用户名: 密码: 验证码:
黄粉虫幼虫蛋白酶解制备降血压肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄粉虫幼虫体内蛋白、脂肪含量较高,其体内蛋白质含量高达50%(干重)左右,素有“动物蛋白饲料之王”的称誉。由于黄粉虫易于饲养,我国黄粉虫资源非常丰富。长期以来,由于对其缺乏系统研究,开发利用较少,使优质蛋白资源被浪费。目前,利用黄粉虫幼虫体内丰富的蛋白质制备活性肽的研究尚未见报道。本文对脱脂黄粉虫幼虫蛋白Alcalase酶解制备降血压肽进行了系统研究,成功制备出黄粉虫幼虫蛋白降压肽。这一研究为拓宽黄粉虫幼虫的应用范围,开发黄粉虫幼虫蛋白资源开辟了新途径。
     采用超临界CO2对黄粉虫幼虫粉进行脱脂,脱脂条件:萃取压力35MPa,萃取温度35℃,萃取时间200min,常压分离。脱脂后总蛋白含量达到60.5%。
     脱脂黄粉虫幼虫中清蛋白、球蛋白、醇溶蛋白及谷蛋白含量分别占蛋白总量的9.0%、1.5%、2.3%及23.7%,其中清蛋白及谷蛋白含量较高;另有63.5%的蛋白质残留在残渣中。氨基酸组成分析结果表明,谷蛋白及残渣蛋白中非极性氨基酸和芳香族氨基酸含量较高,这两种蛋白对于黄粉虫幼虫蛋白酶解制备降血压肽贡献较大,为提高蛋白利用率,故在后续试验中直接以脱脂黄粉虫幼虫粉作为酶解原料。
     采用蛋白酶对脱脂黄粉虫幼虫蛋白进行水解制备降血压肽。从6种蛋白酶中筛选出Alcalase水解脱脂黄粉虫幼虫蛋白,酶解条件:底物浓度3%,加酶量4000U/g底物,酶解温度50℃,pH8.5,水解度20%时,水解产物对ACE的抑制作用较强,此时酶解液的IC50值为0.39mg/mL。
     采用350W/g底物的脉冲超声波对脱脂黄粉虫幼虫蛋白进行预处理,当预处理时间10min时,蛋白酶解至DH20%所用时间缩短20%。通过紫外吸收光谱、荧光发射光谱、蛋白疏水性、游离巯基含量、粒径、圆二色谱及变性聚丙烯酰胺凝胶电泳测定,可知超声波能够引起清蛋白及谷蛋白空间结构改变,但并未改变蛋白质的一级结构。
     在脱脂黄粉虫幼虫蛋白水解过程中施加超声波处理(2.5及5min)可以加快水解速率。实验结果表明:短时间超声波处理(5min内)可使Alcalase活性增强,长时间超声波处理会降低其活性;且超声波处理后,Alcalase的紫外吸收光谱及荧光发射光谱发生了改变,说明其结构发生了变化。但超声波处理不能改变水解液(DH8%)的氨基酸组成。
     采用活性炭对脱脂黄粉虫幼虫蛋白酶解液进行脱色。脱色后的蛋白酶解液经葡聚糖凝胶G-15分离后得到四个组分(Peak1、Peak2、Peak3及Peak4)。通过对四个组分进行氨基酸组成分析及相对分子质量分布测定,可知Peak2组分更适合用来制备ACE抑制肽。采用高效液相色谱法测定四个组分对ACE的抑制活性,结果表明四个组分的IC50值分别为0.46、0.23、0.83及2.81mg/mL。
     采用液相色谱对Peak2进行分离纯化,得到20个组分,其中P2-F6及P2-F9两个组分对ACE的抑制作用较强。对这两个组分进行二次液相色谱分离纯化,采用基质辅助激光解吸电离飞行时间质谱对其中的活性多肽进行结构鉴定。结果表明,从P2-F6中分离得到二肽Ser-Met和三肽Tyr-Ala-Asn,从P2-F9中分离得到二肽Asn-Tyr,其IC50值分别为0.026、0.017及0.011mg/mL,其中Ser-Met和Tyr-Ala-Asn是尚未见报道的降血压肽。
     将Peak2组分分别以100、200和400mg/kg体重的剂量对原发性高血压大鼠(SHR)进行一次灌胃,SHR血压下降明显。同时发现脱脂黄粉虫幼虫蛋白酶解物具有一定的抗氧化作用。
Tenebrio molitor (L.) larva is a kind of important and high quality insect resources containing anabundant amount of protein and fat. It has known as “the king of animal protein content” because theprotein content in the body even reached about50%on a dry matter basis. Although the resource ofTenebrio molitor (L.) larva in our country was abundant because of its easily breeding, the lack ofsystematic and reasonable research has limited its utilization. The study of antihypertensive peptides fromTenebrio molitor (L.) larva has not been reported nowadays. Antihypertensive peptides from Tenebriomolitor (L.) larva protein were obtained successfully in the paper. The research can not only broadapplication areas, but also develop new ways for further utilization of Tenebrio molitor (L.) larva protein.
     The fat was extracted with supercritical carbon dioxide from Tenebrio molitor (L.) larva. And theextraction conditions were as follows: pressure35MPa, temperature35℃, extracting time200min. Theprotein content then reached60.5%after the fat was removed.
     The content of albumin, globulin, alcohol soluble protein and glutenin isolated from defatted Tenebriomolitor (L.) larva was9.0%,1.5%,2.3%and23.7%, respectively. There was still63.5%of proteinremaining in the residue. The amino acids composition of protein fractions indicated that non polar aminoacids and aromatic amino acid was abundant in glutenin and residual protein. In order to improve theutilization efficiency of protein, defatted Tenebrio molitor (L.) larva was used directly as the raw materialsin the experiments.
     Alcalase was chosen to prepare antihypertensive peptides from defatted Tenebrio molitor (L.) larvaprotein. The optimum enzymatic conditions were determinated as follows: substrate concentration3%,Alcalase dosage4000U/g substrate, temperature50℃, pH value8.5. The ACE inhibitory activity was thestrongest when hydrolytic degree reached20%. And the IC50value of the hydrolysates was determined at0.39mg/mL.
     Ultrasound (350W/g substrate) was used to treat defatted Tenebrio molitor (L.) larva protein beforeenzymatic hydrolysis in the experiment. The hydrolysis time (DH reached20%) was shorted by20%whenpretreated for10min. The effects of ultrasonic treatment on conformation of Tenebrio molitor (L.) larvaprotein were studied by means of ultraviolet absorption spectra, fluorescence emission spectra, surfacehydrophobicity, free sulfhydryl content, particle size distribution, circular dichroism, and sodium dodecylsulphate-polyacrylamide gel electrophoresis. The results indicated that ultrasonic treatment changed theconformation of albumin and glutenin isolated from defatted Tenebrio molitor (L.) larva. But the primarystructure of protein was not affected by ultrasound.
     The effects of ultrasound on the enzymatic hydrolysis of defatted Tenebrio molitor (L.) larva proteinwith Alcalase were also investigated. The results indicated that ultrasonic treatment (2.5and5min) canaccelerate the enzymatic hydrolysis procedures of samples. The influence of ultrasound on activity andconformation of Alcalase was also measured. The result revealed enzyme activity was significantlyimproved as being treated for5min, while extensive processing on the contrary decreased the activity ofAlcalase. The results of ultraviolet absorption and fluorescence emission showed that ultrasonic treatmentled to a change on molecular structure of Alcalase. Amino acid composition in hydrolysates (DH8%) ofTenebrio molitor (L.) larva protein was almost the same whether enzymatic hydrolysis was treated withultrasound or not.
     Tenebrio molitor (L.) larva protein hydrolysates was fractionated using Sephadex G-15columnchromatography after decolored by activated carbon, four peaks (Peak1,Peak2,Peak3and Peak4) wereobtained. The results of amino acids composition and relative molecular weight distribution indicated that
     Peak2was suitable for production of ACE inhibitory peptides. The IC50value of four fractions isolatedusing gel filtration was determined with high performance liquid chromatography. The value was0.46,0.23,0.83and2.81mg/mL, respectively.
     The active fractions in Peak2based on the ACE inhibiting activity were isolated and purified byHPLC. P2-F6and P2-F9among20fractions isolated from Peak2were further purified because of theirstrong ACE inhibitory activity. The amino acid sequences of ACE inhibitory peptides were Ser-Met andTyr-Ala-Asn from P2-F6and Asn-Tyr from P2-F9determined by Matrix-Assisted LaserDesorption/Ionization Time of Flight Mass Spectrometry. The IC50value of them was0.026,0.017and0.011mg/mL, respectively. Ser-Met and Tyr-Ala-Asn have not been reported as antihypertensive peptidesyet.
     Blood pressure of spontaneously hypertensive rats (SHR) decreased obviously after fed with thefraction of Peak2, in a single oral administration in100,200and400mg/kg.bw dosage respectively. It isalso discovered that defatted Tenebrio molitor (L.) larva protein hydrolysates has some antioxidant effect.
引文
1.申红,潘晓亮.高蛋白黄粉虫的饲养及其利用[J].草食家畜,2004,6(2):48-50.
    2.许齐爱,彭伟录,李小玺等.经济昆虫黄粉虫与大麦虫研究进展[J].安徽农学通报,2008,14(21):158-160.
    3.汪莉,张廷科,李军.黄粉虫的饲养及其营养价值的评定[J].禽畜业,2006,7:30-31.
    4.高自超,周元军.昆虫蛋白饲料的开发与应用[J].产业经济,2007,7:52-53.
    5.叶兴乾,苏平,胡萃.黄粉虫的主要营养成分的分析和评价[J].浙江农业大学学报,1997,23:35-38.
    6.王文亮,孙爱东.黄粉虫食品研究开发现状及发展前途[J].中国食物与营养,2005,6:18-20.
    7.赵大军,马勇,吕长鑫等.黄粉虫系列食品的开发应用研究[J].食品工业科技,2006,9:167-170.
    8.王梦月,贾敏如,黄山.我国药用昆虫的开发利用与前景[J].中国中医药信息杂志,2001,8(11):32-33.
    9.王进忠,丁建云.昆虫的保健和药用价值[J].生物学通报,1997,32(5):45-46.
    10.李明华,刘昌衡,刘健敏等.昆虫功能食品的研究与开发[J].食品研究与开发,2005,26(3):112-115.
    11.李汉臣,吉志新,安丽红等.黄粉虫的营养保健作用初报[J].河北职业技术师范学院学报,2002,16(1):26-28.
    12.杨兆芬,林跃鑫,陈寅山等.黄粉虫幼虫营养成分分析和保健功能的实验研究[J].昆虫知识,1999,36(2):97-100.
    13.孙波,张桂征,殷浩等.6种食用昆虫对小鼠血糖和血脂的影响[J].食品科学,2009,30(9):213-215.
    14.陈智毅,廖森泰,李清兵等.多化性黄血蚕的食用和药用价值的研究[J].蚕业科学,2002,28(2):173-176.
    15.俞巍蔚,李世敏,刘冬等.黄粉虫幼虫粉对高血脂大鼠血脂水平的影响[J].华南理工大学学报:自然科学版,2005,33(1):92-94.
    16.陶国琴,李晨. α-亚麻酸的保健功效及其应用[J].食品科学,2000,21(2):140-143.
    17.王文亮,孙守义,王守经等.中国黄粉虫食品研究开发现状及发展前景[J].世界农业,2007,9:50-52.
    18.李西波,李爱江.黄粉虫保健酱油的酿制[J].中国调味品,2008,(12):72-74.
    19.范素琴,陈鑫炳,王成忠.黄粉虫甲壳素—壳聚糖在食品工业中应用[J].粮食与油脂,2009,(12):43-45.
    20.匡银近,池伟林,覃彩芹.壳聚糖在食品工业中应用的研究进展[J].孝感学院学报,1996,(5):30-35.
    21.李维静.甲壳素、壳聚糖的性质、制备及其在食品中的应用[J].安徽农学院学报,2007,13(10):58-60.
    22.祝美云,赵晓芳.壳聚糖及其衍生物在鲜切果蔬和食品保鲜中的应用进展[J].食品研究与开发,2007,28:153-155.
    23.朱斌.壳聚糖及衍生物在食品工业中的应用[J].中外食品,2004,7:42-43.
    24.刘玉升.黄粉虫[M].北京:中国农业出版社,2002.
    25.黄金丽.施肥处理对蔬菜营养品质及其产量影响的研究[D].泰安:山东农业大学,2001.
    26.高爱华,陈月明.浅谈黄粉虫[J].中学生物学,2005,21(1):17-18.
    27. Kostron B, Market D, Kellermann J, et al. Antisera against Periplaneta americana Cu, Zn-superoxidedismutase (SOD): separation of the neurohormone bursicon from SOD, and immunodetection of SODin the central nervous system [J]. Insect Biochemistry and Molecular Biology,1999,29(10):861-871.
    28. Vinokurov K S, Elpidina E N, Oppert B, et al. Fractionation of digestive proteinases from Tenebriomolitor (Coleoptera: Tenebrionidae) larvae and role in protein digestion [J]. ComparativeBiochemistry and Physiology Part B: Biochemistry and Molecular Biology,2006,145(2):138-146.
    29. Elpidina E N, Tsybina T A, Dunaevsky Y E, et al. A chymotrypsin-like proteinase from the midgut ofTenebrio molitor larvae [J]. Biochimie,2005,87(8):771-779.
    30. Fernando A G, Ivan B, Walter R T, et al. Purification, characterization and sequencing of the major β-1,3-glucanase from the midgut of Tenebrio molitor larvae [J]. Insect Biochemistry and MolecularBiology,2009,39(12):861-874.
    31. Ferreira A H P, Ribeiro A F, Terra W R, et al. Secretion of β-glycosidase by middle midgut cells and itsrecycling in the midgut of Tenebrio molitor larvae [J]. Journal of Insect Physiology,2002,48(1):113-118.
    32. Grzegorz R, Alina W, Ludwik O. Differences in trehalase activity in the intestine of fed and starvedlarvae of Tenebrio molitor L.[J]. Insect Biochemistry,1979,9(5):485-488.
    33.何桂梅,张建新,郭倩.双酶水解黄粉虫水溶性蛋白制备抗氧化肽的研究[J].西北农业学报,2011,20(2):193-197.
    34. Ramsay J A. The rectal complex of the mealworm Tenebrio molitor L. Coleoptera [J]. Philosophicaltransactions of the Royal Society of London. Series B, Biological sciences,1964,248(748):279-314.
    35. Melanie M T, Dirk K H, Sergio D E, et al. A Mechanism for Stabilization of Membranes at LowTemperatures by an Antifreeze Protein [J]. Biophysical Journal,2002,82(2):874-881.
    36. Chao H, Davies P L, John F C. Effects of antifreeze proteins on red blood cell survival duringcryopreservation [J]. Journal of Experimental Biology,1996,199(9):2071-2076.
    37. Christopher B M, Margaret E D, Laurie A G, ea al. Identification of the ice-binding face of antifreezeprotein from Tenebrio molitor [J]. FEBS Letters,2002,529,(2-3):261-267.
    38. Hinton A C, Hammock B D. Juvenile hormone esterase (JHE) from Tenebrio molitor: full-length cDNAsequence, in vitro expression, and characterization of the recombinant protein [J]. Insect Biochemistryand Molecular Biology,2003,33(5):477-487.
    39. Svend O A, Ann M C, Judith H W. The amino-acid composition of cuticles from Tenebrio molitor withspecial reference to the action of juvenile hormone [J]. Insect Biochemistry,1973,3(10):171-180.
    40. Hilary Hurd G P. Metacestode-induced depression of the production of, and response to, sex pheromonein the intermediate host Tenebrio molitor [J]. Journal of Invertebrate Pathology,1991,58(1):82-87.
    41.陈雅雄,谭竹均,韩雅莉等.黄粉虫蛋白提取物纤溶活性及性质研究[J].时珍国医国药,2011,22(1):169-171.
    42.李奕冉,姜玉新,李朝品.黄粉虫蛋白对小鼠免疫影响的试验研究[J].中国实验方剂学杂志,2010,16(15):87-89.
    43.王瑞芳,白建乐主编.高血压[M].郑州:郑州大学出版社,2003.
    44.文允谥.浅谈血压及高血压[J].生物学通报,1996,31(10):18-20.
    45.刘力生.高血压[M].北京:人民卫生出版社,2001,30-34.
    46.黄家音,朱禹洁,沈金玉.降血压肽研究进展[J].食品与发酵工业,2006,32(6):81-86.
    47. Cushman D W, Cheung H S. Concentrations of angiotensin-converting enzyme in tissues of the rat [J].Biochimica et Biophysica Acta (BBA)-Enzymology,1971,250(1):261-265.
    48.吴建平.大豆降压肽的生产[D].无锡:无锡轻工大学,1998.
    49.吴琼英.降血压发酵乳的制备及其性能研究[D].镇江:江苏大学,2004.
    50.安桂香,庄桂东,徐振凯等.食物中血管紧张素转化酶抑制肽的研究进展[J].食品研究与开发,2006,27(6):173-175.
    51. Zhao Y, Li B, Liu Z, et al. Antihypertensive effect and purification of an ACE inhibitory peptide fromsea cucumber gelatin hydrolysate [J]. Process Biochemistry,2007,42(12):1586-1591.
    52. Kohmura M, Nio N, Ariyosh Y. Inhibition of angiotensin-converting enzyme by synthetic peptidefragments of human-casein [J]. Agricultural and Biological Chemistry,1990,54:835-836.
    53.何荣海.条斑紫菜降血压肽制备技术的研究[D].镇江:江苏大学,2006.
    54.范百刚.超声原理与应用[M].宜兴:江苏科学技术出版社,1985.
    55. J.布利茨.超声技术及其应用[M].北京:海淀出版社,1992.
    56. Mason T J. Power ultrasound in food processing-the way forward, In: Povey M J W, Mason T J.(Eds.),Ultrasound in Food Processing, Blackie Academic&Professional, London,1998, pp.103-126.
    57. Suslick K S. Homogeneous sonochemistry, In: Ultrasound. Its chemical, physical and biological effects,VCH Publishers Inc., New York,1988, pp.123-163.
    58.丁文川.低强度超声波辐射活性污泥的生物效应及其应用试验研究[D].重庆:重庆大学,2007.
    59.冯若,李化茂.生化学及其应用[M].合肥:安徽科学技术出版社,1992.
    60.汪承灏.单一空化气泡的电磁辐射和光辐射[J].声学学报,1964,1(2):59-68.
    61. Suslick K S. Sonochemistry and sonoluminescence [J]. Encyclopaedia of physical science andthechnology,2001,17:363-376.
    62. Crocker M J. Encyclopedia of acoustics [M]. New York: John Wiley&Sons,1997.
    63.张德俊.空化效应与超声治疗仪[J].中国超声医学杂志,1998,4(4):10-23.
    64.李廷盛,尹其光.超声化学[M].北京:科学出版社,1995.
    65. Wang J, Cao Y P, Sun B G, et al. Effect of ultrasound on the activity of alliinase from fresh garlic [J].Ultrasonics Sonochemistry,2011,18(2):534-540.
    66. Ishimori Y, Karube I, Ad Suzuki S. Acceleration of immobilized achymotrypsin activity with ultrasonicirradiation [J]. Journal of Molecular Catalysis,1981,12(2):253-259.
    67. Lee S H, Nguyen H M, Koo Y M, et al. Ultrasound-enhanced lipase activity in the synthesis of sugarester using ionic liquids [J]. Process Biochemistry,2008,43:1009-1012.
    68. Barton S, Bullock C, Weir D. The effects of ultrasound on the activities of some glycosidase enzymesof industrial importance [J]. Enzyme and Microbial Technology,1996,18(3):190-194.
    69. Sakakibara M, Wang D, Takahashi R, et al. Influence of ultrasound irradiation on hydrolysis of sucrosecatalyzed by invertase [J]. Enzyme and Microbial Technology,1996,18(6):444-448.
    70. Vargas L H M, Piao A C S, Domingos R N, et al. Ultrasound effects on invertase from spergillus niger[J]. World journal of microbiology and biotechnology,2004,20(2):137-142.
    71.王康.超声对胃蛋白酶,胰蛋白酶,过氧化氢酶作用的研究[J].中国生物工程杂志,2006,26(5):81-83.
    72.肖贵平.木瓜蛋白酶超声法提取工艺及其酶学性质[J].福建农林大学学报,2005,34(3):318-323.
    73. Schmidt P, Rosenfeld E, Millner R, et al. Effects of ultrasound on the catalytic activity of matrix-boundglucoamylase [J]. Ultrasonics,1987,25:295-299.
    74. Ishimori Y, Karube I, Suzuki S. Acceleration of immobilized α-chymotrypsin activity with ultrasonicirradiation [J]. Journal of Molecular Catalysis,1981,12(2):253-259.
    75. Zhong M T, Ming X W, Su P W, et al. Effects of ultrasound and additives on the function and structureof trypsin [J]. Ultrasonic Sononchemistry,2004,11(6):399-404.
    76. Raviyan P, Zhang Z, Feng H. Ultrasonication for tomato pectinmethylesterase inactivation: effect ofcavitation intensity and temperature on inactivation [J]. Journal of food engineering,2005,70(2):189-196.
    77. Knorr D, Zenker M, Heinz V, et al. Application and potential of ultrasonics in food processing [J].Trends in Food Science&Technology,2004,15:261-266.
    78. Mason T J, Paniwnyk L, Lorimer J P. The uses of ultrasound in food technology [J]. UltrasonicsSonochemistry,1996,3: s253-s260.
    79. Liu Y X, Jin Q Z, Shan L, et al. The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil insolvent-free system [J]. Ultrasonics Sonochemistry,2008,15(4):402-407.
    80. Song J, Tao W Y, Chen W Y. Ultrasound-accelerated enzymatic hydrolysis of solid leather waste [J].Journal of Cleaner Production,2008,16:591-597.
    81.吴虹,宗敏华,娄文勇等.超声作用下的酶促废油脂转酯反应[J].华南理工大学学报(自然科学版),2006,34(5):68-71.
    82.肖琼,姚春才,勇强等.玉米秸秆超声辅助酶水解[J].南京林业大学学报(自然科学版),2007,31(4):85-88.
    83. Jia J Q, Ma H L, Zhao W R, et al. The use of ultrasound for enzymatic preparation of ACE-inhibitorypeptides from wheat germ protein [J]. Food Chemistry,2010,119:336-342.
    84.杨铭铎,沈春燕,张根生.猪骨呈味物质提取的研究(I)—酶解猪骨最佳工艺条件[J].食品科学,2007,28(9):210-215.
    85.周广麒,祁东梅.超声辅助预处理对糖料植物纤维酶解的影响[J].四川食品与发酵,2008,44(1):40-43.
    86.安志丛,周惠明,朱科学.预处理方法对小麦面筋蛋白功能性质及其酶解效率的影响[J].食品与发酵工业,2009,35(9):25-30.
    87. Kapel R, Rahhou E, Lecouturier D, et al. Characterization of an antihypertensive peptide from anAlfalfa white protein hydrolysate produced by a continuous enzymatic membrane reactor [J]. ProcessBiochemistry,2006,41:1961-1966.
    1. Mahmoud M I. Physicochemical and functional properties of protein hydrolysates in nutritional products[J]. Food Technology,1994,48:89-95.
    2.夏书华.螺中生物活性物质的研究[D].无锡:江南大学,2006.
    3.孔祥珍.小麦面筋蛋白的酶解及其阿片肽的研究[D].无锡:江南大学,2006.
    4. Suetsuna K, Chen J R. Isolation and characterization of peptides with antioxidant activity derived fromwheat gluten [J]. Food Science and Technology Research,2002,8(3):227-230.
    5. Schusdziarra V, Schich R, Holand A, et al. Effect of opiate-active substances on pancreatic polypeptidelevels in dogs [J]. Peptides,1983,4:205-210.
    6. Oshima G, Shimabukuro H, Nagasawa K. Peptide inhibitors of angiotensin I-converting enzyme indigests of gelatin by bacterial collagenase [J]. Biochimica et Biophysica Acta (BBA)-Enzymology,1979,566(1):128-137.
    7. Miguel M, Contreras M M, Recio I, et al. ACE-inhibitory and antihypertensive properties of a bovinecasein hydrolysate [J]. Food Chemistry,2009,112(1):211-214.
    8. Baek H H, Cadwallader K R. Enzymatic hydrolysis of crayfish processing by-products [J]. Journal ofFood Science,1995,60:929-935.
    9. Seki E, Osajima K, Matsufuji H, et al. Val-Tyr, an angiotensin I-converting enzyme inhibitors fromsardines that have resistance to gastrointestinal proteases [J]. Nippon Nogeikagaku Kaishi,1995,69:1013-1020.
    10. Maruyama S, Miyoshi S, Kaneko T, et al. Angiotensin I-converting enzyme inhibitor activities ofsyntheticpepeides related to the tandem repeated sequence of a maize endosperm protein [J]. Agriculturaland Biological Chemistry,1989,53:1077-1081.
    11. Wu J P, Ding X L. Hypotensive and physiological effect of angiotensin converting enzyme inhibitorypeptides derived from soy protein on spontaneously hypertensive rats [J]. Journal of Agriculture of FoodChemistry,2001,49:501-506.
    12. Yoshii H, Tachi N, Ohba R, et al. Antihypertensive effect of ACE inhibitory oligopeptides fromchicken egg yolks [J]. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2001,128(1):27-33.
    13. Nakamura Y, Yamamoto N, Sakai K, et al. Purification and characterization of angiotensin I-convertingenzyme inhibitors from sour milk [J]. Journal of Dairy Science,1995,78:777-783.
    14.韩蕴华,张千弘,桑丽霞等.壳聚糖的精制及测定[J].天津化工,2000,(3):33-34.
    15.谢音,屈小英主编.食品分析[M].北京:科学技术文献出版社,2006,14-16.
    16.马海乐,吴守一.超临界CO2萃取历程及萃取条件对小麦胚芽油中VE溶解特性的影响[J].中国粮油学报,1999,14(3):27-28.
    17.李小华,于新.非洲山毛豆蛋白质组成及其功能特性研究[J].中国粮油学报,2010,25(7):43-48.
    18. Nissen J A. Enzymatic hydrolysis of food protein. New York: Elsevier Applied Science Publisher,1986.
    19.吴琼英,马海乐,骆琳等.高效液相色谱法测定血管紧张素转化酶抑制剂的活性[J].色谱,2005,23(1):79-81.
    20. Cushman D W, Cheung H S. Spectrophotometric assay and properties of the angiotensin-convertingenzyme of rabbit lung [J]. Biochemical Pharmacology,1971,20(7):1637-1648.
    21. Mehanna A S, Dowling M. Liquid chromatographic determination of hippuric acid for the evaluation ofethacrynic acid as angiotensin converting enzyme inhibitor [J]. Journal of Pharmaceutical andBiomedical Analysis,1999,19:967-973.
    22. Murray B A, FitzGerald R J. Angiotensin-converting enzyme inhibitory peptides derived from foodproteins: Biochemistry, bioactivity and production [J]. Current Pharmaceutical Design,2007,13(8):773-791.
    23.李汉臣,吉志新,安丽红等.黄粉虫的营养保健作用初报[J].河北职业技术师范学院学报,2002,16(1):26-28.
    24.曹文红,章超桦.食品蛋白降血压肽及其酶法制备(二)[J].食品科技,2002,5:11-13.
    25.陈雪君,刘建新,马小梅.湖羊肌肉和皮下脂肪组织的脂肪酸组成研究[J].浙江大学学报(农业与生命科学版),2008,34(6):641-648.
    26. Adamson N J, Reynolds E C. Characterization of casein phosphopeptides prepared using alcalase:Determination of enzyme specificity [J]. Enzyme and Microbial Technology,1996,3(19):202-207.
    27. Balti R, Barkia A, Bougatef A, et al. A heat-stable trypsin from the hepatopancreas of the cuttlefish(Sepia officinalis): purification and characterization [J]. Food Chemistry,2009,113(1):146-154.
    28.彭志英.食品科学导论[M].北京:中国轻工业出版社,2002:15.
    29. Cheftel C, Ahem M, Wang D I, et al. Enzymatic solubilization of fish protein concentrate: batch studiesapplicable to continuous enzyme recycling processes [J]. Journal of Agricultural and Food Chemistry,1971,19(1):155-161.
    30. Chobert J M, Dalgalarrondo M, Dufour E, et al. Influence of pH on the structural changes ofbeta-lactoglobulin studied by tryptic hydrolysis [J]. Biochim Biophys Acta,1991,1077(1):31-34.
    31. Márquez M C, Vázquez M A. Modeling of enzymatic protein hydrolysis [J]. Process Biochemistry,1999,35:111-117.
    32.齐葳,何志敏,何丽霞.酪蛋白酶解制备酪蛋白磷酸肽研究I过程分析与优化[J].食品科学,2001,22(7):25-28.
    33.萧能,余瑞元,袁明秀等.生物化学实验原理和方法[M].北京大学出版社,2005.
    1. Liu X M, Powers J R, Swanson B G, et al. Modification of whey protein concentrate hydrophobicity byhigh hydrostatic pressure [J]. Innovative Food Science and Emerging Technologies,2005,6:310-317.
    2. Wang R, Zhang M, Mujumdar A S. Effect of food ingredient on microwave freeze drying of instantvegetable soup [J]. LWT-Food Science and Technology,2010,43(7):1144-1150.
    3. Brunner G. Supercritical fluids: technology and application to food processing [J]. Journal of FoodEngineering,2005,67:21-33.
    4. Laligant A, Dumay E, Valencia C C, et al. Surface hydrophobicity and aggregation of β-lactoglobulinheated near neutral pH [J]. Journal of Agricultural and Food Chemistry,1991,39(12):2147-2155.
    5. Mason T J, Paniwnyk L, Lorimer J P. The uses of ultrasound in food technology [J]. UltrasonicsSonochemistry,1996,3(3): S253-S260.
    6. Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe method and its correlation withsurface properties of proteins [J]. Biochemica et Biophysica Acta,1980,624(1):13-20.
    7. Ellman G D. Tissue sulfhydryl groups [J]. Archives of Biochemistry and Biophysics,1959,82(1):70-72.
    8. Song J, Tao W Y, Chen W Y. Ultrasound-accelerated enzymatic hydrolysis of solid leather waste [J].Journal of Cleaner Production,2008,16:591-597.
    9.董晓燕.生物化学实验[M].北京:化学工业出版社,2003.
    10.吴丹,徐桂英.光谱法研究蛋白质与表面活性剂的相互作用[J].物理化学学报,2006,22(2):254-260.
    11.李迎秋,陈正行.高压脉冲电场对大豆分离蛋白疏水性和巯基含量的影响[J].食品科学,2006,27(5):40-43.
    12. Pallarès I, Vendrell J, Avilés F X, et al. Amyloid fibril formation by a partially structured intermediatestate of α-chymotrypsin [J]. Journal of Molecular Biology,2004,342(1):321-331.
    13. Wang X S, Li B S, Tang C H, et al. Effects of high-pressure treatment on some physicochemical andfunctional properties of soy protein isolates [J]. Food Hydrocolloids,2008,22:560-567.
    14.王志峰,包格日勒图.高压处理对牛骨骼肌G-肌动蛋白结构的影响[J].食品科学,2010,31(13):6-9.
    15. Visschers R W, de Jongh H H J. Disulphide bond formation in food protein aggregation and gelation [J].Biotechnology Advances,2005,23(1):75-80.
    16. Seid M J, Yinghe H, Bhesh B. Production of sub-micron emulsions by ultrasound and microfluidizationtechniques [J]. Journal of Food Engineering,2007,82(4):478-488.
    17.沈琼,黄滨,邵嘉亮等.运用圆二色谱研究酶与化合物相互作用的机理[J].中山大学学报(自然科学版),2006,45(4):62-64.
    18. Liu Y X, Jin Q Z, Shan L, et al. The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil insolvent-free system [J]. Ultrasonics Sonochemistry,2008,15:402-407.
    19. Lee S H, Nguyen H M, Koo Y M, et al. Ultrasound-enhanced lipase activity in the synthesis of sugarester using ionic liquids [J]. Process Biochemistry,2008,43:1009-1012.
    20. Wang J, Cao Y P, Sun B G, et al. Effect of ultrasound on the activity of alliinase from fresh garlic [J].Ultrasonics Sonochemistry,2011,18:534-540.
    21. Kadkhodaee R, Povey M J. Ultrasonic inactivation of Bacillus α-amylase. I. effect of gas contentand emitting face of probe [J]. Ultrasonics Sonochemistry,2008,15:133-142.
    22. Marchioni C, Riccardi E, Spinelli S, et al. Structural changes induced in proteins by therapeuticultrasounds [J]. Ultrasonics,2009,49:569-576.
    23. Sun N, Lee S, Song K B. Effect of high-pressure treatment on the molecular properties of mushroompolyphenoloxidase [J]. LWT-Food Science and Technology,2002,35:315-318.
    24. Dufour E, Hoa, G H, Haertlé T. High-pressure effects on β-lactoglobulin interactions with ligandsstudied by fluorescence [J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and MolecularEnzymology,1994,1206:166-172.
    25. Busti P, Gatti C A, Delorenzi N J. Thermal unfolding of bovine β-lactoglobulin studied by UVspectroscopy and fluorescence quenching [J]. Food Research International,2005,38:543-550.
    1.何美玉.现代有机与生物质谱[M].北京:北京大学出版社,2002.
    2.周利亘,王君虹,陈新峰等.大豆蛋白酶解液脱色工艺的优化[J].浙江农业学报,2005,17(3):130-133.
    3.廖丹葵,万顺刚,黄爱民等.蛋黄降压肽酶解液脱色工艺的优化[J].食品工业科技,2007,28(1):151-153.
    4.赵永芳.生物化学技术原理及其应用[M].武汉:武汉大学出版社,1997.
    5. Irvine G B. High-preformance size-exclusion chromatography of peptides [J]. Journal of Biochemicaland Biophysical Methods,2003,56(1-3):233-242.
    6.韩冬,叶美玲,施良和.水溶性凝胶色谱中的非体积排阻效应[J].色谱,1995,13(6):432-436.
    7.辛志宏.从小麦胚芽中提取降血压肽的研究[D].镇江:江苏大学,2003.
    8.盛龙生,苏焕华,郭丹滨.色谱质谱联用技术[M].北京:化学工业出版社,2006.
    9. Papayabbioakkes I A. The interpretation of collision-induced dissociation tandem MS of peptides [J].Mass Spectrometry Reviews,1995,114:49-73.
    10. María M Y, Justo P, Julio G C, et al. Production of ace inhibitory peptides by digestion of chickpealegumin with alcalase [J]. Food Chemistry,2003,81:363-369.
    11. Nakagomi K, Fujimura A, Ebisu H, et al. Acein-1, a novel angiotensin-Ⅰ-converting enzymeinhibitory peptide isolated from tryptic hydrolysate of human plasma [J]. Febs Letters,1998,438:255-257.
    12. Nakagomi K, Yamada R, Ebisu H, et al. Isolation of Acein-2, a novel angiotensin-Ⅰ-convertingenzyme inhibitory peptide derived from a tryptic hydrolysate of human plasma [J]. Febs Letters,2000,467:235-238.
    13. Seki E, Osajima K, Matsufuji H, et al. Val-Tyr, an angiotensin Ⅰ-converting enzyme inhibitor fromsardines that have resistance to gastrointestinal proteases [J]. Journal of the Agricultural ChemicalSociety of Japan,1995,69:1013-1020.
    14. Kitts D D, Weiler K. Bioactive proteins and peptides from food source. Application of bioprocessesused isolation and recovery [J]. Curr Pharmaceut Des,2003,9:1309-1323.
    15. Maruyama H, Tokunaga K, Suzuki K, et al. Purification and identification of an angiotensinⅠ-converting enzyme inhibitory peptides from royal jelly treated with protease [J]. Journal of theJapanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi,2003,50:310-315.
    16. Sutsuma k. Isolation and characterization of angiotensin Ⅰ-converting enzyme inhibitor dipeptidesderived from allium sativum (garlic)[J]. The Journal of Nutritional Biochemistry,1998,9:415-419.
    17. Tsai J S, Chen J L, Pan B S. ACE-inhibitory peptides identified from the muscle protein hydrolysated ofhard clam (Meretrix lusoria)[J]. Process Biochemistry,2008,43:743-747.
    18. Kim S K, Byun H G, Park P J, et al. Angiotensin Ⅰconverting enzyme inhibitory peptides purified frombovine skin gelation hydrolysate [J]. Journal of Agriculture and Food Chemistry,2001,49:2992-2997.
    19. Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensinⅠ-converting enzyme inhibitory peptides derived from food proteins [J]. Journal of Food Science,2000,65:564-569.
    20. Maeno M, Yamamoto N, Takano T. Identification of an antihypertensive peptide from caseinhydrolysate produced by a proteins from Lactobacillus helucticus CP790[J]. Journal of Dairy Science,1996,79:1316-1321.
    1.辛志宏.从小麦胚芽中提取降血压肽的研究[D].镇江:江苏大学,2003.
    2.苗明兰.试验动物和动物试验技术[M].北京:中国中医药出版社,1997,202-207.
    3.郭红英.麦胚蛋白酶解物的制备及其抗氧化功能研究[D].镇江:江苏大学,2009.
    4. Beckman K B, Ames B N. The free radical theory of aging matures [J]. Physiological Reviews,1998,78:547-581.
    5.万素英,赵亚军,李林,王慧君.食品抗氧化剂[M].北京:中国轻工业出版社,2000,10-13.
    6.王璋,许时婴,汤坚.食品化学[M].北京:轻工业出版社,1999,111-116.
    7. Pokorny J, Yanishlieva N, Gordon M. Antioxidants in food practicalapplications [M]. WoodheadPublishing Ltd,2001,322-333.
    8. Pihlanto A, Akkanen S, Korhonen H J. ACE-inhibitory and antioxidant properties of potato (Solanumtuberosum)[J]. Food Chemistry,2008,(109):104-112.
    9. Klompong V, Benjakul S, Kantachote D, et al. Antioxidative activity and functional properties of proteinhydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis andenzyme type [J]. Food Chemistry,2007,102:1317-1327.
    10. Thiansilakul Y, Benjakul S, Shahidi F. Compositions, functional properties and antioxidative activity ofprotein hydrolysates prepared from round scad (Decapterus maruadsi)[J]. Food Chemistry,2007,103:1385-1394.
    11. Kong B H, Xiong Y L. Antioxidant activity of zein hydrolysates in a liposome system and the possiblemode of action [J]. Journal of Agriculture and Food Chemistry,2006,54:6059-6068.
    12.周小理,李红敏.植物抗氧化(活性)肽的研究进展[J].食品工业,2006,(3):11-13.
    13.王章存,徐贤,王雷.酶解蛋白制备抗氧化活性肽研究进展[J].粮食与油脂,2008,(7):1-2.
    14. Vercruysse L, Smagghe G, Beckers T, Van Camp J. Antioxidative and ACE inhibitory activities inenzymatic hydrolysates of the cotton leafworm, Spodoptera littoralis [J]. Food Chemistry,2009,114(1):38-43.
    15.肖红.中华稻蝗蛋白的提取酶解及抗氧化肽的研究[D].西安:陕西师范大学,2006.
    16.陈力宏.蚕茧层多肽的制备及其抗氧化活性研究[D].镇江:江苏大学,2006.
    17. Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties inprotein hydrolysates of mackerel (Scomber aust riasicus)[J]. Food Research International,2003,36:949-957.
    18.朱艳华,谭军.玉米多肽抗氧化作用的研究[J].中国粮油学报,2008,23(1):36-38.
    19. Sarikurkcu C, Tepe B, Yamac M. Evaluation of the antioxidant activity of four edible mushrooms fromthe Central Anatolia, Eskisehir-Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis,Xerocomus chrysenteron [J]. Bioresource Technology,2008,99(14):6651-6655.
    20. Li X X, Han L J, Chen L J. In vitro antioxidant activity of protein hydrolysates prepared from corngluten meal [J]. Journal of the Science of Food and Agriculture,2008,88(9):1660-1666.
    21. Leclerc P L, Gauthier S F, Bachelard H, et al. Antihypertensive activity of casein-enriched milkfermented by Lactobacillus helveticus [J]. International Dairy Journal,2002,12(12):995-1004.
    22. Tsai J S, Chen T J, Pan B S, et al. Antihypertensive effect of bioactive peptides produced byprotease-facilitated lactic acid fermentation of milk [J]. Food Chemistry,2008,106(2):552-558.
    23. Yoshii H, Tachi N, O Riichiro, et al. Antihypertensive effect of ACE inhibitory oligopeptides fromchicken egg yolks [J]. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2001,128(1):27-33.
    24. Fujita H, Sasaki R, Yoshikawa M. Potentiation of the antihypertensive activity of orally administeredovokinin, a vasorelaxing peptide derived from ovalbumin, by emulsification in egg phosphatidylcholine[J]. Bioscience, Biotechnology, and Biochemistry,1995,59(12):2344-2345.
    25. Miguel M, Contreras M M, Recio I, et al. ACE-inhibitory and antihypertensive properties of a bovinecasein hydrolysate [J]. Food Chemistry,2009,112:211-214.
    26. Matsui T, Yukiyoshi A, Doi S, et al. Gastrointestinal enzyme production of bioactive peptides fromroyal jelly protein and their antihypertensive ability in SHR [J]. The Journal of Nutritional Biochemistry,2002,13(2):80-86.
    27. Qian Z J, Jung W K, Lee S H, et al. Antihypertensive effect of an angiotensin Ⅰ-converting enzymeinhibitory peptide from bullfrog (Rana catesbeiana Shaw) muscle protein in spontaneously hypertensiverats [J]. Process Biochemistry,2007,42:1443-1448.
    28. Yen G C, Wu J Y. Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae[J]. Food Chemistry,1999,65(3):375-379.
    29.黎观红,瞿明仁,晏向华等. Vc的营养和研究进展[J].粮食与饲料工业,2001,(4):31-33.
    30.李丹,李晓磊,谭克等.高纯度大豆和花生低聚肽的体外抗氧化活性[J].食品科技,2008,(6):138-141.
    31. Rajapakse N, Mendis E, Byun H G, et al. Purification and in vitro antioxidative effects of giant squidmuscle peptides on free radical-mediated oxidative systems [J]. Journal of Nutritional Biochemistry,2005,16(9):562-569.
    32. Sampath Kumar N S, Nazeer R A, Jaiganesh R. Purification and biochemical characterization ofantioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein [J]. Peptides,2011,32(7):1496-1501.
    33. Zhang T, Li Y H, Miao M, et al. Purification and characterisation of a new antioxidant peptide fromchickpea (Cicer arietium L.) protein hydrolysates [J]. Food Chemistry,2011,128(1):28-33.
    34. Li B, Chen F, Wang X, et al. Isolation and identification of antioxidative peptides from porcine collagenhydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry [J]. FoodChemistry,2007,102:1135-1143.
    35. Park P J, Jung W K, Nam K S, et al. Purification and characterization of antioxidative peptides fromprotein hydrolysate of lecithin free egg yolk [J]. Journal of the American Oil Chemists’Society,2001,78:651-656.
    36. Mendis E, Rajapakse N, Byun H, et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatinpeptides for their in vitro antioxidant effects [J]. Life Science,2005,70:2166-2178.
    37. Alemán B, Giménez E, Pérez-Santin M C, et al. Contribution of Leu and Hyp residues to antioxidantand ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate [J]. FoodChemistry,2011,125:334-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700