用户名: 密码: 验证码:
南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体搬运沉积体系(即Mass Transport Deposits,简称MTDs)是一种深水区在重力作用下发育的深水沉积体系,在全球大陆边缘“从源到汇”研究体系中扮演着重要角色。块体搬运沉积作用不仅造成危害极大的深水地质灾害,而且与海洋天然气水合物和深水油气的形成过程与富集有密切联系。鉴于其重要的学术意义和工程意义,近年来成为了国内外海洋地质,深水工程和深水工业界关注的热点。为此,本文调研了美国墨西哥湾海域作业的BP公司“深水地平线”钻井平台爆炸事故的触发过程和灾害因素。在我国南海深水油气勘探开发步伐日益加快的背景下,本文选择南海北部陆坡MTDs为研究目标具有科学和实际意义。
     本文主要利用近20年采集的部分二维和三维高分辨率地震数据,结合海底多波束地形地貌资料,在层序地层分析和地球物理属性分析基础的基础上,对南海北部陆坡深水区开展研究,确定第四系MTDs的分布范围,结构特征和的发育过程,并重点探讨了水合物分解与MTDs发育的相关性。
     通过大量二维地震资料的解释成果,本文首次系统圈定了MTDs在南海北部陆坡区的主要分布范围,研究区主要MTDs主要分布于四个区域,我们分别命门为:a.琼东南盆地北部陆坡区MTDs(简称琼北MTDs); b.琼东南盆地华光凹陷MTDs(简称华光MTDs);c.珠江口盆地白云MTDs(简称白云MTDs);和d.台西南盆地陆坡MTDs(简称九龙MTDs)。
     根据新获得的海底地形地貌资料和地震资料,揭示了块体搬运沉积体系识别特征,MTDs的地震响应特征总体表现为弱振幅,半透明及杂乱反射。在其边缘接触区,可以识别出较为典型的犁式正断层和张性断层,具有强振幅的连续性反射特征;在MTDs的滑移搬运区,一般表现为块状平行或波状弱连续地震相;MTDs的趾部以挤压作用为主,其外形常表现为丘状,以同沉积型挤压逆冲构造为主要特征。
     本文重点对白云凹陷天然气水合物的分解机理和白云块体搬运沉积体系开展了研究。根据水合物采样区的二维地震剖面建立了海底地质模型,采用极限平衡法进行海底稳定性判定,给出6种水合物分解模型情况下海底稳定性的安全因子,模拟结果显示:随着水合物分解量的增加,斜坡的稳定性逐渐减弱,当水合物的分解达到一定数量时,陆坡沉积物便会完全失稳。因此,我们认为白云凹陷研究区内水合物的分解对海底MTDs的发育具有诱发作用。同时,论文进行了海水水深,陆坡坡角以及水合物带厚度三个因素对海底失稳的敏感性分析。结果显示,海水水深的增加能有效的抑制MTDs的发育,斜坡坡角和水合物带厚度的增加都是MTDs发育的启动因素。
Mass transport deposits are one kind of sedimentary system driven by gravity flow indeep-water settings, which play an important role in the research of "source to sink"of continental margins. Mass transport deposits may not only cause geologic hazards,but also have close relationships with the formation and accumulation of marine gashydrates and hydrocarbon. Owing to the important academic value and very goodengineering practical value, mass transport deposits become a hot topic in marinegeology and oil industry. Therefore, this paper studied the caused reason and theprocesses of the oil company BP exploded and sank in Gulf of Mexico. Current paceof ocean oil and gas resources exploration and production construction is acceleratedincreasingly, this study focused on mass transport deposits has scientific and actualsignificance in the northern of the South China Sea.
     Based on the2D and3D high resolution seismic data in nearly two decades, thedistribution area, architectures and development processing of quaternary masstransport deposits on the slope area of northern South China Sea are confirmed bycombining with interpretation of multi-beam imaging and sequence stratigraphyanalysis. The relationships between gas hydrate dissociation and mass transportdeposits are emphatically discussed.
     The distribution area of mass transport deposits in the study area is first systematicallydetermined through interpretation of seismic sections in this paper. Mass transportdeposits are primarily concentrated in four regions: a. North Slope of theQiongdongnan basin; b. Huaguang sag of the Qiongdongnan basin; c. Baiyun sag of the Pearl River Mouth Basin; and d. North Slope of the Taixinan Basin.
     Through the study of high resolution bathymetric data and seismic data, identificationof mass transport deposits from seismic profiles are weak amplitude, semitransparentand chaotic reflection. In the boundary contact region, it can identify normal faultsand extension faults with strong amplitude and continuous reflection; in thetranslation domain area, the seismic facies are weakly continuous reflection; in the toedomain area which is controlled by compressional action, and where most of foldsand synsedimentary thrust structures are developed.
     In order to further the correlationship clearly between mass transport deposits and thedissociation of gas hydrate, on the basis of2D seismic profile in gas hydrate samplingarea, we established geomechanical mode and estimated the stability of submarineslope through ultimate equilibrium method. Six different gas hydrate dissolutionmodels are chosen to calculate the safety factors. We found that the stability ofsubmarine slope decreases with the increasing dissolution of gas hydrate, whiledissociation reached critical value the slope will fail totally. Consequently, we regardthe dissociation of gas hydrate as an inductive effect of mass transport depositsdevelopment. Meanwhile,we did some sensitivity analysis about water depth, slopeangle and thickness of gas hydrate for the development of MTDs. The results showedthat the increasing of water depth could restrain the development of MTDs,but theincreasing of slope angle and gas hydrate thickness are significant inducing factor ofMTDs.
引文
Alexei V M, Roger S. Estimate of gas hydrate resource, northwestern Gulf of Mexicocontinental slope. Marine Geology,2001(179):71-83.
    Bartolini C, Lang H, Spell T. Geochronology, geochemistry and tectonic setting of theMesozoic Nazas Arc in north central Mexico and its continuation to northernSouth America. AAPG Memoir,2003(79):427-461.
    Beaubouef, R T, Abreu V, Van Wagoner J C. Basin4of the Brazos-Trinity slopesystem, western Gulf of Mexico. Perkins Research Conference,2003:182-203.
    Bouriak S, Vanmste M, Saoutkine A. Inferred gas hydrates and clay diapers near theStoregga slide on the southern edge of the Vφring Plateau, off shore Norway.Marine Geology,2000(163):125-148.
    Brooks J M, Cox H B, Bryant W R, et al. Association of gas hydrate and oil seepagein the Gulf of Mexico. Organic Geochemistry,1986(10):221-234.
    Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transportcomplexes using3d seismic data. Marine and Petroleum Geology,2008(08):66-68.
    Dillon W P and Max M D. Oceanic gas hydrates. In Natural Gas Hydrate in Oceanicand Permafrost Environments Edited by Max M D. Kluwer Academic Publishers,Dordrecht, the Netherlands.2003:61-76.
    Dixon B T, and Weimer P. Sequence stratigraphy of the eastern Mississippi Fan(Pleistocene), northeastern deep Gulf of Mexico. AAPG Bulletin,1998,(82):1207-1232.
    Dott R. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin,1963,(47):104-128.
    Doyle E H, Kaluza M J, and Roberts H H. Use of manned submersibles to investigateslumps in the Gulf of Mexico.1992:770-782.
    Grozic J L H and Kvalstad T J. Effect of gas on deepwater marine sediments. Inproceedings of15th International Conference on Soil Mechanic and GeotechnicalEngineering.2001:27-31
    Haflidason H, Sejrup H P, Nygard A, et al. The Storegga slide architecture, geometryand slide development. Marine Geology,2004(213):201-234.
    Hampton M and Lee H. Submarine landslides. Reviews of Geophysics,1996,34(1):33-59
    Kayen R E and Lee H J. Pleistocene slope instability of gas hydrate laden sediment onthe Beaufort Sea margin. Marine Geotechnology,1991(10):125-141.
    Khain V E and Polakova I D. Oil and gas potential of deep and ultra-deep water zonesof Continental Margins. Lithology and Mineral Resources,2004(39):610-621
    Kowsmann R O, Machado L C R, Viana A R, Almeida A, Vicalvi M A. Controls onmass-wasting in deep water of the Campos Basin, OTC Contribution,2002,#14030.
    Kvalstad T J, Nadim F, Harbitz C B. Deepwater Geohazards: Geotechnical Concernsand Solutions. Offshore Technology Conference, DOI:10.4043/12958-MS
    Lee C, Nott J, Parrish A, Keller F B. Seismic expression of the Tertiary mass transportcomplexes, deepwater Tarfaya-Agadir Basin, offshore Morocco, OTCContribution,2004,#16741.
    Leynaud D, Mienert J and Nadim F. Slope stability assessment of the Helland Hansenarea offshore the mid-Norwegian margin. Marine Geology,2004(213):457-480.
    Locat J and Lee H J. Submarine Landslides: advances and challenges. CanadaGeotechnology Journal,2002(39):193-212
    Mark M, Naja M, Bilal H. Sea-level and gas2hydrate controlled catastrophic sedimentfailures of Amazon Fan. Geology,1998,26(12):1107-1110.
    Martinez J F, Cartwright J and James D. Frontally confined versus frontally emergentsubmarine landslides: a3D seismic characterization. Marine&PetroleumGeology,2003,23(5):585-604
    Masson D G, Huggett Q J, Brundsen D. The surface texture of the Saharan debris flowdeposit and some speculations on submarine debris flow processes.Sedimentology,1993,(40):583–598
    McGilvery T and Cook D. Theinfluenceof local gradientsonac commodationspaceandlinked depositional elements across a stepped slope profile, offshoreBrunei[C]//In: Roberts H, Rosen N, Fillon R, et al, eds. Gulf CoastSection2SEPM Foundation23rd Annual Bob F. Perkins Research Conference.2003:23-55.
    McGilvery T A, Haddad G, Cook D L. Seafloor and shallow subsurface examples ofmass transport complexes, offshore Brunei. OTC Conference,2004,#16780.
    Middleton G V and Hampton M A. Sediment gravity flows: mechanics of flow anddeposition, in G.V.Middleton, and A.H. Bouma, eds., Turbidites and deep-watersedimentation, Pacific Section SEPM publication,1973:1-38
    Newton C S, Shipp R C, Mosher D C et al. Importance of Mass Transport Complexesin the Quaternary Development of the Nile Fan, Egypt. Offshore TechnologyConference,2004,#16742.
    Nixon M F. Influence of gas hydrates on submarine slope stability.[M.Sc.thesis]2005,Department of Civil engineering,University of Calagary,Alberta.
    Nixon M F, Grozic J L H. Submarine slope failure due to gas hydrate dissociation: apreliminary quantification.Canada geotech.2007:314-325
    Paulo J. Reservoir geophysics in deep and ultradeep water in the Campos Basin.TheLeading Edge,1999,18(7):819-822
    Pettingill H S, Weimer P. Worldwide deepwater exploration and production: Past,present and future. The Leading Edge,2002,135:371-376.
    Roger S, Samantha J, Stephen T S, et al. Thermogenic gas hydrate and hydrocarbongases in complex chemosynthetic communities, Gulf of Mexico continental slope.Organic Geochemistry,1999(30):485-497.
    Rothwell R G, Thompson J, Kahler G. Low-sea-level emplacement of a very large latePleistocene ‘megaturbidite’ in the western Mediterra-nean Sea, Nature1998,392:377-380,
    Shanmugam G.50years of turbidite paradigm (1950s-1990s) deeep-water processesand facies model a critical perspective. Marine&Petroleum Geology,2000,17:285-342.
    Shipp C, Nott J, Newlin J. Variations in jetting performance in deepwaterenvironments: geotechnical characteristics and effects of mass transportcomplexes. OTC Conference,2004,#16751.
    Sultan N, Voisset M, Marsset B et al. Potential role of compressional structures ingenerating submarine slope failures in the Niger delta. Marine Geology,2007,237:169-190.
    Weimer P. Sequence stratigraphy of the Mississippi Fan (Plio-Pleistocene), Gulf ofMexico. Geo-Marine Letters,1989,9:185-272.
    Weimer P. Sequence stratigraphy, seismic geometries, and depositional history of theMississippi Fan, deep Gulf of Mexico. AAPG Bulletin,1990,74:425-453.
    Wu S, Wong H K, Lüdmann T. Graviy driven sedimentation on the northwestcontinental slope of the south China Sea: results from high-resolution seismic dataand piston cores. Chinese Journal of Oceanology and Limnology,1999,17(2):155-169.
    Xie X N, Muller R D, Ren J Y et al. Stratigraphic architecture and evolution of thecontinental slope system in offshore Hainan, northern South China Sea. MarineGeology,2008,247:129-144.
    白小东,黄进军,侯勤立.深水钻井液中天然气水合物的成因分析及其防治措施.精细石油化工进展,2004,(04):52-54.
    蔡秋蓉.南海北部海底为地貌特征与近代变化.南海地质研究,2003,(14):77-83.
    陈多福,李绪宣,夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测.地球物理学报,2004,(3):483-490.
    丁巍伟,王渝明,陈汉林等.台西南盆地构造特征与演化.浙江大学学报(理学版),2004,31(2):216-221.
    董冬冬,王大伟,张功成等.珠江口盆地深水区新生代构造沉积演化.中国石油大学学报(自然科学版),2009,33(5):17-23.
    董冬冬,吴时国,张功成等.南海北部深水盆地的裂陷过程及裂陷期延迟机制探讨论.科学通报,2008,53(91):2342-2351.
    董冬冬.南海北部陆缘深水区构造演化及其资源效应,中国科学院研究生院(海洋研究所),2008.
    冯文科,石耀红.南海北部外陆架和上陆坡海底滑坡稳定性研究.海洋地质与第四纪地质,1994,14(2):81-94.
    甘华阳,王家生,胡高韦.海洋沉积物中的天然气水合物与海底滑坡.防灾减灾工程学报,2004,24(2):177-182.
    高振中,吴智勇.深水异地沉积研究——回顾与展望.江汉石油学院学报,1995,17(4):1-5.
    龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社,1997.
    何云龙,解习农,李俊良等.琼东南盆地陆坡体系发育特征及其控制因素.地质科技情报,2010,29(2):119-123.
    胡光海,刘忠臣,孙永福等.海底斜坡土体失稳的研究进展.海岸工程,2004,23(1):63-73.
    李家彪.中国边缘海形成演化与资源效应.北京,海洋出版社,2005,508.
    李平鲁.珠江口盆地新生代构造运动.中国海上油气(地质),1993,7(6):11-17.
    李绪宣,朱光辉.琼东南盆地断裂系统及其油气输导特征.中国海上油气,2005.17(1):1-7.
    李颖虹,任小波.我国深水油气勘探领域主要科技问题与发展对策.科技与社会,2011,26(1):75-79.
    刘光鼎,陈洁.中国海域残留盆地油气勘探潜力分析.地球物理学进展,2005,20(4):881-888.
    刘守全,刘锡清,王圣洁等.南海灾害地质类型及分区.中国地质灾害与防治学报,2000,11(4):39-44.
    柳保军,袁立忠,申俊等.南海北部陆坡古地貌特征与13.8Ma以来珠江深水扇.沉积学报,2006,24(4):476-482.
    牟会宠著.滑坡文集.北京:地震出版社,1987.
    庞雄,陈长民,彭大钧等.南海北部白云深水区之基础地质.中国海上油气,2008,20(4):215-222.
    庞雄,陈长民,彭大钧等.南海珠江深水扇系统及油气,科学出版社,北京,2007:18-19.
    彭大均,庞雄,陈长民等.从浅水陆架走向深水陆坡-南海深水扇系统的研究.沉积学报,2005,23(1):1-11.
    沙志彬,杨木壮,梁劲等.南海北部陆坡海底异常地貌特征与天然气水合物的关系.南海地质研究.2003,(14):29-34.
    邵磊,庞雄,陈长民等.南海北部渐新世末沉积环境及物源突变事件.中国地质,2007,34(6):1022-1031.
    石万忠,陈红汉,陈长民等.珠江口盆地白云凹陷地层压力演化与油气运移模拟.地球科学-中国地质大学学报,2006,31(2):229-236.
    宋海斌.天然气水合物体系动态演化研究(Ⅱ):海底滑坡.地球物理学进展,2003,18(3),503-511.
    孙龙涛,陈长民,詹文欢等.珠江口盆地断层封堵特征及其影响因素.石油学报,2007,28(4):36-40.
    孙运宝,吴时国.南海北部白云海底滑坡的形态与演化研究.海洋地质与第四纪地质,2008,28(6):69-77.
    孙珍,庞雄,钟志洪等.珠江口盆地白云凹陷新生代构造演化动力学.地学前缘,2005,12(4):489-498.
    谭文化.海南岛周边海域底质碎屑矿物分布及其物源分析.中国地质大学(北京),2007.
    陶春辉;戴黎明;孙耀等.印尼附近海域地震海啸发生的构造背景综述.海洋学研究,2008,26(2):59-66.
    万玲,姚伯初,吴能友等.南海西部海域新生代地质构造.海洋地质与第四纪地质,2005,25(2):45-52.
    汪品先,赵泉鸿,剪知洛.南海三千万年的深海记录.科学通报,2003,48(21):2206-2216.
    王大伟,吴时国,董冬冬等.琼东南盆地第四纪块体搬运体系的地震特征.海洋地质与第四纪地质,2009,29(3):69-74.
    王大伟,吴时国,吕福亮等.南海深水块体搬运沉积体系及其油气勘探意义.中国石油大学学报(自然科学版),2011,35(5):14-19.
    王海荣,王英民,邱燕等.南海北部陆坡的地貌形态及控制因素.海洋学报,200830(2):70-80.
    王建锋.区域斜坡不稳定空间预测.地球科学,1999,24(1):105-110.
    吴华,邹德永,于守平.海域天然气水合物的形成及其对钻井工程的影响.石油勘探技术,2007,35(3):91-93.
    吴时国,陈珊珊,王志君等.大陆边缘深水区海底滑坡及其不稳定性风险评估.现代地质,2008,22(3):430-437.
    吴时国,秦蕴珊.南海北部陆坡深水沉积体系研究.沉积学报,2009,27(5):922-930.
    吴时国,姚伯初等.天然气水合物赋存的地质构造分析与资源评价.北京,科学出版社,2008.
    吴世敏,周蒂,刘海龄.南沙地块构造格局及其演化特征.大地构造与成矿学,2004,28(1):23-28.
    姚伯初,万玲,刘振湖.南海海域新生代沉积盆地构造演化的动力学特征及其油气资源.地球科学,2004,29(5):543-549.
    姚伯初,万玲,吴能友.南海新生代构造演化及岩石圈三维结构特征,地质通报,2005,24(1):1-8.
    姚伯初.南海的天然气水合物矿藏.热点海洋学报,2001,20(2):20-29.
    姚永坚,姜玉坤,曾祥辉.南沙海域新生代构造运动特征.中国海上油气(地质),2002,16(2):113-119.
    张功成,刘震,米立军等.珠江口盆地-琼东南盆地深水区古近系沉积演化.沉积学报,2009,27(4):632-641.
    张功成,米立军,吴时国等.深水区——南海大陆边缘盆地油气勘探新领域.石油学报,2007,28(2):15-21.
    张光学,祝有海,徐华宁.非活动大陆边缘的天然气水合物及其成藏过程述评.地质论评,2003,49(2):181-187.
    朱佛宏,海底滑坡.海洋地质动态,2000,(3):5.
    朱伟林,张功成,杨少坤等.南海北部大陆边缘盆地天然气地质.北京:石油工业出版社,2007.
    邹和平.南海北部及其沿岸中、新生代壳幔相互作用与构造演化.大地构造与成矿学,2005(2),29(1):78-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700