大,为0.0185m3。红椿家系材积性状的的遗传力为0.5981。家系内单株间差异较小。(5)选育出了5个生长性状优良的红椿家系:TC02、TC03、TC04、TC12和TC20;参试家系木材基本密度为0.7147g.cm-3~0.5232g.cm-3,选育出了4个木材基本密度较大的红椿家系:TC02、TC03、TC12和TC20。(6)28a生红椿基本密度变异属于从髓心向外以曲线形式缓慢增加的模式,且年轮段间差异水平不显著。(7)采用生长作为选择的主程序,而将材性改良作为次程序的育种路线,对红椿家系多性状进行选择,在国内首次选出了4个生长和材性兼优的红椿家系,即:TC02、TC03、TC12和TC20。
Toona ciliate, as a precious furniture wood species with good economic value and broad development prospect, has the reputation of "Chinese Mabogany", and is ranked into category Ⅱ nationally protected species. With the rapid development of furniture industry, wood products of Toona ciliate cannot meet the great need of market, which demonstrates that the science and technology support of Toona ciliate nursery and silviculture base construction cannot meet the huge need of scientific research. To solve the urgent problem, it is essential to carry out researches on water physiological characteristics, photosynthetic physiological characteristics and comprehensive family selection of Toona ciliate.
     In this study, by using Toona ciliate clones and families primarily selected by Hunan Academy of Forestry as material, and adopting completely randomized block design as experimental design method, we probed into water physiological characteristics of Toona ciliate clone seedlings, photosynthetic physiological characteristics of Toona ciliate families, the increment of tree height, DBH, crown and wood basic density of Toona ciliate families and the correlation, and carried out comprehensive selection of superior families. The results were as follows:
     1. Responses of drought stress on leaf physiological characteristics of young Toona ciliata clones Seedlings showed as follows:(1) Severe stress (17d continuous water break) resulted in the occurrence of the lowest RWC and the highest chlorophyll concentration and content. Under moderate stress (12d continuous water break) and severe stress (17d continuous water break), there was an evident increase in PMP, SOD content, POD content, and MDA content. The Proline content of seedlings under severe stress (17d continuous water break) was larger than three times of that under other3stress treatment. There was a climbing of the protein content of seedlings from CK (2d continuous water break) to moderate stress (12d continuous water break), and then sharply declined under severe stress (17d continuous water break).(2) Under drought stress treatments, clone17and18held higher chlorophyll concentration, and clone19and20instead. There was no significant difference in RWC, PMP, SOD content, POD content, MDA content, Proline content and protein content.(3) There was a significant difference in RWC between3test periods, with the order of the value that period Ⅱ>period Ⅲ>period Ⅰ(P><0.05). There was a significant difference in chlorophyll concentration and content between3test periods, with the order of the value that period Ⅲ>period Ⅱ>period I(P<0.05). There was no significant difference in SOD content between3test periods, with a slight " down-and-up" trend that period Ⅰ>period Ⅲ>period Ⅱ. There was a significant difference in POD between3test periods, with a down trend that period Ⅰ>period Ⅱ>period Ⅲ(P<0.05). There was a "down-and-up" trend in PMP in3test periods, with the order of the value that period Ⅲ>period Ⅰ>period Ⅱ. There was significant difference in MDA content, with an order that period Ⅲ>period Ⅰ>period Ⅱ(P<0.05). The Proline content increased gradually with the continuous test periods. The protein content obey a rule that "sharp increase-and-decrease".(4) From the leaf physiological comprehensive information obtained by principal component analysis, we could draw a conclusion that chlorophyll was the key factor to maintain the vigor of seedlings through the whole test and the main factor to respond to the drought stress. Meanwhile, the membrane system and antioxidant enzyme system were also important.
     2. Results of photosynthetic physiological characteristics study of Toona ciliate were as follows:(1) The light saturation point, compensation point and apparent quantum efficiency of Toona ciliate were1177.8μmol·m-2·s-1,20.0μmol·m-2·s-1and0.0345respectively, which indicated that Toona ciliate could make better use of low light.(2) There was a positive significant relationship between photosynthetic rate and transpiration rate, active photosynthetic radiation, air temperature and leaf temperature. There was a negative significant relationship between intercellular CO2concentration and photosynthetic rate and transpiration rate. The blade water deficit was seriously influenced by relative air humidity. The relative air humidity was seriously influenced by air temperature and light intensity. There was a significant negative correlation between relative air humidity and transpiration rate.
     3. The study of family selection of Toona ciliate showed the results as follows:(1) There was a significant difference in tree height growth between20tested Toona ciliate families and the highest height of5.4m belonged to TC02. The heritability of tree height was at moderate level of0.4928, which indicated that there was small individual difference within family.(2) There was an obvious difference in DBH growth between20tested Toona ciliate families and the biggest DBH of5.63cm belonged to TC03. The heritability of DBH was0.5838, larger than that of height.(3) The biggest crown width of2.93m belonged to TC03and there was no evident difference between families.(4) There was an obvious difference in individual volume growth between20tested Toona ciliate families and the biggest individual volume of0.0185m3belonged to TC02. The heritability of individual volume was0.5981, which indicated that there was small individual difference within family.(5)5families with good growth traits were screened out as TC02, TC03, TC04, TC12and TC20. The basic wood density of tested families varied from0.7147g.cm-3to0.5232g.cm-3and4families with larger basic wood density were selected out as TC02, TC03, TC12and TC20.(6) The basic wood density variation of28a Toona ciliate followed the mode that slowly increasing curved from pith to outside. There was no significant difference between annual rings.(7) After choosing the breeding strategy that combining growth condition as main selection factor with wood property improvement as secondary target to select good Toona ciliate families comprehensively, we selected out4families with both good growth and wood property, which were TC02, TC03, TC12and TC20.
引文
[1]Kramer JP. Water Relation of Plants [M]. New York:Academic Press,1983.
    [2]Tunrer NC. Drought resistance and adaptation to water deficits in crop plants. In:Harry Mussalled.Stress Physiology in crop plants. NewYork:Johin Willey and Sons,1979, 343-372.
    [3]Chaves MM,Maroeo JP,Pereira JS. Understanding Plant responses to drought:from Genes to the whole Plant.Functional Plant Biology,2003,30:239-264.
    [4]王九龄.北京西山树木耐旱能力的初步观察[J].北京林业,1981,(2):10-21.
    [5]沈国舫等.造林论文集[C].北京:中国林业出版社,1990:3-12.
    [6]李吉跃.PV技术在油松侧柏苗木抗旱特性研究中的应用[J].北京林业大学学报,1989,11(1):3-9.
    [7]李吉跃,张建国,姜金璞.京西山区人工林水分参数的研究(Ⅱ)[J].北京林业大学学报,1994,16(2):1-8.
    [8]李正理.我国甘肃九种早生植物同化枝的解剖观察[J].植物学报,1981,23(4).
    [9]吴林,李亚东,郝瑞等.水分逆境对沙棘叶片脯氨酸、过氧化物酶、过氧化氢酶等的影响[J].沙棘,1996.9(3):15-18.
    [10]喻方圆,徐锡增,Robert DG.水分和热胁迫对苗木针叶可溶性糖含量的影响[J].南京林业大学学报(自然科学版),2004,28(5):1-5.
    [11]王霞,侯平,尹林克等.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J].干旱区研究,19(3):17-20.
    [12]Boyer Ⅰ S1 Plant productivity and environment1 Science,1982,218:443-448.
    [13]Liu ZQ, Zhang SC. Plant Physiology on StressResistance, Beijing:China Agriculture Press,1994:101-111.
    [14]Guo WD, Shen X, Li JR. Molecularmechanism of plant drought tolerancel Acta Univ Agric Boreal2Occident,1999,27 (4):102-106.
    [15]Beatrice MBT,Brosche M, Renaut J, et al. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions[J]. Plant Physiology,2007,143:876-892.
    [16]Maria JC, Dulce C, Maria MD. Response to seasonal drought in tree cultivars of ceratonica siliqua:Leaf growth and water relations[J]. Tree Physiology,2001,21:645-653.
    [17]Amri E, Shahsavar AR. Response of lime seedlings(Critrus aiirantifolia L.) to exogenous spermidine treatments under drought stress [J]. Australian Journal of Basic and Applied Sciences,2010,4(9):4483-4489.
    [18]Guo W, Li B, Zhang X, et al. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress [J]. Arid Envrion,2007,69(3):385-399.
    [19]Maes WH, Achten WM, Reubens B. Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress[J]. Journal of Arid Environments,2009,73(10):877-884.
    [20]Gindaba J, Rozanov A, Negash L. Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severve water stress [J]. Forest Ecology and Management,2004(201):119-129.
    [21]Fernandez RJ, Wang M, Reynlods JF. Do morphological changes mediate plant responses to water stress a steady-state experiment with two C4 grasses [J]. New Phytol,2002,155:79-88.
    [22]Amdt SK,Clifford SC, Wanek W, et al. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress[J]. Tree Physiology,2001(21):705-715.
    [23]Giardi MT, Cona A, Geiken B. Longterm drought stress induces structural and functional reorganization of photo-system Ⅱ[J]. Plabta,1996:118-125.
    [24]Genty B, Briantais JM, Silva JB. Effects of drought on primary photosynthetic process of cotton leaves[J]. Plant Physiol,1987,83:360-364.
    [25]Shangguang ZP,Shao MA, Dyckmans J. Effect of nitrogen nutrition and water defiction net photosynthetic rate and chlorophyll fluorescence in winter wheat [J]. Plant Physiol,2000(56):46-51.
    [26]Galle A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery[J]. New Phytologist,2007,174:799-810.
    [27]Alpert P., Constraints of tolerance:Why are desiccation-tolerant organisms so small or rare [J].Exp. Biol.,2006,209:1575-1584.
    [28]Saneoka H, Moghaieb REA, Premachandra GS, et al. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds [J]. Environmental and Experimental Botany,2004(52):131-138.
    [29]Xiong LM, Schumaker KS, Zhu JK. Cell signaling during sold, drought, and salt stress[J]. Plant Cell,2002,14:165-183.
    [30]Bray EA. Molecular Responses to Water Deficit. Plant Physiol.1993,11,103(4): 1035-1040.
    [31]Reddy AR, Chaitanya KV, Sumithra K. Differential antioxidative responses to water among five mulberry (Morus alba L.) cultivars [J]. Environmental and Experimental Botany,2004,52:33-42.
    [32]Sofo A, Dichio B, Ailoyannis C, et al. Lipoxygenase activity and praline accumulation in leaves and roots of olive trees in response to drought stress [J]. Physiologia Plantarum,2004,121:58-65.
    [33]Selote DS,Khanna CR. Drought acclimation confers oxidative stress tolerance by inducing coordinated antioxidant defense at cellular an sub cellular lever in leaves of wheat seedlings [J]. Physiol Plantarum,2006,127:494-506.
    [34]Boyer JS. Plant physiology,1970,46:233-235.
    [35]Tezara W, Fernandez MD, Donoso C, et al. Seasonal changes in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem [J]. Photosynthetica,1998,35(3):399-410.
    [36]上官周平,陈培元.玉米对渗透胁迫的反应和生理反应[J].植物学通报,1990,7(3):30-33.
    [37]石兰馨,王邦锡,黄文常.水分胁迫对小麦叶片光合放氧过程的影响[J].兰州大学通报(自然科学版),1991,27(4):132-136.
    [38]卢从明,张其德,匡廷云.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994,20(5):601-606.
    [39]孙骏威,杨勇,黄宗安.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18(6):539-543.
    [40]Farquhar GD,Sharkey TD. Stomatal conductance and photosynthesis[J].Rev,plant physiol,1982,33:317-345.
    [41]Domingo F, Gutierrez L, Brenner AJ, et al. Limitation to carbonassimilation of two perennial species in semi-arid south-east Spain [J].Biologia Plantarum,2002,45(2): 213-220.
    [42]Damatta FM, Maestri M, Barros RS. Photosynthetic performance of two coffee species under drought[J]. Photosynthetica,1997,34(2):257-264.
    [43]Roden J, Volkenburgh E, Hinckley TM, et al. Celluar basis for limitation for Poplar leaf growth bywater deficit[J]. Tree Physiology,1990,6(2):211-219.
    [44]许大全等.毛竹叶光合作用的气孔限制研究[J].植物生理学报,1987,13(2):154-160.
    [45]上官周平,陈培元.土壤干旱对小麦叶片渗透调节和光合作用的影响[J].华北农学报,1989,4(3):49-55.
    [46]刘建伟等.水分胁迫下不同杨树无性系苗期的光合作用.林业科学研究[J].1993,6(1):65-69.
    [47]刘建伟.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学,1994,30(1):83-87.
    [48]朱万泽,薛建辉,王金锡.台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报,2004,4:170-173,181.
    [49]高三基,罗俊,张华等.甘蔗抗旱性生理生化鉴定指标[J].应用生态学报,2006,17(6):1051-1054.
    [50]闫芬芬,张学英,孙建设.水分胁迫对苹果矮化砧木主要光合参数的影响[J].安徽农业科学,2010,38(23):12574-12576.
    [51]谭雪红,郭小平,王亮.土壤水分胁迫对大叶黄杨和月季光合生理特性的影响[J].水土保持通报,2010,30(4):73-77.
    [52]谢深喜,刘强,熊兴耀.水分胁迫对柑橘光合特性的影响[J].2010,36(6):653-657.
    [53]徐飞,郭卫华,徐伟红.刺槐幼苗形态生物量分配和光合特性对水分胁迫的响应[J].北京林业大学学报,2010,32(1):24-30.
    [54]Seiler JR. Photosynthesis and transpiration of loblolly pine seedlings as influenced bymoisture-stress conditioning[J].Forest Science,1985,31(3):742-749.
    [55]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,(5/6):50-55.
    [56]Jones MM, et al. Osmotic adjustment leaves of sorghum in response to water deficit[J].Plant Physiol,1978,61:122-126.
    [57]王忠安,袁照年,李文卿.水分胁迫对不同抗早性甘薯膜脂过氧化和非酶促保护物质的影响[J].热带作物学报,2004,4:54-57.
    [58]陈少瑜,郎南军,李吉跃等.干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯氨酸含量的变化[J].西部林业科学,2004,33(3):30-33.
    [59]高三基,罗俊,张华等.甘蔗抗旱性生理生化鉴定指标[J].应用生态学报,2006,17(6):1051-1054.
    [60]陈洪国.桂花幼苗对不同程度水分胁迫的生理响应[J].华中农业大学学报,2006,25(2):190-193.
    [61]王晶英,赵雨森,王臻等.干旱胁迫对银中杨生理生化特性的影响[J].水土保持学报,2006,20(1):197-200.
    [62]孙涌栋,刘遵春,齐安国等.黄瓜幼苗根系对水分胁迫的生理反应[J].西北农业学报,2008,17(6):136-139.
    [63]王茂良,植物抗渗透胁迫及其与脯氨酸的关系[J].北京园林,2006,22(2):21-24.
    [64]罗音,孙明高.干旱胁迫对5树种叶片中脯氨酸含量的影响[J].山东林业科技,1999(4):1-4.
    [65]曹慧等.水分胁迫诱导平邑甜茶叶片衰老期间内肽酶与活性氧累积的关系[J].中国农业科学,2004,37(2):274-279.
    [66]吴小平,汪沛洪,张慧.渗透胁迫对不同抗旱性冬小麦蛋白水解酶活性的影响[J].西北农业学报,1994,3(1):49-53.
    [67]王海珍,梁宗锁,郝文芳等.白刺花适应土壤干旱的生理学机制[J].干旱地区农业研究,2005,23(1):106-110.
    [68]黄建昌,肖艳,周厚高.渗透胁迫对番木瓜若干生理性状的影响[J].广西植物,2004,24(1):73-76.
    [69]张云贵,谢永红,吴学良,等.PEG诱导水分胁迫对柑橘幼苗细胞质膜透性及脯胺酸含量的影响[J].果树科学,1995,12(增刊):25-28.
    [70]王畅,林秋萍,贡科花等.夏玉米的干旱适应性及其生理机制的研究[J].华北农学报,1990,5(4):46-51.
    [71]黄建国,袁玲.Caci对玉米种子的抗早作用研究[J].西南农业大学学报,1990,12(4):192-195.
    [72]洪法水,周谋文,董振吉.钙和聚二乙醇浸种对小麦幼苗水分胁迫的缓解效应[J].植物生理学通讯,1995,31(3):202.
    [73]王晓琦,沙伟,徐忠文.亚麻幼苗对干旱胁迫的生理响应[J].作物杂志,2005,2:13-16.
    [74]苏梦云.杉木幼苗在渗透胁迫下脯氨酸积累及Ca的调节作用研究[J].林业科学研究,2003,16(3):335-338.
    [75]王绍辉,张福墁.水分亏缺逆境对温室黄瓜生长及有关物质代谢的影响[J].园艺学报,2004,06:743-746.
    [76]宋爱琴,陈圣宾,李振基等.水分胁迫对生态恢复重要树种木荷与白楸幼苗的影响[J].厦门大学学报(自然科学版),2006,45(增刊):109-113.
    [77]Prasad TK. Role of catalase in inducing chilling tolerance in preemergent maize seedlings [J].Plant Physiol,1997,114:1369-1376.
    [78]Smirnoff N.Plant Resistance to Environmental Stress [J].Curr Opin Biotech,1998,9(2): 214-219.
    [79]Scandalios JG. Oxygen stress and superoxide dismutases[J]. Plant Physiol, 1993,101:7-12.
    [80]Seel WE, et al. The combined effects desiccation and irradiance on mosses from xeric and hydric habitats[J].J Exp Bot.,1992,43:103.
    [81]Jimenez C,et al. Differential reactivity of a-carotene isomers from Dunaliella bardawl toward oxygen radicals[J].Plant Physiol,1993,101:385.
    [82]蒋明义等.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报,1994b,20(4):733-738.
    [83]王晓琴,袁继超,柯永培等.渗透胁迫对玉米幼苗根系活力和K+吸收动力学特征的影响[J].植物营养与肥料学报2005,11(1):27-32.
    [84]王宝山.生物自由基与生物膜的伤害[J].植物生理学通讯,1988,(2):12-16.
    [85]周瑞莲等.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用[J].草业学报,1997,6(4):39-43.
    [86]王振镒,等.水分胁迫对玉米SOD、POD活力及同功酶的影响[J].西北农业大学学报,1989,17(1):45-49.
    [87]王茅雁,邵世勤,张建华.水分胁迫对玉米保护酶系活力及膜系统结构的影响[J].华北农学报,1995,10(2):43-49.
    [88]宋凤斌,戴俊英.水分胁迫对玉米叶片活性氧清除酶类活性的影响[J].吉林农业大学学报,1995,17(3):9-15.
    [89]吴林,李亚东,刘洪章等.水分逆境对沙棘生长和叶片光合作用的影响[J].吉林农业大学学报,1996,18(40):45-49.
    [90]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    [91]潘东明,潘良镇.水分胁迫对龙眼幼苗多胺的生理生化指标的影响[J].福建农业大学学报,1997,26(3):48-55.
    [92]姚允聪,曲泽州,李树仁.土壤干旱与柿树叶片膜脂及膜脂质过氧化的关系[J].林业科学,1993,29(6):485-491.
    [93]王中英主编.果树抗旱生理[M].北京:中国农业出版社,2000.6.
    [94]张上隆,陈昆松主编.园艺学进展[C].北京:中国农业出版社,1994,417-421.
    [95]姚允聪,张大鹏,王有年等.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究[J].果树科学,2000,17(1):1-6.
    [96]彭立新,束怀瑞,李德全.水分胁迫对苹果属植物抗氧化酶活性的影响研究[J].2004.12(3):44-46.
    [97]Theodore TK, Paul JK, Stephen, GP.The physiological ecology of woody plants[M]. Academic press, Inc.1991,6:124-128.
    [98]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004,18-95.
    [99]蒋高明等.当前植物生理生态学研究的几个热点问题[J].植物生态学报,2001,25(5):514-519.
    [100]曹永慧.披针叶茵香生理生态学特性研究[D].北京:中国林业科学研究院,2009,19-25.
    [101]Farquhar GD,Sharkey TD. Stomatal conductance and photosynthesis[J].Rev,plant physiol,1982,33:317-345.
    [102]李海,何兴元,王奎玲,等.沈阳城区五种乔木树种的光合特性[J].应用生态学报,2007,18(8):1709-1714.
    [103]郭志华,张宏达.银杏光合特性的研究[J].生态科学,1997,16(1):30-33.
    [104]张玉洁.香椿幼树光合作用及其影响因子研究[J].林业科学研究,2002,15(4):432-436.
    [105]彭方仁,陈茂锉.密植板栗光合作用生理生态的初步研究[J].南京林业大学学报,1998,(3):40-46.
    [106]肖文发,徐德应.森林能量利用与产量形成的生理生态基础[J].中国林业出版社,1999.03:38-41.
    [107]张小全,徐德应.杉木中龄林不同部分和叶龄针叶光合特性的季节变化[J].林业科学,2000,36(3):258-262.
    [108]Daeki T, Nomoto N.On the seasonal change of photosynthetic activity of some deciduous and evergreen broad-leave trees[J].Bot.May,1958,71:235-241.
    [109]曾小平,赵平,彭少麟等.3种松树的生理生态学特性研究[J].应用生态学报,1999,10(3):275-278.
    [110]施建羽.四季桂光合特性的季节变化研究[J].亚热带植物科学,2010,39(1):25-28.
    [111]杨建民,张国良,张林平等.李幼树光合特性的研究[J].园艺学报,1997,24(4):381-382.
    [112]张林青,周青,肖程岭.园林植物耐阴性研究进展[J].安徽农业科学,2006,34(19):4851-4853.
    [113]王忠.植物生理学[M].北京:中国农业出版社,2000,130-139.
    [114]郑洁,胡美君,郭延平.光质对植物光合作用的调控及其机理[J].应用生态学报,2008,19(7):1619-1624.
    [115]江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响[J].园艺学报,2006,3(2):338-343.
    [116]黄宁珍,赵志国,付传明.不同波长光照对罗汉果光合及生长的影响[J].广西植物,28(2):251-255.
    [117]姜小文,易于军,张秋明.果树光合作用研究进展[J].湖南环境生物职业技术学院学报,2003,9(4):302-308.
    [118]李招弟.红花玉兰幼苗光合特性及其对温度胁迫的生理响应[D].北京:北京林业大学,6-7.
    [119]贺东祥,沈允钢.几种常绿植物光合特性的季节变化[J].植物生理学报,1995,21(1):1-7.
    [120]刘东焕,赵世伟,高芙孚等.植物光合作用对高温的响应[J].植物研究,2002,2(2):205-213.
    [121]田士林,李莉.香樟在我国中部引种适应性研究[J].安徽农业科学,2006,34(11):2444-2445.
    [122]陈志辉,张良诚.柑桔光合作用对环境温度的适应[J].浙江农业大学学报,1994,20(4):389-392.
    [123]刘殊,廖镜思,陈清西等.龙眼光合作用对环境温度的响应[J].福建农业大学学报,1997,26(4):407-410.
    [124]仰永忠,谷凤,汪天等.合肥地区按树引种及抗寒性试验[J].安徽农业大学学报,2006,33(4):477-479.
    [125]周永学,樊军锋,龚月桦.美国黄松的生长特性和抗寒性研究[J].林业科学研究,2007, 20(4):500-505.
    [126]Laing WA.Temperature and light response curves for photosynthesis in kiwifruit [J].New Zealand journal of agricultural research,1985,28:117-124.
    [127]Prentice IC, Farquhar GD, et al. The carbon cycle and atmospheric carbon dioxide, In contributions of working group I to third assessment report of the intergovernment Panel on climate change, eds climate change [J].The Scientific Basis Cambridge UK,2001,(4):183-238.
    [128]朱林,温秀云,李文武.中国野生种毛葡萄光合特性的研究[J].园艺学报,1994,21(1):31-34.
    [129]Idso SB,Kimball BA. Effects of atmospheric CO2 enrichment on photosynthesis and growth of sour orange trees[J].Plant Physiol,1992,99(1):341-343.
    [130]Peet MM, Huber SC, PattersonDT.Acclimation to high CO2 in monoecious cucumber Ⅱ. Carbon exchange rate, enzyme activity and starch and nutrient concentrations[J].Plant Physiol,1986,80(1):63-67.
    [131]张道允,许大全.植物光合作用对C02浓度增高的适应机制[J].植物生理与分子生物学学报,2007,33(6):463-470.
    [132]张其德,卢从明,匡廷云.大气C02浓度升高对光合作用的影响[J].植物学通讯,1992,9(4):18-23.
    [133]谢会成,姜志林,叶镜中.麻栋光合作用的特性及其对C02倍增的响应[J].南京林业大学学报(自然科学版),2002,26(4):67-70.
    [134]韩文军,廖飞勇,何平.大气二氧化碳浓度倍增对闽楠光合性状的影响[J].中南林学院学报,2003,23(2):62-65.
    [135]Rey A,Jarvis PG.Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch [J].Tree Physiology,1998,18(3):441-450.
    [136]王玉涛,马志波,马钦彦等.北京地区4种阔叶树光合作用对C02浓度及温度变化的响应[J].河北农业大学学报,2006,29(6):39-43.
    [137]王美玉,赵天宏,张巍巍等.C02浓度升高对两种沈阳城市森林树种光合特性的影响[J].植物学通报,2007,24(4):470-476.
    [138]范桂枝,蔡庆生.植物对大气C02浓度升高的光合适应机理[J].植物学通报,2005,22(4):486-493.
    [139]Water Larcher编,李博译.植物生态生理学(第5版)[M].北京:中国农业大学出版社,1997,77-78,286-298.
    [140]官义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    [141]曹慧,兰彦平,王孝威,等.果树水分胁迫研究进展[J].果树学报,2001,18(2):110-117.
    [142]程来亮,罗新书.短期土壤干旱对苹果叶片光合速率日变化的影响[J].果树科学,1990,7(4):193-200.
    [143]Escalona JM,Flexas J,Medrano H. Stomatal and non-stomatal limitations of photosynthesis under water stress in field grown grapewines[J].Australion Journal of plant physiology,1999,26(5):421-433.
    [144]罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130.
    [145]伍维模,李志军,罗青红,等.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J].林业科学,2007,43(5):30-35.
    [146]侯小改,段春燕,刘改秀,等.土壤含水量对牡丹光合特性的影响[J].华北农学报,2006,21(2):91-94.
    [147]马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报,2003,25(2):1-7.
    [148]林植芳,吴肜,孔国辉,等.8种城市绿化攀援植物的光合左右和水分关系特性[J].热带亚热带植物学报,2007,15(6):473-481.
    [149]Boardman NK. Comparative photosynthesis of sun and shade plants[J].Annual Review of Plant Physiology,1977,28:355-377.
    [150]Lambers H,Chapin FS, Pons TL. Plant physiological ecology[M].New York: Springer-Verlag,1998,35.
    [151]Mooney HA. Today of plant physiological[J].Bioscience,1987,37(8):18-20.
    [152]Ceulemans, R.,Impens,I.Net CO2 exchange rate and shoot growth of young poplar (Poplus) Clones[J].Exp.Bot.,1983,34:866-870.
    [153]Benecke U.Photosynthesis and transpiration of Pinus radiata under natural conditions in a forest stand[J].Oecologia,1980,44:192-198.
    [154]Troeng E.Gas exchange in a 20-year-old stand of scots pine Ⅱ Variation in net photosynthesis and transpiration within and between trees Physiol[J].Plant,1982. 54:15-23.
    [155]钟全林,胡松竹,贺利中,等.刨花楠不同种源主要光响应指标分析[J].林业科学,2008,44(7):118-125.
    [156]梁开明,曹洪麟,徐志防,等.台湾青枣及野生种的光合作用日变化及光响应特征[J].园艺学报,20 08,35(6):793-798.
    [157]苏东凯,周永斌.不同杨树品种光合生理生态特性的研究[J].西北林学院学报,2006,21(2):39-41
    [158]傅瑞树,黄琦,刘爱,等.南方红豆杉扦插繁殖技术研究-扦插苗与实生苗光合生理特性比较[J].中国生态农业学报,2006,14(2):62-63.
    [159]戴慈荣,郑卫华,乔卫阳,等.毛红椿育苗和造林技术[J].华东森林理,2010,24(1):25-27.
    [160]刘军.毛红椿天然居群遗传结构研究[D].北京:中国林业科学研究院.
    [161]付方林,张露,杨清培,等.毛红椿天然林优势种群的种间连结性研究[J].江西农业大学学报,2007,29(6):982-986.
    [162]张汝忠,彭佳龙,王坚娅,等.毛红椿播种育苗技术及苗期生长规律研究[J].浙江林业科技[J].2007,27(4):51-53.
    [163]马献良.红椿播种育苗初步研究[J].安徽林业科技,2005,4:7-8.
    [164]陶丹,武来成,张露,等.毛红椿不同种源及家系间苗期生长变异性研究[J].南昌工程学院学报,2007,26(4):9-13.
    [165]刘军,陈益泰,何贵平,等.毛红椿优树子代苗期性状遗传变异研究[J].江西农业大学学报,2008,30(1):64-67.
    [166]刘军,陈益泰,姜景民,等.毛红椿优树自由授粉子代生长性状的早期测定[J].林业科技开发,2010,24(4):36-38.
    [167]陈存观.香椿的开发利用价值及其栽培技术[J].江苏林业科技,2008,35(4):43-45.
    [168]左继林,潘江平,龚春,等.香椿11个种源的引种生长初期表现[J].江西林业科技,2008,6:13-15.
    [169]王希英,王海宏,乔勇进.香椿优质丰产栽培关键技术[J].防护林科技,2008,5:133-134.
    [170]范振富.香椿速生丰产用材林栽培试验[J].林业科技开发,2004,18(5):61-63.
    [171]汪正新.香椿速生丰产用材林栽培[J].安徽林业,2007,6:38.
    [172]王青.香椿速生丰产林的营造技术[J].河北林业科技,2008,4:99-100.
    [173]谈秀春,王新洋.香椿用材林早期生长规律研究初报[J].现代农业科技,2005:10-11.
    [174]张友元,夏玉芳,黎磊,等.香椿生长轮宽度、木材气干密度、纤维长度径向变异及相关性研究[J].安徽农业科学,2009,37(5):1976-1978.
    [175]李斌超,虞涛,何贵友.香椿高效无性繁殖技术[J].中国林副特产,2009,5:71.
    [176]魏丽莉.香椿树的修剪及管理[J].特种经济动植物,2007,7:40.
    [177]潘柳娇,韦龙宾.香椿的病害及其防治方法[J].河北农业科学,2008,12(3):69-70,72.
    [178]刘福云,鄢武先,陈守庭,等.国内外珍贵树种用材林发展动态及其在四川省的发展现状[J].四川林业科技,2009,30(5):63-68.
    [179]张慧勤.河南省珍贵用材树种现状、问题与发展对策[J].华东森林经理,2008,22(1):15-17.
    [180]马献良.红椿播种育苗初步研究[J].安徽林业科技,2005,4:7-8.
    [181]邹高顺.珍贵速生树种红椿与毛红椿引种栽培研究[J].福建林学院学报,1994,14(3):271-276.
    [182]程冬生,崔同林.珍贵树种红椿的利用价值及培育技术[J].中国林副特产,2010,4:39-40.
    [183]吴莉莉.红椿树的生物学特性及人工栽培试验研究[J].安徽农学通报,2006,12(7):168-169.
    [184]赵汝玉,李光友,徐建民.红椿育苗及造林技术[J].广西林业科学,2005,34(3):155-156.
    [185]成俊卿.木材学.北京:中国林业出版社,1985:429-436.
    [186]Falconer R S.Introduction to quantitative genetics[J]. New York:2ed Longman Inc. 1981.1:52-57.
    [187]Cotterill P P,Jackson N.On index selection I.Methods of determining economic weight[J]. Silvae Gentica,1985,34:56-63
    [188]吴江.干旱胁迫对杨桐幼苗生长及生理生化特性的影响[D].杭州:浙江农林大学,2010.
    [189]刘鹏.干旱胁迫下不同喜树种源苗期生理生化特性的研究[D].杭州:浙江农林大学,2011.
    [190]徐宜凤.石灰花楸幼苗对干旱胁迫的生长及生理响应[D].南京:南京林业大学,2011.
    [191]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
    [192]张旭颖,王玲玲,关肠等.干旱胁迫对小叶黄杨幼苗膜脂过氧化及保护酶活性的影响[J].哈尔滨师范大学报(自然科学版),2010,2(2):80-83.
    [193]彭素琴,刘郁林,谢双喜.干旱胁迫对不同金银花水分利用效率及细胞膜透性的影响[J].北方园艺,2011,10:156-158.
    [194]贾利强.金沙江热河谷造林树种抗旱特性的研究[D].北京:北京林业大学,2003.
    [195]刘华,张玉平,葛安静等.干旱胁迫对4个刺柏品种抗旱生理指标的影响[J].安徽农业大学学报,2011,38(2):190-196.
    [196]张弢.干旱胁迫对黄瓜幼苗生理指标的影响[J].南方农业学报,2011,42(12):1466-1468.
    [197]李少锋,李志辉,刘友全等.水分胁迫对椿叶花椒抗氧化酶活性等指标的影响[J].中南林业科技大学学报,2008,28(2):29-34.
    [198]张露,郭联华,杜天真,等.遮阴和土壤水分对毛红椿幼苗光合特性的影响[J].南京林业大学学报(自然科学版),2006,30(5):63-66.
    [199]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Ann. Rev. Plant Physiol.1982,33:317-345.
    [200]Salvucci M E, Ports A R, Ogren W L. Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in arobidopsis leaves[J]. Plant Physiol. 1986,80:65-69.
    [201]Powles C B. Photo inhibition induced by visible light[J]. Annu Rev Plant Physiol, 1984,4(35):15-44.
    [202]王得祥,刘建军,王翼龙,等.四种城区绿化树种生理特性比较研究[J].西北林学院学报,2002,17(3):5-7.
    [203]张劲松,孟平,高峻.板蓝根光合及水分生理生态特性[J].东北林业大学学报,2004,32(3):26-28.
    [204]王旭军,吴际友,廖德志,等.主要城市园林树种乐昌含笑的光合特性研究[J].西南林学院学报,2008,28(5):26-30.
    [205]邱国雄.植物光台作用效率[A].余叔文.植物生理与分子生物学[M].北京:科学技术出版社,1992.
    [206]Tognettic R, Longobucco, Raschi A. Water relations of Quercusilex and Quercus pubescentes trees grow close by a natural carbon dioxide in a environment[J]. In: Raschi A, Vaccari F P, Miglietta F. Ecosystem response to CO2:The MAPLE project results. Belgium:European Communities,1999,53-81.
    [207]Zobel B J,Talbert J T.Applied forest tree improvement[J].New York:wiley,1984.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700