用户名: 密码: 验证码:
浅埋房式采空区下近距离煤层长壁开采覆岩运动规律及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对神东煤田浅埋房式采空区下近距离煤层长壁开采地质生产条件,综合运用现场调研、数值计算、物理模拟、理论分析及现场试验的研究方法,对房式煤柱稳定性、顶板大面积来压机理及防治技术、房式采空区下近距离煤层开采覆岩运动规律及其控制技术等进行了系统研究,主要研究成果如下:
     (1)综合运用逐步破坏理论及突变理论对房式煤柱失稳机理进行了分析,建立了煤柱失稳的判别式。基于逐步破坏理论对房式残留煤柱稳定性进行了计算分析,判定了满足煤柱稳定性安全系数1.5以上的煤柱设计尺寸。采用突变理论建立了房式煤柱破坏失稳的尖点突变模型,得到房式煤柱发生突变的必要条件为0.33w     (2)建立了浅埋房式采空区下煤层开采覆岩运动结构模型,确定了支架合理工作阻力。基于弹性力学建立了固支梁及悬臂梁结构模型,并对顶板抗拉与抗剪屈服破坏进行了比较分析,理论计算与矿压监测相结合确定了顶板初次及周期来压步距。根据浅埋房式采空区下煤层开采覆岩运动特征,将“载荷层—老顶—房式煤柱—直接顶—支架”系统划分成“载荷层—老顶—房式煤柱”及“房式煤柱—直接顶—支架”两个关联系统,并求得支架合理支护阻力。根据直接顶结构特征进行力学平衡分析,得到了直接顶发生切冒的判据。
     (3)揭示了深孔预裂爆破强制放顶的机理,防止了顶板大面积来压。建立了大面积顶板来压飓风冲击模型,为因大面积冒顶形成的飓风而损坏综采设备、摧毁巷道设施等现象做出了合理解释。为防止顶板大面积来压,提出采取切眼深孔预裂爆破强制放顶技术,采用LS-DYNA3D程序建立了深孔预裂爆破强制放顶计算模型,在揭示爆破放顶的机理的同时,优化了主要爆破参数。现场采用深孔预裂爆破强制放顶技术取得了良好的效果。
     (4)提出了以合理控制采高及加快推进速度等措施为主的顶板控制技术,确保了浅埋房式采空区下近距离煤层安全高效开采。依据浅埋房式采空区下近距离煤层开采覆岩运动规律,提出了以合理控制采高、注砂充填采空区、加强支护管理及加快工作面推进速度为主的顶板控制技术体系,现场应用实现了浅埋房式采空区下近距离煤层安全高效开采。
According to the geological conditions of the longwall face mining in theshallow depth coal seam in proximity beneath a room mining goaf in the ShendongCoal Field, in situ survey, numerical simulation, physical simulation, theoreticalanalysis and field experiment were undertaken to study the stability of the roommining goaf residual coal pillars, the large area roof weighting mechanism and itscontrol technology, overlying strata movement laws and ground control of thelongwall face, the major achivements are as follows:
     (1) The instability mechanism of the room mining residual coal pillars wasuncovered by the integrate analysis of gradually damage theory and catastrophe theory,and the criterion of pillar instability was also established. The room mining residualcoal pillars instability was calculated with gradually damage theory, and the pillardesign size, which meet the request that safety factor greater than1.5, was judgedaccordingly. The cusp catastrophic model was established through catastrophe theory,and an essential condition to indicate pillar mutation was presented as0.33w     (2) The overlying strata movement structure model of the longwall face miningin the shallow depth seam beneath a roof mining goaf was set up, and the reasonablesupport working resistance was also confirmed. Based on the theory of ElasticMechanics, a clamped beam and a cantilever beam were built to analyze the roofweighting length, and the tensile yield and shear yield of the mian roof werecompared, then the first roof weighting length and the period weighting length werecalculated and monitored. According to the overlying strata movement characteristicsof the longwall face mining in the shallow depth coal seam in proximity beneath aroom mining goaf, the system of “Loading layer-Main roof-Room mining residualpillar-Immediate roof-Support” can be divided into two linking systems including“Loading layer-Main roof-Room mining residual pillar” and “Room mining residualpillar-Immediate roof-Support”, and then the reasonable support working resistancecan be achieved. Furthermore, the slice-caving criterion of the immediate roof wasrevealed through the mechanical equilibrium analysis of the immediate roof structure.
     (3) The mechanism of the deep-hole pre-split blasting for controlled roof cavingwas uncovered, and the application avoided the large area roof weighting accidents. Alarge area roof weighting wind blast model was established to explain the wind blastinduced fully mechanized equipment damage and roadway destroy. To prevent largearea roof weighting, a deep-hole pre-split blasting technology carried out at theopen-off cut for controlled roof caving was presented, the software of LS-DYNA3Dwas used to set up a simulation model, then the mechanism was revealed and themajor blasting parameters were also optimized. The field experiment indicated thatthis technology was successfully practiced for controlled roof caving.
     (4) The roof control technologies including control the reasonable mining heightand increase the mining speed properly, etc. were presented to enable the achievementof safe and highly-efficient mining in the shallow depth seam in proximity beneath aroom mining goaf. According to the overlying strata movement laws of the longwallface mining he shallow depth seam in proximity beneath a room mining goaf, the roofcontrol technologies including control reasonable mining height, sandfilling in theroom mining goaf, enhance the roof control management and increase the miningspeed properly were presented, and the in situ experiments enable the longwall facemining safely and efficiently.
引文
[1]黄庆享.浅埋煤层的矿压显现特征与浅埋煤层的定义[J].岩石力学与工程学报,2002,21(8):1174-1177.
    [2]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [3]杜润泉.神府煤田开发建设研究[M].西安:陕西科学技术出版社,1996,3-5.
    [4]叶青,吴元,张喜武,等.神东现代化矿区建设与生产技术[M].徐州:中国矿业大学出版社,2002.
    [5]国家煤炭工业网.2010年内蒙古煤炭产量7.82亿吨.http://www.coalchina.org.cn/page/info.jsp?id=44805(Available at2011.11.12).
    [6]钱鸣高,缪协兴,许家林.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [7]吴士良,秦骁.刀柱采煤法采空区下长壁采场顶板控制研究[J].山东科技大学学报(自然科学版),2000,19(4):102-104.
    [8]朱卫兵.浅埋近距离煤层重复采动关键层结构失稳机理研究[D].徐州:中国矿业大学博士学位论文,2010.
    [9]赵宏珠.浅埋采动煤层工作面矿压规律研究[J].矿山压力与顶板管理,1996,2:23-27.
    [10]窦凤金.浅埋房柱采空区下近距离煤层综采矿压规律研究[D].徐州:中国矿业大学硕士学位论文,2010.
    [11]屠世浩,窦凤金,万志军,等.浅埋房柱式采空区下近距离煤层综采顶板控制技术[J].煤炭学报,2011,36(3):366-370.
    [12] Hebblewhite, B.K.浅部长壁法开采效果的地质技术评价[R].煤炭科研参考资料,1985.
    [13] Holla, L., Buizen, M. Stata movement due to shallow longwall mining and the effect onground permeability[J]. Aus IMM Bullefin and Proceedings,1990,295(1).
    [14]赵宏珠.印度浅埋深难垮顶板煤层地面爆破综采研究[J].矿山压力与顶板管理,1999(3):57-60.
    [15] Sniffin, M.J., Beckett, J. Sydney Basin-Hunter Coalfield, in geology of Australian coalbasins[J]. Geological Society of Australia Coal Geology Group,1995(S1):177-196.
    [16] Hutton, A. Geological setting of Australian coal deposits[A]. Monograph12-AustralasianCoal Mining Practice, p.40-84.
    [17]刘听成.采场矿山压力讲义[M].西安:西安矿业学院,1962.
    [18]任德惠.缓斜煤层采场压力分布规律与合理巷道布置[M].北京:煤炭工业出版社,1982.
    [19] Bodrac, B.B. Rock pressure features of Moscow Suburb Coal-field[J]. Coal,1981(2):38-49.
    [20] Smith, G.J., Rosenbaum, M.S. Recent underground investigations of abandoned chalk mineworkings beneath Norwich City, Norfolk [J]. Engineering Geology,1993,36(1-2):67-78.
    [21] Miller, R.D., Steeples, D.W., Schulte, L. Shallow seismic reflection study of salt dissolutionwell field near Hutchinson, KS [J]. International Journal of Rock Mechanics and MiningSciences&Geomechanics Abstracts,1994,31(2): A88.
    [22] Reid, B. Longwall mining in South Africa [J]. Coal,1994,99(10):82-83.
    [23] Singh, R.P., Yadav, R.N. Subsidence due to coal mining in India[C]. In: Proceeding of theFifth International Symposium on Land Subsidence. IAHS Publication, No.234,1995.
    [24] Singh, R., Singh, T.N., Dhar, B.B. Coal pillar loading in shallow conditions[J]. InternationalJournal of Rock Mechanics and Mining Sciences and Geomechanics Abstract.1996,33(8):757-768.
    [25]西安矿业学院矿山压力研究所.大柳塔煤矿1203工作面矿压观测研究报告[J].陕西煤炭技术.1994,3:33-39.
    [26]侯忠杰.厚砂下煤层覆岩破坏机理探讨[J].矿山压力与顶板管理,1995,37(1):37-40.
    [27]侯忠杰.浅埋煤层关键层研究[J].煤炭学报,1999,24(4):359-363.
    [28]侯忠杰.地表厚松散层浅埋煤层组合关键层稳定性分析[J].煤炭学报,2000,25(2):127-131.
    [29]侯忠杰,谢胜华,张杰.地表厚土层浅埋煤层开采模拟实验研究[J].西安科技学院学报,2003,23(4):67-69.
    [30]侯忠杰.组合关键层理论的应用研究及参数确定[J].煤炭学报,2001,26(5):611-615.
    [31]侯忠杰.对浅埋煤层“短砌体梁"、“台阶岩梁"结构与砌体梁理论的商榷[J].煤炭学报,2008,33(11):1201-1204.
    [32]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000.
    [33]黄庆享.厚沙土层在顶板关键层上的载荷传递因子研究[J].岩土工程学报,1999,24(6):672-676.
    [34]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压结构分析[J].煤炭学报,27(6):581-585.
    [35]许家林,朱卫兵,王晓振,等.浅埋煤层覆岩关键层结构分类[J].煤炭学报,2009,37(7):865-870.
    [36]伊茂森.神东矿区浅埋煤层关键层理论及其应用研究[D].徐州:中国矿业大学博士学位论文,2008.
    [37]朱卫兵,许家林,施喜书,等.覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J].岩石力学与工程学报,2009,28(2):403-409.
    [38]张志强.沟谷地形对浅埋煤层工作面动载矿压的影响规律研究[D].徐州:中国矿业大学博士学位论文,2011.
    [39]杨治林,余学义,郭何明,等.浅埋煤层长壁开采顶板岩层灾害机理研究[J].岩土工程学报,2007,29(12):1763-1766.
    [40]孙远进.薄基岩浅埋煤层覆岩破坏移动规律研究[J].安徽建筑工业学院学报(自然科学版),2009,17(2):66-69.
    [41]蔡美峰,李玉民,来兴平,等.大柳塔煤矿采空区动力失稳机理[J].辽宁工程技术大学学报(自然科学版),2009,28(1):1-4.
    [42]张聚国,栗献中.昌汉沟煤矿浅埋深煤层开采地表移动变形规律研究[J].煤炭工程,2010,11:74-76.
    [43]马立强.沙基型浅埋煤层采动覆岩导水通道分布特征及其控制研究[D].徐州:中国矿业大学博士学位论文,2007.
    [44]刘玉德.沙基型浅埋煤层保水开采技术及其适用条件分类[D].徐州:中国矿业大学博士学位论文,2008.
    [45] Liu, Y.D., Zhang, D.S., Fan, G.W., et al. Applicable conditions for a classification system ofaquifer-protective mining in hallow coal seams[J]. Mining Science and Technology (China),2011,21:381-387.
    [46]王旭锋.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[D].徐州:中国矿业大学博士学位论文,2009.
    [47]范钢伟.浅埋煤层开采与脆弱生态保护相互响应机理与工程实践[D].徐州:中国矿业大学博士学位论文,2011.
    [48]范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    [49]翟德元,刘学增.房柱式开采矿房跨度的可靠度设计[J].山东矿业学院学报,1997,16(3):243-247.
    [50]翟德元.美国房柱式开采技术[M].北京:煤炭工业出版社.1996.
    [51] Salamon, M.D.G., Munro, A.H. A study of the strength of coal pillars [R]. Transvaal andOrange Free State Chamber of Mines, Research Report No.71/66, August1966.
    [52] Salamon, M.D.G., Munro, A.H. A study of the strength of coal pillars [J]. Jounal of SouthernAfrican Institute of Mining and Metallurgy,1967,68:55-67.
    [53] Galvin, J.M., Hebblewhite, B.K. Research Release No.1, UNSW pillar design procedure.Strata Control for Coal Mine Design[R]. School of Mines, The University of New South Wales,1995.
    [54] Galvin, J.M., Hebblewhite, B.K., Salamon, M.D.G., et al. Establishing the strength ofrectangular and irregular pillars[R]. ACARP Research Project No. C5024,1998.
    [55] Kumar, P.S., Kumar, D.S. Logistic regression model for prediction of roof fall risks in bordand pillar workings in coal mines: An approach [J]. Safety Science,2009,47(1):88-96.
    [56] Ashok, Jaiswal., Shrivastva, B.K. Stability analysis of the proposed hybrid method of partialextraction for underground coal mining [J]. International Journal of Rock Mechanics andMining Sciences,2012,(52):103-111.
    [57] Wilson, A.H. A hypothesis concerning pillar stability [J]. Mining Engineering,1972,131.
    [58]王旭春,黄福昌,张怀新,等.A.H.威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608.
    [59]刘贵,张华兴,徐乃忠.深部厚煤层条带开采煤柱的稳定性[J].煤炭学报,2008,33(10):1086-1091.
    [60]郭文兵,邓喀中,邹友峰.条带煤柱的突变破坏失稳理论研究[J].中国矿业大学学报,2005,34(1):77-81.
    [61]郭文兵,邓喀中,邹友峰.走向条带煤柱破坏失稳的尖点突变模型[J].岩石力学与工程学报,2004,23(12):1996-2000.
    [62]邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J].采矿与安全工程学报,2006,23(2):141-145.
    [63]鲍凤其.房柱式开采煤柱稳定性数值模拟研究[J].煤矿开采,2008,13(6):17-19.
    [64]刘文涛,许家林,朱卫兵,等.浅埋煤层走向煤柱对支承压力影响的数值模拟研究[J].中国煤炭,2010,36(2):43-45.
    [65]郑百生,谢文兵,窦林名,等.不规则煤柱作用下工作面开采的三维数值模拟[J].煤炭学报,2006,31(2):137-140.
    [66]侯忠杰,付二军.长壁间隔式开采方法研究及其应用[J].西安科技大学学报,2009,29(1):1-6.
    [67]刘彩平,王金安,侯志鹰.房柱式开采煤柱系统失效的模糊理论研究[J].矿业研究与开发,2008,28(1):8-12.
    [68]刘纯贵.马脊梁煤矿浅埋煤层开采覆岩活动规律的相似模拟[J].煤炭学报,2011,36(1):7-11.
    [69]孟达,王家臣,王进学.房柱式开采上覆岩层破坏与垮落机理[J].煤炭学报,2007,32(6):577-580.
    [70]宋选民.活井旺采采空区飓风灾害的理论预测与防灾工程设计[J].太原理工大学学报,2006,37(1):35-37.
    [71]石洪涛,王鲜霞.近距离煤层刀柱采空区下长壁采场顶板结构稳定性研究[J].山西煤炭,2008,28(3):4-6.
    [72]胡仲国,杨金顺,彭小元.极近距离煤层刀柱采空区走向长壁开采的探讨[J].煤炭科学技术,2000,28(4):43-46.
    [73]黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁"结构模型研究[J].岩土力学,2009,30(9):2722-2726.
    [74]范钢伟,张东升,卢鑫,等.浅埋煤层采动导水裂隙动态演化规律模拟分析[J].煤炭科学技术,2008,36(5):18-19.
    [75] Frith, R., McKavanagh, B. Optimization of longwall mining layouts under massive strataconditions and management of the associated safety and ground control problems [R]. End ofGrant Report, Project C7019,2000.
    [76] Frith, R. Development and demonstration of a longwall monitoring system for operationaldecision-making[R]. End of Grant Report, ACARP Project C4017,1996.
    [77] Frith, R., Creech, M. Face width optimisation in both longwall and shortwall cavingenvironments[R]. Final Report, ACARP Project C5015,1997.
    [78]黄庆享,胡火明,刘玉卫,等.浅埋煤层工作面液压支架工作阻力的确定[J].采矿与安全工程学报,2009,26(3):304-307.
    [79]杨治林.浅埋煤层长壁开采顶板岩层的不稳定性态[J].煤炭学报,2008,33(12):1341-1345.
    [80]张杰,杨相海.采场覆岩的流固耦合损伤分析[J].西安科技大学学报,2010,30(2):141-144.
    [81]张杰.采高对浅埋煤层老顶岩层破断距的影响[J].辽宁工程技术大学学报(自然科学版),2009,28(2):161-164.
    [82]任艳芳,齐庆新.浅埋煤层长壁开采围岩应力场特征研究[J].煤炭学报,2011,36(10):1612-1618.
    [83]任艳芳,刘江.浅埋深长壁工作面覆岩结构及支架支护阻力研究[J].煤矿开采,2010,15(5):82-85.
    [84]方新秋,郝宪杰,兰奕文.坚硬薄基岩浅埋煤层合理强制放顶距的确定[J].岩石力学与工程学报,2010,29(2):388-393.
    [85]刘江,任艳芳,齐庆新.长壁工作面顶板周期下沉量的理论分析与实测研究[J].辽宁工程技术大学(自然科学版),2010,29(6):1046-1049.
    [86]朱涛.极近距离煤层刀柱采空区下长壁开采矿山压力及其控制研究[D].太原:太原理工大学硕士学位论文,2007.
    [87]解兴智.浅埋煤层房柱式采空区下长壁开采矿压显现特征[J].煤炭学报,2012,37(6):898-902.
    [88] Zhang, D.S., Fan, G.W., Liu, Y.D., et al. Field trials of aquifer protection in longwall miningof shallow coal seams in China. International Journal of Rock Mechanics and Mining Sciences,2010,(47):908-914.
    [89]内蒙古自治区煤矿设计研究院.石圪台煤矿改扩建初步设计修改安全专篇说明书
    [R].2008.
    [90]于健,王永申.房柱式采煤法采空区危害及其对策[J].水力采煤与管道运输,2009,2:18-19.
    [91]徐永圻,王悦汉.短壁开采技术[M].徐州:中国矿业学院出版社,1987.
    [92]徐永圻.采矿学[M].徐州:中国矿业大学出版社,2003.
    [93]杨相海.榆神府矿区小煤矿长壁布置刚性隔离煤柱房柱式开采研究[D].西安:西安科技大学硕士学位论文,2006.
    [94]彭小沾,崔希民,李春意,等.陕北浅煤层房柱式保水开采设计与实践.采矿与安全工程学报,2008,25(3):301-304.
    [95]彭小沾,崔希民,王家臣,等.基于Voronoi图的不规则煤柱稳定性分析[J].煤炭学报,2008,33(9):966-970.
    [96] Martin, C.D., Maybee, W.G. The strength of hard-rock pillar[J].International Journal of RockMechanics and Mining Sciences,2000,(37):1239-1246.
    [97] Ma, H.T., Wang, J.A., Wang, Y.H. Study on mechanics and domino effect of large-scale goafcave-in[J]. Safety Science,2012,(50):689-694.
    [98]马海涛.“11.6”特别重大坍塌事故矿区采场稳定性三维数值模拟分析[J].中国安全生产科学技术,2007,3(6):68-72.
    [99]贺广零,黎都春,翟志文.采空区煤柱—顶板系统失稳的力学分析[J].煤炭学报,2007,32(9):897-901.
    [100] Qin, S.Q., Wang, S.J., Long, H., et al. A new approach to estimating geo-stresses fromlaboratory kaiser effect measurement[J]. International Journal of Rock Mechanics and MiningScience,1999,36:1073-1077.
    [101]窦林名,邹喜正,曹胜根,等.煤矿围岩控制[M].徐州:中国矿业大学出版社,2010.
    [102]中华人民共和国国家标准.煤和岩石物理力学性质测定方法[S].北京:中国标准出版社,GB/T23561.9-2009.
    [103]靳钟铭,张惠轩,康天合.顶板大面积来压机理研究[J].山西煤炭,1994,6:14-17.
    [104] Singh, R., Singh, T.N., Dhar, B.B. Coal pillar loading in shallow mining conditions[J].International Journal of Rock mechanics and Mining Sciences&Geomechanics Abstracts,1996,33(8):757-768.
    [105] Bieniawski, Z.T. In situ large scale testing of coal[C]. In Situ Investigations in Soils andRocks, British Geotechnical Society,1969,67-74.
    [106] Bieniawski, Z.T. In situ strength and deformation characteristics of coal[J]. EngineeringGeology,1968,2(5):325-340.
    [107]谢明荣,林东才.矿压测控技术[M],徐州:中国矿业大学出版社,1997.
    [108]张绪言.大采高回采巷道围岩控制技术研究[D].太原:太原理工大学博士学位论文,2010.
    [109]谢和平,段法兵,周宏伟,等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998,7(5):37-41.
    [110] Thom, R. Structural stability and morphogenesis[M]. Advanced Book Program,1975.
    [111]淩复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [112]张勇,潘岳,王志强.突变理论在岩体系统动力失稳中的应用[M].北京:科学出版社,2008.
    [113]刘大鹏,尤晓暐.土力学[M].北京:清华大学出版社,2005.
    [114]徐芝纶.弹性力学第四版[M].北京:高等教育出版社,2006.
    [115]张绪言,张百胜,康立勋,等.煤柱集中载荷特征及其对巷道围岩应力的影响[J].矿业安全与环保,2009,36(5):6-8.
    [116]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [117]韩文坝,蔡冰清,韩晓东.应力应矩弹性变形能-新概念弹性理论(9).北京:教育部中国科技论文在线,2006,7:8.
    [118]徐秉业,沈新普,崔振山.固体力学[M].北京:中国环境科学出版社,2003.
    [119] Boreek, M., Chudek, M.(Poland).于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985.
    [120]窦林名,何学秋.冲击矿压防治理论与技术[M]徐州:中国矿业大学出版社,2001,10.
    [121]赵本均.冲击地压及其防治[M].北京:煤炭工业出版社,1995.
    [122] Yang, Z.L. Stability of nearly horizontal roof strata in shallow seam longwall mining[J].International Journal of Rock Mechanics and Mining Sciences,2010,(47):672-677.
    [123]钱鸣高,缪协兴,何富连.采场支架与围岩耦合作用机理研究[J].煤炭学报,1996,21(1):40-44.
    [124]刘长友,钱鸣高,曹胜根,等.采场直接顶的结构力学特性及其刚度[J].中国矿业大学学报,1997,26(2):20-23.
    [125]黄庆享,石平五,钱鸣高.老顶岩块端角摩擦系数和挤压系数实验研究[J].岩土力学,2000,21(1):60-63.
    [126]刘鸿文.材料力学I[M].北京:高等教育出版社,2007.
    [127] Cundall, P.A. A computer model for simulating progressive large scale movements in blockyrock systems[C], in Proceedings of the International Society of Rock Mechanics (Nancy,France),1971,1(II-8):11-18.
    [128] Cundall, P.A., Strack, O.D.L. A discrete numerical model for granular assemblies[J].Geotechnique,1979,29(1):47-65.
    [129] Kaiser, P.K, Martin, C.D, Sharp, J., et al. Underground works in hard rock tunnelling andmining[R]. Melbourne, Australia: Technomic Publishing Co.,2000,1:841-926.
    [130]朱焕春,Brummer Richard,Andrieux Patrick.节理岩体数值计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报,2004,23(20):3444-3449.
    [131]朱焕春,Patrick A,钟辉亚.节理岩体数值计算方法及其应用(二):工程应用[J].岩石力学与工程学报,2005,24(1):89-96.
    [132] Itasca Consulting Group Inc.3DEC theory and background, three-dimensional distinctelement code: user's manual(Version4.1)[R]. Minneapolis:Itasca Consulting Group Inc.,2007.
    [133]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [134]顾大钊.相似材料和相似模型[M].徐州:中国矿业大学出版社,1995.
    [135]张羽强,黄庆享,严茂荣.采矿工程相似材料模拟技术的发展及问题[J].煤炭技术,2008,27(1):1-3.
    [136]南华,周英.相似模拟材料容重对强度的影响[J].矿业研究与开发,2007,27(3):12-13.
    [137]熊仁钦.顶板大面积来压破坏机理的研究[J].煤炭学报,1995,20(S1):38-41.
    [138]李田军,石奎.工程流体力学[M].北京:化学工业出版社,2009.
    [139]陈荣华,钱呜高,缪协兴.注水软化法控制厚硬关键层采场来压数值模拟[J].岩石力学与工程学报,2005,24(13):2266-2271.
    [140]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆炸与冲击,2000,20(3):247-252.
    [141]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116.
    [142]李春睿,康立军,齐庆新,等.深孔爆破数值模拟及其在煤矿顶板弱化中的应用[J].煤炭学报,2009,34(12):1632-1636.
    [143] Coates, D.F.Dynamic Rock Mechanics[M].Seattle: Rock Mechanics Principles Press,1970.
    [144]宗琦.爆生气体的准静态破岩特性[J].岩石力学,1997,18(2):73-78.
    [145] Hagan, T.N.Rock breakage by explosives[A].Proceedings of the National Symposium onRock Fragmentation[C].Adelaide,1973:1-17.
    [146]周传波,何晓光,郭廖武,等.岩石深孔爆破技术新进展[M].武汉:中国地质大学出版社,2004.
    [147]穆朝民,齐娟.含瓦斯煤在爆炸荷载作用下的力学特性[J].煤炭学报,2012,37(2):268-273.
    [148] Dcik Richard, A. Fletcher Larry, R.D., Andrea Dennis, V. Explosives and blastingprocedures manual[M]. Washington D.C.: University Press of the Pacific,1983.
    [149]戴俊.柱状装药爆破岩石压碎圈与裂隙圈计算[J].辽宁工程技术大学学报(自然科学版),2001,20(2):144-147.
    [150]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [151] Livermore Software Technology Corporation. LS-DYNA Keyword User’s Manual[R]. USA,Livermore, California. LSTC,2003.
    [152]尚晓江,苏建宇,王化锋,等.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2008.
    [153] Lee, E.L., Tarver, C.M. Phenomenological model of shock initiation in heterogeneousexplosives[J]. Physics of Fluids,1980.
    [154] Yang, R., Bawdens, W.F., Katsabaniss, P.D. A new constitutive model for blast damage[J].International Journal of Rock Mechanics and Mining Sciences,1996,33(3):245-254.
    [155] Li, H.B., Xia, X., Li, J.C., et al. Rock damage control in bedrock blasting excavation for anuclear power plant[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48:210–218.
    [156]夏祥,石永强,李海波,等.岩体单孔及群孔齐发爆破爆炸荷载数值分析[J].岩石力学与工程学报,2007,26(S1):3390-3396.
    [157]姜鹏飞,唐德高,龙源.不耦合装药爆破对硬岩应力场影响的数值分析[J].岩土力学,2009,30(1):275-279.
    [158]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2011.
    [159]鹿志发.浅埋深煤层顶板力学结构与支架适应性研究[D].北京:煤炭科学研究总院博士学位论文,2007.
    [160]余学义,黄森林.浅埋煤层覆岩切落裂缝破坏及控制方法分析[J].煤田地质与勘探,2006,34(2):18-21.
    [161]谢广祥,常聚才,华心祝.开采速度对综放面围岩力学特征影响研究[J].岩土工程学报,2007,29(7):963-967.
    [162]王金安,焦申华,谢广祥.综放工作面开采速率对围岩应力环境影响的研究[J].岩石力学与工程学报,2006,25(6):1118-1124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700