用户名: 密码: 验证码:
球形阴极数控电解加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,由难加工材料制成的复杂型面的零件广泛应用于模具、航空、船舶、汽车、医疗机械等行业中。电解加工技术是利用金属在电解液中发生阳极溶解的原理将零件加工成形的,因工具阴极无损耗、无宏观切削力、适宜加工各种难切削材料制成的零件、表面质量好等优点,在制造业中获得了大量的应用。数控电解加工技术是特种加工领域的研究热点之一,其兼顾了数控技术和电解加工技术的优点,通过程序控制简单形状的阴极相对工件的运动轨迹代替复杂阴极的设计,避免了复杂成形阴极的设计与制造,提高了加工精度和表面质量,广泛应用于难加工材料制成的零件,如叶片、模具等。目前,国内外在数控电解加工技术方面的研究已取得了不小的进展,但在加工精度方面尚不能令大满意。国内的研究主要侧重于利用直线刃阴极对曲面进行粗、精加工,而国外尚未见到对利用球形阴极数控电解加工型面的技术应用于实际生产的报道。考虑到球形阴极的加工部位为球面,可通过数控系统控制阴极相对工件的运动轨迹来加工任意曲面,本文开展适合于一般复杂型面加工的球形阴极数控电解加工关键技术研究,该技术对难加工材料制成零件上复杂型面的加工具有重要的应用意义。
     本文的主要内容包括以下几个方面:
     1.提出了数控电解加工装置的总体设计方案;通过在一台立铣床的机械本体上设计具有了三个平动轴、一个数控回转轴和一个摆动轴的试验装置,并对装置的关键结构进行了设计计算;设计了性能稳定可靠的球形内喷式旋转阴极和电解液系统。以PMAC (Programmable Multi-Axis Controller)为控制核心开发了基于Visual C++6.0软件平台的数控电解加工机床控制系统软件,该软件具有良好的大际界面,具有初始化、参数设置、手动控制、自动加工、状态显示、模拟量采集等功能,满足了数控电解加工对控制系统的要求,为工艺试验研究的顺利进行奠定了基础。
     2.基于计算流体动力学理论,以球形内喷式阴极的电解液流道为研究对象进行电解加工流场的数值模拟研究,建立了电解加工间隙内流场的数值计算模型,分别对流场模型的二维场和三维旋转场进行了数值模拟研究。对初始设计方案的电解液流场进行二维场的数值模拟研究,根据仿真结果得到了流场存在加工间隙内流场存在电解液流速过低、直径收缩处和球面出液口流速变化剧烈的缺陷,考虑在不同初始条件设置下的流场模型,并对比分析得到的仿真结果,表明流场存在同样的缺陷,为解决流场的缺陷,进行阴极的改进设计,对改进设计的方案进行二维场的数值模拟研究,得出的结论包括:1)在阴极的球面中心处增加出液口可解决球面出液口处流速变化剧烈和加工间隙内电解液流速过低的问题;2)将阴极的阶梯形腔改进为锥形腔可解决直径收缩处流速变化剧烈的问题;3)选择了最优设计方案。在二维数值模拟的基础上,对初始方案的电解液流场进行三维旋转场的数值模拟研究,通过分析仿真结果得到了流场存在模型与工件接触表面中心处电解液流速过低、模型剖面的直径收缩处和球面的出液口处流速变化剧烈的缺陷,考虑在不同初始条件设置下的流场模型,并对比分析得到的仿真结果,表明流场存在同样的缺陷,对改进设计的方案进行三维旋转场的数值模拟研究,仿真结果表明二维数值模拟和三维数值模拟的结论一致,均可用于球形阴极电解加工流场的改进设计和特性分析,但三维数值模拟的结果更准确。
     3.基于流场数值模拟和阴极改进设计的结果,采用四种方案的阴极以表面粗糙度和切削深度为指标选择工作电压、初始加工间隙、电解液压力、阴极转速、阴极进给速度为主要工艺参数分别进行正交试验,通过对比试验结果,得到采用最优设计方案的阴极加工效果相对最好,验证了流场仿真的准确性,表明将计算流体动力学理论用于球形阴极数控电解加工流场的仿真是可行的,且可以作为理论用于指导阴极的改进设计;进行了球形阴极数控电解加工的单因素工艺试验,得到了单个工艺参数对表面粗糙度和切削深度的影响曲线,总结了工艺规律,为该技术的实际应用奠定了基础。
     4.基于电解加工的基础理论,开展了球形阴极数控电解加工成形规律的研究,建立了球形阴极理想加工过程的数学模型,通过MATLAB求解得到了不同工艺参数下加工间隙的变化曲线;提出了基于有限元法的电解加工过程模拟的思路和方法,在ANSYS中建立球形阴极数控电解加工过程的二维电场模型,进行求解计算,得到工件阳极表面不同时刻的电流密度分布和型面变化形状,以过程模拟中的工艺参数进行工艺试验,检测加工型面的尺寸值,并与理论模拟值相比较,试验结果表明,该方法可以满足工程计算的要求,为进一步开展球形阴极数控电解加工过程的研究提供方法和理论依据;在上述分析的基础上,将该理论用于阴极在运动状态下加工间隙内电场的分布研究,得到了工件型面轮廓的变化曲线,分析了加工间隙的变化情况,这对评定一定工艺条件下电解加工工件型面的预测具有重要的意义;通过对比试验结果和计算结果验证了有限元求解模型的准确性,为数控电解加工技术的实际应用奠定了基础。
     5.分别进行了球面、圆弧面和叶片型面的加工试验,通过对加工型面的检测数据表明加工的型面基本满足了设计要求,本试验装置可进行曲面的多轴联动电解加工。试验过程中,通过对机床的机械本体、控制系统等各方面进行反复调整、改善,积累了丰富的加工经验,但也遇到了很多阻碍试验顺利进行的问题,需要在今后的研究中不断的解决和完善。
Nowdays parts with complex surface and difficult-to-machine materials are widely used in many fields such as die industry, aviation, and shipbuilding, automobile manufacturing industry, medical devices, and so on. Electrochemical machining (ECM) is an anodic dissolution process to machine workpiece in flowing electrolyte where the shape of cathode (as tool) is copied onto the workpiece (as anode). It has many advantages over traditional machining such as its application regardless of material hardness and strength, no mechanical cutting force, no tool wear, and good surface quality, so ECM is a widely-employed unconventional machining method in manufacturing industry. Numerical control electrochemical machining (NC-ECM) is one of the hot research areas in nontraditional machining, which uses a universal tool-electrode with a simple shape to move along the designed path to obtain the required shapes, and combines the technical characteristics of CNC machining and electrochemical machining. This process not only has the advantage of eliminating the expensive design and manufacture cost for electrodes with complicated shapes, but also has the advantage of increasing machining accuracy and surface quality. NC-ECM is an effective method for machining parts with difficult-to-cut materials and complex geometry, for example, turbine blades, engine casting, dies and molds. The interiorly research focuses on roughing and finishing surface with the linear edge cathode, and the technology using spherical cathode machining surface in actual production haven't been seen in foreign research. Taking into account the spherical processing parts of spherical cathode, the cathode trajectory relative to the workpiece can be controlled by CNC system to machine any surface, so the key technology research of NC-ECM in machining complex surface with spherical cathode is carried out. This technology has important application value on machining complex surface of parts with difficult-to-cut materials, the main contents as follows:
     1. The overall design proposal of NC-ECM machine tool is carried out.An ordinary milling machine is transformed with three parallel movement axis and one revolving axis and one oscillating axis, and the calculations are finished in order to design the key structure of machine tool. The inner spraying rotating spherical cathode and electrolyte system are developed and their performance is stabile and reliable to meet the experiment requirements of NC-ECM with spherical cathode. The control system of NC-ECM machine tool based on PMAC (Programmable Multi-Axis Controller) is developed by use of Visual C++6.0software. The software with good man-machine interface has functions such as initialization, parameter settings, manual control, automatic processing, status display, analog quantity collecting and so on. These functions meet the requirements of control system and the foundation is laid for the smooth process of experiments.
     2. Based on Computational Fluid Dynamics (CFD) method, the flow field of inner-spraying spherical cathode is used as research object and the research on numerical simulation of flow field is carried out. The numerical calculation model of flow field in the machining gap is established. Two-dimension (2-D) field and three-dimension (3-D) field of flow field model are simulated respectively. The2-D flow field simulation of initial option is carried out. According to the simulation result, there are some defects in the flow field, such as, the lower electrolyte velocity in the inter-electrode gap, the larger range of the velocity at the contraction of flow diameter and the outlet of spherical surface.The2-D flow model are established at the different initial conditions and the simulation results are achieved and analyzed, which show that there are the same defects in the flow field. In order to solve the field defects, the optimal designs of cathode are carried out and the2-D flow field of optimal options is simulated, conclusions as fellows:1) the defects that the larger range of the velocity at the outlet of spherical surface and the lower electrolyte velocity in the inter-electrode gap are solved by means of adding a hole to the center of the spherical surface;2) the defect that the larger range of the velocity at the contraction of flow diameter is solve by means of replace the ladder-shaped cavity with the cross-section of the cone-shaped cavity of the cathode;3) the optimum design is obtained. The3D flow field simulation of initial option is carried out based on the2D flow field simulation. According to the simulation result, there are some defects in the flow field, such as, the lower electrolyte velocity at center of the machining area, the larger range of the velocity at the diameter contraction of the3D model profile and the outlet of spherical surface. The3-D flow model are established at the different initial conditions and the simulation results are achieved and analyzed, which show that there are the same defects in the flow field. In order to solve the field defects, the3-D flow field simulation of optimal options is carried out and the results show that the conclusions obtained separately from2-D and3-D numerical simulation make no difference. It is indicated that both2-D and3-D numerical simulation can used to optimize cathode designs and analyze flow field characteristics, but the3-D numerical simulation results are more accurate.
     3. Based on the simulation results of flow field and the optimal design of cathode, four kinds of cathode are used respectively to carry the orthogonal test out. The working voltage, the electrolyte pressure, the initial inter-electrode gap, the cathode rotate-speed, the cathode feed rate are chosen as the technological parameters. The surface roughness and the cutting depth are chosen as the technological indicators. According to the comparisons of experiment results, the machining effects of option three are the best relatively and the numerical simulations are consistent with the experiment results. It is indicated that the computational fluid dynamics (CFD) method can be applied to simulate the flow field, and the optimization design of the cathode can be guided according to the results of simulation. According to the orthogonal test, the experiments are carried out and the curves that the single technological parameter influences on surface roughness and cutting depth are obtained. The technological laws of NC-ECM with spherical cathode are summarized.
     4. Based on the basic theory of electrochemical machining, the research on shaping law of NC-ECM with spherical cathode is carried out. The mathematical model of the ideal machining process is established and solved by MATLAB, and the relation curves between different technological parameters and the variation of inter-electrode gap are obtained. In order to solve the difficulty in analyzing the shaping law of NC-ECM with spherical cathode, the method and the thinking of processing simulation are presented based on the finite element method (FEM). The two-dimensional analysis model of the electric field with spherical cathode built in ANSYS software is solved. The current density distribution and surface shape in different time on the anode are obtained. The experiments based on the simulation parameters are carried out, and the dimensions of the machined surface are measured, which are compared with the theoretical values. It is indicated that the simulation method meets the accuracy of the engineering calculations. The method and theory for further in-depth research on the process simulation in NC-ECM with spherical cathode are provided. Based on the above analysis, this method is used to solve the current density distribution in the case of cathode under motion state. The variation curve of workpiece contour is achieved. This method is of great significance for the prediction of workpiece surface under certain technological conditions in NC-ECM. The FEM model is verified by comparisons between experiment results and calculation results. The foundation is laid for the practical application of this technology.
     5. The spherical surface, the circular-arc surface and the blade surface are machined and measured respectively. It is showed that these surfaces basically meet the design requirements and the process of electrochemical machining surface with multi-axis linkage can be carried out on this machine tool. The repeated adjustment and improvement are carried out on machine tool, control system and other aspects in the experiment. The problems that impede the experiment will be solved continually in the further research.
引文
[1]徐家文,云乃彰,王建业,等.电化学加工技术——原理工艺及应用[M].北京:国防工业出版社,2008,6
    [2]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001,1
    [3]康敏.整体叶轮的精密展成电解加工技术研究[D].南京:南京航空航天大学,2003,5
    [4]陈远龙.电解加工工艺参数数据库及电解加工基本工艺规律研究[D].合肥:合肥工业大学,2000,9
    [5]徐家文,王建业,田继安.21世纪初电解加工的发展和应用[J].电加工与模具,2001(6):1-5
    [6]皮利军.高效数控电解加工技术的基础研究[D].南京:南京航空航天大学,2007,3
    [7]张美丽.钛合金电解加工基础试验研究[D].南京:南京航空航天大学,2007,3
    [8]Kang Min, Xu Jiawen. Study on the shaping law of precision numerical controlled electrochemical contour evolution machining[J]. Key Engineering Materials,2008,375-376:72-76
    [9]T. masuzawa, T. Takawashi. Recent trends in EDM/ECM technologies in Japan [J]. Proceedings of the ISEM-12,1998 (12):1-15
    [10]K. P. Rajurkar, D. Zhu, J. A. McGeough, J. Kozak. New development of electrochemical machining [J]. Annals of CIRP,1999,48 (2):567-580
    [11]刘正埙.我国特种加工技术的回顾与展望[J].电加工与模具,1999(5):6-11
    [12]赵万生,王振龙,郭东明,赵福令,朱荻,黄因慧.国外特种加工技术的最新进展[J].电加工与模具,1999(5):12-19
    [13]康敏,徐家文.整体叶轮精密展成电解加工技术[J].农业机械学报,2006,7(7):208-210
    [14]康敏,徐家文.整体叶轮叶片型面的精密展成电解加工[J].现代制造工程,2002,(6):35-36
    [15]康敏,徐家文.精密展成电解加工整体叶轮的展成运动轨迹确定[J].中国机械工程,2006,17(4):346-349
    [16]朱荻,王明环,明平美等.微细电化学加工技术[J].纳米技术与精密工程,2005,3(2):151-155
    [17]王昆.微细电解线切割加工技术的基础研究[D].南京:南京航空航天大学,2007,11
    [18]朱荻,张朝阳,明平美.微细电化学加工技术的研究与发展[C].第十一届全国特种加工年会论文集,2005:46-54
    [19]H. S. Cho, K. J. Hemker, K. Lian, et al. Measured mechanical properties of LIGANi structures [J]. Sensors and Actuators A,2003,1 (103):59-63
    [20]Jan Peirs, Dominiek Reynaerts, Filip Verplaetsen, et al. A Microturbine Made by Micro-Electro-Discharge Machining [J]. The 16th European Conference on Solid-State Transducers,2002: 790-793
    [21]Frederic Gillot, Pascal Mognol, Benoit Furet. Dimensional accuracy studies of copper shells used for Electro-discharge machining eletrodes made with rapid prototyping and the electroforming process [J]. Journal of Materials Processing Technology,2005,159 (1):33-39
    [22]Bohm J, Schubert A, Otto T, et al. Micro-metalforming with silicon silicon dies[J]. Microsystem Technologies,2001,7 (4):191-196
    [23]王明环.微细电解加工实验研究[D].南京:南京航空航天大学,2007,1
    [24]V. Kirchner, L. Cagnon, R. Schuster. Electrochemical machining of stainless steel microelements with ultrashort voltage pulese [J]. Applied Physics Letters,2001,79 (11):1721-1723
    [25]F. B. He, W. Zhang, K. Nezu. A precision machining of gears:slow-scanning field controlled Electrochemical honing [J]. JSME International Journal Series C:Mechanical Systerms, Machine Elements and Manufacturing,2000,43 (2):486-491
    [26]B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid [J]. CIRP Annals-Manufacturing Technology, 2005,54 (1):191-194
    [27]Li Yong, Zheng Yunfei, Yang Guang, Peng Liangqiang. Localized electrochemical micromachining with gap control. Sensors and Actuators A:Physical,2003,108(1-3):144-148
    [28]李小海,王振龙,赵万生.微细电化学加工研究新进展[J].电加工与模具,2004(2):1-5
    [29]张朝阳.纳米脉冲电流微细电解加工技术研究[D].南京:南京航空航天大学,2007,1
    [30]J. Kozak, K. P. Rajurkar, Wei B. Modeling and analysis of pulse electrochemical machining(PECM) [J]. Journal of Engineeringfor Industry,1994,116 (3):316-323
    [31]K. P. Rajurkar, Wei B, J. Kozak. Monitoring inter electrode gap in pulse electrochemical machining [J]. Annals of the CIRP,1995,44 (1):177-180
    [32]J. Kozak. Thermal models of pulse electrochemical machining [J]. Bulletin of The Polish Academy of Sciences,2004,52 (4):313-320
    [33]Wang J Y, De Silva A, Yu Yanqing, et al. New approach to enhance the accuracy of ECM high-precision short pulses ECM (HSPECM) [J]. Journal of Materials Processing Technology, 2004,149:282-283
    [34]王建业,张永俊,余艳青,等.脉冲电解加工技术在精微加工领域中的新发展[J].中国机械工程,2007,18(1):114-119
    [35]李小海,王振龙,赵万生.高频窄脉冲电流微细电解加工[J].机械工程学报,2006,42(1):162-167
    [36]王建业.电解加工技术的新发展——高频窄脉冲电流电解加工[J].电加工与模具,1998(2):3741
    [37]J. Y. Wang, Yanqing Yu, J. A. McGeough, A. De Sliva. Experimental investigation for the Enhancement of Accuracy of Pulse Electrochemical Machining by Improvement of Pulse Power [J]. Proceedings of the ISEM-15,2007:369-373
    [38]赵万生,顾琳,康小明,等.从ISEM-XV看特种加工技术的最新进展[C].第十二届全国特种加工年会论文集,2007:1-15
    [39]Chikamori K. Possibilities of electrochemical micromachining [J]. International Journal of Japan Society for Precision Engineering,1998,32 (1):37-38
    [40]李志永,季画.电解加工在微细制造技术中的应用研究[J].机械设计与制造,2006(6):77-79
    [41]刘向蕾,朱荻,曾永彬,等.电解磨削复合加工精密扩孔研究[J].电加工与模具,2009(2):37-39
    [42]林允森,董世运,田欣利,等.激光熔覆硬韧材料齿面的电解磨削[J].中国表面工程,2009,22(2): 53-55
    [43]刘晋春,赵家齐,赵万生.特种加工[M].北京:机械工业出版社,2006,5
    [44]Phillips, R. E. ECG:Combining electrochemical attack and abrasion [J]. Manufacturing Engineering,1986:46-48
    [45]Tehrani. F. A., Atkinson. J. A Study of Pulsed Electrochemical Grinding [J]. Proceedings of the ISEM-11,1995:543-522
    [46]干为民,徐家文,刘延禄.数控展成电解磨削整体叶轮叶片型面的研究[J].中国机械工程,2003,14(1):24-26
    [47]干为民,徐家文.五轴联动数控展成电解磨削整体叶轮的控制方法[J].东南大学学报(自然 科学版),2002,32(2):228-231
    [48]干为民,徐家文.数控展成电解磨削加工的机理研究[J].电加工与模具,2005,(5):12-15
    [49]明平美,朱荻,徐正杨.电解研磨扩孔新技术研究[J].电加工与模具,2004,(5):52-55
    [50]R. N. Goswami, S. Mitra, S. Sarkar. Experimental investigation on electrochemical grinding(ECG) of alumina-aluminum interpenetrating phase composite [J]. The International Journal of Advanced Manufacturin Technology,2008,40 (3):729-741
    [51]金卫东.脆硬材料氮化硅陶瓷的ELID超精密磨削技术研究[D].天津:天津大学,2005,2
    [52]H. S. Lim. A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding [J]. International Journal of Machine Tools&Manufacture,2002,40 (8):935-943
    [53]Guan J. L., Fan J. W., Ma C. M., Yuan Z. J., Guo D. M. The application of ELID grinding technology on external presicion mirror surface [J]. Key Engineering Materials,2001,202-203: 419-422
    [54]王建业,罗干英.电解电火花复合加工的发展[J].电加工与模具,1997,(5):15-19
    [55]A. K. De Silva, J. A. Me GeoughLim. Hybrid electrodischarge-electrochemical process for Roughingand finishing dies and moulds [J]. Proceedings of the ISEM-12, Aachen,1998:397-406
    [56]V. Fascio, R. Wuthrich, H. Bleuler. Spark assisted chemical engraving in the light of electrochemistry [J]. Electrochimica Acta,2004,49 (22-23):3997-4003
    [57]仲继卉.电解电火花机械磨削复合加工新方法研究[D].泰安:山东科技大学,2006,5
    [58]仲继卉.电解电火花机械磨削复合加工中砂轮的在线修整及优化设计[J].机械科学与技术,2007,26(8):1042-1044
    [59]李红英.超声电解复合微细加工技术基础研究[D].南京:南京航空航天大学,2008,3
    [60]A. Ruszaj, S. Skoczypiec, J. Czekaj, et al. Surface micro and nanofinishing using pulse electrochemical machining process assisted by electro ultrasonic vibration [C]. Proceedings of the ISEM-15,2007:309-314
    [61]S. Skoczypiec. Numerical investigation on ultrasonically assisted electrochemical machining process(USECM)[C]. Proceedings of the ISEM-15,2007:309-314
    [62]李红英,云乃彰,朱永伟.超声电解复合微细加工硬质合金试验研究[J].航空制造技术,2009,(1): 78-82
    [63]朱永伟,王占和,云乃彰.超声电解复合微细加工装置与试验研究[J].机械科学与技术,2008,27(8):986-991
    [64]徐玉明.超声电解复合微细加工应用基础研究[D].扬州:扬州大学,2007,5
    [65]陈安骏.超声电解复合微细加l:在微器件制作中的基础研究[D].南京:南京航空航天大学,2005,3
    [66]沈健,朱树敏,陈心昭.定间隙间歇送进电解加工的工艺特性分析[J].中国机械工程,2001,12(6): 632-635
    [67]A. K. M. De Silva. H. S. J. Altena, J. A. McGeough. Precision ECM by process characteristic modelling [J]. Annals of the CIRP,2000,49 (1):151-155
    [68]A. K. M. De Silva, H. S. J. Altena. Accuracy improvements in ECM by prediction and control of the localization effects [J]. International Journal of Electrical Machining,2002, (7):25-30
    [69]A. K. M. De Silva, H. S. J. Altena, J. A. McGeough. Influence of electrolyte concentration on copying accuracy of Precision-ECM [J]. Annals of the CIRP,2003,52 (1):165-168
    [70]J. Kozak, H. M. Osman, L. Dabrowski. Theoretical and Experimental Investigation for Profile Electrolytic Machining with Rotating Electrode [J]. Proceeding of the 27th MTDR,1988:281-286
    [71]F. Zawistowski. New system of electrochemical form machine using universal rotating tools [J]. International Journal of Machine Tools & Manufacture,1990,30(3):475-483
    [72]J. Kozak, A. F. Budzynski, P. Domanowski. Computer simulation electrochemical shaping (ECM-CNC) using a universal tool electrode [J]. Journal of Materials Processing Technology, 1998,76(1-3):161-161
    [73]J. Kozak. Mathematical models for computer simulation of electrochemical machining process [J]. Journal of Materials Processing Technology,1998,76(1):170-175
    [74]J. Kozak, L. Dabrowski, K. Lubkowski, et al. CAE-ECM system for electrochemical technology of parts and tools[J]. Journal of Materials Processing Technology,2000,107(1):293-299
    [75]J. Kozak, Maria Chuchro, Adam Ruszay, et al. The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces [J]. Journal of Materials Processing Technology,2000,107(1):283-287
    [76]J. Kozak. Computer simulation system for electrochemical shaping [J]. Journal of Materials Processing Technology,2001,109(1-3):354-359
    [77]A. Ruszaj, M. Zybura-Skrabalak. The influence of process parameters on technological indicators of the electrochemical machining process with a non-profiled electrode [J]. ASME J. of Manufac-turing Science and Engineering, PED,1993,64:713-718
    [78]M. Zybura-Skrabalak, A. Ruszaj. The influence of eletrode surface geometrical structure on electrochemical [J]. Journal of Materials Processing Technology,2001,107(1):288-292
    [79]A. Ruszaj, M. Zybura-Skrabalak. The mathematical modeling of electrochemical machining with flat ended universal electrodes [J]. Journal of Materials Processing Technology,2001,109(3): 333-338
    [80]徐家文,唐亚新.数控展成电解加工的成形规律研究[J].机械工程学报,1994,30(6):28-33
    [81]张永俊,徐家文.展成电解加工的成形规律研究[J].广东工业大学学报,1995,12(6):86-90
    [82]唐亚新,徐家文.圆棒阴极展成电解加工间隙特性的研究[J].南京航空航天大学学报,1997,29(2):214-219
    [83]朱永伟,赵建社,徐家文.大扭曲度整体涡轮叶片展成电解加工成形规律及试验研究[J].中国机械工程,2006,17(17):1778-1783
    [84]康敏,徐家文,严德荣.整体叶轮叶片型面的展成电解精加工阴极设计[J].新技术新工艺,2004,(9):30-31
    [85]王福元,徐家文.变截面异形型腔电解加工阴极的制造方法[J].电加工与模具,2004,17(5):100-102
    [86]赵建社,徐家文,王福元,等.异形型腔数控电解加工阴极及运动轨迹设计[J].中国机械工程,2006,17(1):17-21
    [87]吴小康,徐家文.基于UG平台的数控电解加工工艺过程模拟[J].航空精密制造技术,2006,42(4): 30-33
    [88]赵建社,徐家文,王福元,等.整体构件数控电解加工数字化仿真技术[J].南京航空航天大学学报,2007,39(3):333-337
    [89]朱永伟,徐家文,胡平旺.数控展成电解加工整体叶轮的应用于研究[J].航空学报,2001,22(4): 376-378
    [90]康敏,赵建社,徐家文.矩形截面内喷式阴极展成电解加工平面的工艺试验[J].电加工与模具,2004,(5):21-24
    [91]朱永伟,徐家文,赵建社.大扭曲叶片整体涡轮盘电解加工关键技术[J].哈尔滨工业大学学报,2008,40(5):783-787
    [92]M. Kang, Y. Yang, X. Q. Fu. Study on numerical controlled electrochemical turning [J]. Materials Science Forum,2009,626-627(3):351-356
    [93]M. Kang, X. Q. Fu, Y. Yang. Experimental study on numerical controlled electrochemical turning [J]. Key Engineering Materials Vols,2010,426-427:658-663
    [94]Kang Min, Fu xiuqing,Ji haibin. Experimental study on numerical controlled electrochemical machining of rotary parts [J]. Proceedings of the ITIC,2009:20-20
    [95]计海兵,康敏,杨勇.卧式数控电解车机床设计[J].机床与液压,2009,37(8):52-54
    [96]计海兵.数控电解车床试验装置及其控制系统设计[D].南京:南京农业大学,2009,6
    [97]陆凡超,康敏,傅秀清.数控电解车削装置及基础工艺试验[J].现代制造工程,2009,(12):94-96
    [98]陆凡超.数控电解车削加工工艺试验研究[D].南京:南京农业大学,2009,6
    [99]鲜洁宇,康敏,傅秀清.回转件电解车削加工基础工艺试验研究[J].电机工与模具,2010, (1):58-60
    [100]傅秀清,康敏,鲜洁宇,等.数控电解车削加工工艺试验研究[C].第十二届全国特种加工年会论文集,2009:336-340
    [101]尹其林.数控电解磨削加工的基础研究[D].南京:南京农业大学,2009,6
    [102]干为民,褚辉生,丁仕燕,等.五轴联动数控电解磨床设计[J].制造技术与机床,2009,(3):40-43
    [103]李作胜.电解加工CA6102型发动机连杆锻模[J].汽车技术,1987,(7):46-50
    [104]陈远龙.锻模型腔的电解加工技术[J].锻压技术,1995,(3):52-54
    [105]洛阳东方红拖拉机厂工具分厂.75曲轴模具的混气电解加工[J].电加工与模具,1977,(1):31-32
    [106]洛阳拖拉机厂,等.锻模混气电解加工总结(一)[J].电加工与模具,1977,(3):1-14
    [107]洛阳拖拉机厂,等.锻模混气电解加工总结(二)[J].电加工与模具,1977,(4):17-35
    [108]鲜洁宇.数控电解车削加工装置设计与试验[D].南京:南京农业大学,2009,6
    [109]陈志,方宪法,苏文凤.“十一五”我国农业装备制造业自主创新战略研究[J].农业现代化研究,2007,28(1):1-6
    [110]方宪法,陈志,苏文凤,等.中国农业装备产业发展战略研究[J].农业工程学报,2007,23(2):267-272
    [111]陈志,方宪法,苏文凤.我国农业装备制造业自主创新战略研究[J].农业机械学报,2007,38(5):69-73
    [112]陈志.新阶段农业装备技术发展的重点和方向[J].农业科技推广,2008,(12):9-12
    [113]朱先勇.中大型冲压件模具用球墨铸铁材料及其近终成型工艺研究[D].长春:吉林大学,2007,4
    [114]王延斌.面向模具的制造执行系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2007,3
    [115]李发致.模具先进制造技术[M].北京:机械工业出版社,2003,1
    [116]装备制造业调整和振兴规戈(?)[EB/OL]. [2009-8-14]. http://baike.baidu.com/view/2461861.htm
    [117]周慧玲,朱乐平,孙武.国外高速加工技术在模具及成形制造中的应用[J].现代制造工程,2001.(9):35-37
    [118]郭新贵,李从心.高速切削技术的研究与应用[J].模具技术,2001,(5):61-65
    [119]J Schneider. For high-speed, dry, and hard machining, these cutting tools may prove theideal solution. Manufacturing Engineering,1999,122(1):75-81
    [120]全燕明,王成勇,林金萍.高速铣削淬硬模具钢的工艺性与经济性研究[J].工具技术,2003,37(12): 6-9
    [1]徐家文,云乃彰,王建业,等.电化学加工技术——原理工艺及应用[M].北京:国防工业出版社,2008,6
    [2]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001,l
    [3]傅秀清,康敏,杨勇.基于PMAC5轴数控电解加工机床设计[J].电加工与模具,2009,(2):62-65
    [4]刘鸿文.材料力学[M].北京:高等教育出版社,1992,9
    [5]李洪.实用机床设计手册[M].沈阳:辽宁科学技术出版社,1999,1
    [6]《机床设计手册》编写组.机床设计手册[M].北京:机械工业出版社,1978,12
    [7]张黎骅,郑严.新编机械设计手册[M].北京:人民邮电出版社,2008,1
    [8]《机械设计手册》联合编写组.机械设计手册[M].北京:化学l:业出版社,1979,10
    [9]周希章.如何正确选择电动机[M].北京:机械工业出版社,2004,1
    [10]海老原大树.电动机技术实用手册[M].北京:科学出版社,2006,1
    [11]哈尔滨工业大学理论力学教研组.理论力学[M].北京:高等教育出版社,1997,7
    [12]朱树敏,陈远龙.电化学加工技术[M].北京:化学工业出版社,2006,9
    [13]赵海信.开放式数控系统软件平台实现技术的研究[D].武汉:武汉理工大学,2006
    [14]付立东.基于PMAC的数控电解加工机床控制系统设计[D].南京:南京农业大学,2009
    [15]刘海拥.五轴数控电解加工试验装置研制及工艺试验[D].南京:南京农业大学,2009
    [16]PMAC/PMAC2 SOFTWARE MANUAL. Delta Tau Data Systems Inc.2003
    [17]Karl Johan Astrom. PID Control[J]. Control System Design,2002:216-218
    [18]王广雄.控制系统设计[M].宁航出版社,1992
    [19]叶明超.自动控制原理与系统[M].北京:北京理工大学出版社,2008
    [20]李淑萍.基于PMAC的慢走丝线切割机床数控系统的研究[D].苏州:苏州大学,2007
    [21]解巨君.基于PMAC的切割机器人交流伺服控制系统[D].哈尔滨:哈尔滨工程大学,2006
    [22]吴玉厚,潘振宁,张柯等PMAC控制器中PID调节的应用[J].沈阳建筑工程学院学报,2004,20:153-157
    [23]张俊萍,鲍慧玲,王涛.基于PMAC的直线电机PID控制性能研究[J].淮北煤炭师范学院学报,2005,9(3):26-28
    [24]朱洪波.Visual C++6.0完全自学宝典[M].北京:清华大学出版社,2008
    [1]徐家文,云乃彰,王建业,等.电化学加工技术——原理工艺及应用[M].北京:国防工业出版社,2008,6
    [2]孙春华,朱荻,李志永,等.考虑流场特性的发动机叶片电解加工阴极设计及数值仿真[J].东南大学学报(自然科学版),2004,34(5):613-617
    [3]D. Zhu, K. Wang,J. M. Yang. Design of electrochemical manufacturing process [J]. Annals of the CIRP,2003,52(1):169-172
    [4]J. Kozak. Mathematical model for computer simulation of electrochemical machining process [J]. Journal of Materials Processing Technology,1998,76:170-175
    [5]J. Kozak. Computer simulation system for electrochemical shaping [J]. Journal of Materials Processing Technology,2001,109(1-3):354-359
    [6]王蕾.发动机叶片高精度电解加工阴极设计系统及实验研究[D].南京:南京航空航天大学, 2006,12
    [7]王蕾,朱荻.基于有限元方法的电解加工工件型面的预测[J].中国机械工程,2006,17(9):927-930
    [8]李志永,朱荻.基于间隙电导率模型的叶片电解加工阴极设计[J].华南理工大学学报(自然科学版),2005,33(3):73-77
    [9]李志永,朱荻.基于叶片电解加工电场和流场特性的阴极设计及工艺试验研究[J].中国机械工程,2006,17(14):1463-1466
    [10]徐正扬,朱荻,王蕾,等.三头进给电解加工流场特性[J].机械工程学报,2008,44(4):189-194
    [11]康敏,赵建社,徐家文.数控展成电解加工技术的研究进展[J].电加工与模具,2004,(3):17-19
    [12]钱密,徐家文.数控展成电解加工的阴极结构及流场研究[J].航空精密制造技术,2003,39(2):14-18
    [13]张永俊,徐家文.内喷式阴极展成电解加工中的流场研究[J].电加工与模具,1993,(3):17-19
    [14]张永俊,徐家文.展成电解加工中的内喷式阴极设计[J].电加工与模具,1993,(5):23-25
    [15]张永俊,徐家文.数控展成电解加工的流场分析与间隙特性[J].中国机械工程,1996,7(3):56-57
    [16]钱密,徐家文.数控展成电解加工的阴极结构及流场研究[J].航空精密制造技术,2003,39(2):14-18
    [17]吴锐,徐家文,赵建社.基于计算流体动力学软件的型腔电解流场仿真[J].中国机械工程,2008,19(14):14-18
    [18]吴建民,徐家文.基于CFD技术的数控电解加工流场数值模拟[J].系统仿真学报,2009,21(1):73-75
    [19]吴建民,徐家文.数控电解加工整体式叶轮阴极三维流场数值模拟[J].中国机械工程,2009,20(7): 780-783
    [20]王化明.限制水域操纵运动船舶粘性流场及水动力数值研究[D].上海:上海交通大学,2009,11
    [21]陈明.微细螺旋冷却孔电解加工技术研究[D].杭州:浙江工业大学,2009,5
    [22]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004,9
    [23]韩占忠,王敬,兰小平.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004,6
    [24]王瑞金,张凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社,2007,2
    [25]于勇,张俊明,姜连田Fluent入门与进阶教程[M].北京:北京理工大学出版社,2008,9
    [26]刘建林.气体钻井用贯通式潜孔锤关键技术研究[D].长春:吉林大学,2009,4
    [27]M. Kang, X. Q. Fu, H. Y. Liu. Experimental study on numerical control electrochemical machining with ball-end tool-electrode [J]. Proceedings of the ISEM-16,2010:367-371
    [28]王永安.液压集成块性能评估系统关键技术研究[D].大连:大连理工大学,2009,9
    [29]王东屏.CFD数值仿真建模技术在研究及其在高速动车组中的验证[D].大连:大连理工大学,2006,7
    [30]才委.双涡轮液力变矩器转矩分配特性研究[D].长春:吉林大学,2009,6
    [31]李进良,李承曦,胡仁喜Fluent6.3流场分析[M].北京:化学工业出版社,2009,10
    [1]徐家文,云乃彰,王建业,等.电化学加工技术——原理工艺及应用[M].北京:国防工业出版社,2008,6
    [2]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001,1
    [3]陆凡超.数控电解车削加工工艺试验研究[D].南京:南京农业大学,2009,6
    [4]刘海拥.五轴数控电解加工试验装置研制及工艺试验[D].南京:南京农业大学,2009,12
    [5]康敏.整体叶轮的精密展成电解加工技术研究[D].南京:南京航空航天火学,2003,5
    [6]陈远龙.电解加工工艺参数数据库及电解加工基本工艺规律研究[D].合肥:合肥工业大学,2000,9
    [7]夏伯忠.正交实验法[M].长春:吉林大民出版社,1985,11
    [8]袁丹青.多喷嘴射流泵的数值模拟及试验研究[D].镇江:江苏大学,2009,6
    [9]李香萍.ZnO薄膜的MOCVD制备及ZnO/Si发光器件的研究[D].长春:吉林大学,2009,7
    [10]郎静.DME发动机燃烧及微量污染物排放研究[D].武汉:华中科技大学,2008,11
    [11]李云雁,胡传荣.试验设计与数据的处理[M].北京:化学工业出版社,2005,2
    [1]康敏.整体叶轮的精密展成电解加工技术研究[D].南京:南京航空航天大学,2003,5
    [2]徐家文,云乃彰,王建业,等.电化学加工技术——原理工艺及应用[M].北京:国防工业出版社,2008,6
    [3]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001,1
    [4]徐家文,唐亚新.数控展成电解加工的成形规律研究[J].机械工程学报,1994,30(6):28-34
    [5]张永俊,徐家文.展成电解加工的成形规律研究[J].广东工业大学学报,1995,12(6):86-90
    [6]唐亚新,徐家文.圆棒阴极展成电解加工间隙特性的研究[J].南京航空航天大学学报,1997,29(2):214-219
    [7]张永俊,刘晓宇,邹君泰,等.数控电解光整加工的成形规律研究[J].广东工业大学学报,1998,15(1):3942
    [8]Xu Jiawen, Yun Naizhang, Tang Yangxin, et al. The modelling of NC-electrochemical contour evolution machining using a rotary tool-cathode[J]. Journal of Materials Processing Technology, 2005,159:272-277
    [9]朱永伟,徐家文,胡平旺,等.线状阴极数控电解加工成形规律的研究[J].航空精密制造技术,2003,39(1):13-16
    [10]朱永伟,徐家文,赵建社.大扭曲度整体涡轮叶片展成电解加工成形规律及试验研究[J].中国机械工程,2006,17(17):1778-1783
    [11]Kang Min, Xu Jiawen. Study on the shaping law of precision numerical controlled electrochemical contour evolution machining[J]. Key Engineering Materials Vols,2008,375-376:72-76
    [12]M. Kang, Y. Yang, X. Q. Fu. Study on numerical controlled electrochemical turning [J]. Materials Science Forum,2009,626-627(3):351-356
    [13]Kang Min, Fu xiuqing, Ji haibin. Experimental study on numerical controlled electrochemical machining of rotary parts [J]. Proceedings of the ITIC,2009:20-20
    [14]M. Kang,X. Q. Fu,Y. Yang. Experimental study on numerical controlled electrochemical turning [J]. Key Engineering Materials Vols,2010,426-427:658-663
    [15]赵建社,徐家文,云乃彰,等.异形腔组合电加工数字化制造技术研究[J].航空学报,2006,27(1):157-160
    [16]李志永,朱荻,孙春华,等.发动机叶片电解加工阴极设计有限元数值解法研究[J].中国机械工程,2004,15(13):1151-1154
    [17]王蕾,朱荻.基于有限元数值方法的电解加工工件型面的预测[J].中国机械工程,2006,17(9):927-930
    [18]王明环.微细电解加工实验研究[D].南京:南京航空航天火学,2007,1
    [19]王蕾.电解加工工成形过程仿真与预测系统研究[J].现代制造工程,2010,(1):70-74
    [20]王福元,徐家文,赵建社,等.基于加工过程数值模拟的电解加工参数选抒方法[J].中国机械工程,2006,17(7):716-718
    [21]J. Kozak, A. F. Budzynski, P. Domanowski. Computer simulation electrochemical shaping (ECM-CNC) using a universal tool electrode [J]. Journal of Materials Processing Technology, 1998,76(1-3):161-161
    [22]J. Kozak. Mathematical models for computer simulation of electrochemical machining process [J]. Journal of Materials Processing Technology,1998,76(1):170-175
    [23]J. Kozak, Maria Chuchro, Adam Ruszay, et al. The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces [J]. Journal of Materials Processing Technology,2000,107(1):283-287
    [24]J. Kozak. Computer simulation system for electrochemical shaping [J]. Journal of Materials Processing Technology,2001,109(1-3):354-359
    [25]Marius Purcar, Leslie Bortels, Bart Van den Bossche, et al.3D electrochemical machining computer simulations [J]. Journal of Materials Processing Technology,2004,149:472-478
    [26]Marius Purcar, Andrei Dorochenko, Leslie Bortels, et al. Advanced CAD integrated approach for 3D electrochemical machining simulations [J]. Journal of Materials Processing Technology,2008, 203:58-71
    [27]V. P. Zhitnikov, G. I. Fedorova, O. V. Zinatullina, et al. Simulation of non-stationary process of electrochemical machining [J]. Journal of Materials Processing Technology,2004,149:398-403
    [28]赵建社,徐家文,葛媛媛,等.异形腔电解加工阴极的数字化设计[J].航空学报,2006,27(5): 939-943
    [29]赵建社,徐家文,王福元,等.整体构件数控电解加工数字化仿真技术[J].南京航空航天大学学报,2007,39(3):333-337
    [30]王蕾.叶片电解加工成形过程仿真与预测研究[J].机械设计与制造,2009,(11):101-103
    [31]王蕾.发动机叶片高精度电解加工阴极设计系统及实验研究[D].南京:南京航空航天大学,2006,12
    [1]康敏.整体叶轮的精密展成电解加工技术研究[D].南京:南京航空航天大学,2003,5
    [2]徐家文,云乃彰,王建业,等.电化学加工技术——原理工艺及应用[M].北京:国防工业出版社,2008,6
    [3]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001,1
    [4]刘海拥.五轴数控电解加工试验装置研制及工艺试验[D].南京:南京农业大学,2009,12
    [5]付立东.基于PMAC的数控电解加工机床控制系统设计[D].南京:南京农业大学,2009,12
    [6]M. Kang, X. Q. Fu, H. Y. Liu. Experimental study on numerical control electrochemical machining with ball-end tool-electrode [J]. Proceedings of the ISEM-16,2010:367-371
    [7]朱永伟,徐家文,赵建社.火扭曲度整体涡轮叶片展成电解加工成形规律及试验研究[J].中国机械工程,2006,17(17):1778-1783
    [8]李志永,朱荻,孙春华,等.发动机叶片电解加工阴极设计有限元数值解法研究[J].中国机械工程,2004,15(13):1151-1154
    [9]王蕾.电解加工工件成形过程仿真与预测系统研究[J].现代制造工程,2010,(1):70-74
    [10]王蕾.发动机叶片高精度电解加工阴极设计系统及实验研究[D].南京:南京航空航天大学,2006,12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700