用户名: 密码: 验证码:
智能人工味觉分析方法在几种食品质量检验中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高,人们对食品质量检验与质量控制越来越重视,不但要求检测方法准确、客观,而且要求快速、简便,因此,引进新的检测手段并探索其在食品质量检验与质量控制中应用的可行性具有重要的意义。人工味觉技术(电子舌)即是符合这些要求的一种分析、识别液体味道的新型分析技术。人工味觉领域主要有三个研究方向:传感器及传感器阵列的研制、模式识别方法的优化与比较、在各种分析问题中的应用。除了开发具有优良性能的传感器之外,恰当的模式识别方法对于电子舌的成功应用也是至关重要的。对于食品工业来说,人工味觉技术的最大优势是可以辅助、取代甚至超越人类的相应感觉,而与味觉相关的食品质量属性正是应该利用人工味觉技术进行检测的方面。本论文的研究范围主要集中在电子舌模式识别方法的优化与比较、在食品工业领域中的具体应用,从而为开辟人工味觉技术的应用途径提供理论依据与数据支持。
     将机器学习领域开发的新兴模式识别工具引进电子舌领域解决模式识别问题是非常必要的,以克服通常采用的那些模式识别方法所具有的缺点。本论文首次将随机森林算法引入到人工味觉技术的模式识别中来,考察其在食品样品分类(3个数据集)和回归问题(3个数据集)上的性能,并与目前比较流行的算法,BP神经网络和支持向量机的性能进行了比较。在采用了严格的模型验证方法(5-重交互验证)的情况下,随机森林表现出了优秀的分类性能和预测性能,而且是在没有经过任何数据预处理和特征选择/提取的前提下获得的;尤其是对于不平衡、多类别和小样本的数据,随机森林更是表现出了卓越的分类性能,BP神经网络、支持向量机和随机森林对三个分类数据集交互验证集的整体平均正确分类率分别为83.35%、58.06%和98.83%;对三个回归数据集交互验证集的整体平均Q2分别为0.886、0.353和0.913;而且,对于独立测试集,随机森林也给出了令人满意的预测结果(整体平均正确分类率和Q2分别为99.75%和0.932),这意味着由电子舌生成的特征结合随机森林所构建的模型能够用于实际的样品检测。
     电子舌传感器电化学信号与食品理化指标之间具有相关性是采用电子舌对食品进行分析的基础。本论文以不同品牌的10%橙汁饮料和不同类型不同质量等级的食醋为例,以电子舌的测量结果结合能够反映其感官品质(味道)的主要理化指标的测量结果,对样品进行了检验,以考察该技术在食品质量检验中应用的可行性,并为相应的感官检验法(味觉检验)提供可行的辅助手段。结果表明,电子舌的电化学信号与食品的理化指标之间具有显著的相关性,说明可以用电子舌检测食品的相关质量,同时也可以用相关的理化指标来解释电子舌的分析结果;电子舌可以很好地区分不同品牌的橙汁饮料、不同类型的食醋和不同质量等级的食醋;主成分分析时第一主成分可以解释为甜度,典型判别分析时,第一二典型变量分别可以解释为甜度和糖酸比,而且样品是近似按照这些指标的升序在坐标轴正方向上进行排列的;并且通过建立适当的模型(如随机森林分类模型)电子舌可以预测未知样品的种类;在对样品进行区分时主成分分析和典型判别分析具有一定的优势,但是,当比较(模仿)竞争对手的同类产品时,聚类分析和软独立模型类别分析具有优势,可以简单地初步判断产品之间在味道上是否具有明显的差异。这些结果都表明人工味觉分析方法可以根据食品的感官特性(味道属性)对其进行质量检验,从而证明其在食品质量感官检验中具有应用潜力。
     以人工味觉技术为依托,以先进的模式识别方法为手段,提出了人工味觉结合随机森林的分析方法,在方法学研究的基础上进行了应用型研究,以在食品质量控制领域中具有代表性的应用案例为例考察该方法的实际效果。具体应用包括食品地理来源识别、食品贮藏条件鉴别、食品生产批次质量稳定性检测、食品贮藏期质量稳定性检测、货架期的确定及贮藏时间的测定。结果表明,人工味觉技术结合不同数据处理方法均能够胜任上述检测任务,为其在食品质量控制领域中的实际应用提供了基础研究数据,同时为食品研究提供了新的研究方法。并提出了采用主成分绘制质控图、主成分随时间演进图来判断产品质量稳定性的方法。
People pay more attention to food quality inspection and quality control with increasing life quality. The detection methods for food quality are required to be not only accurate and objective, but also rapid and convenient. Thus, it may be very important to introduce new detection means and investigate their feasibility in food quality inspection and quality control. Artificial taste technique (electronic tongue, E-tongue) as a new technique is one of the ways matching these requirements, which could be used to analyze and recognize the taste of liquid. The researches in the artificial taste field have been focused on three main aspects:the developments of sensor and sensor array, the optimizations and comparisons of pattern recognition methods, and the applications to various analytical tasks. Besides the development of sensors with excellent performance, appropriate pattern recognition methods are crucial for successful applications of E-tongues. The key advantage of the artificial taste is that it may be possible to assist, substitute, even surpass the human sensory, and may be suitable to detect the quality attributions about the taste of food. The study scopes of this paper will focus on the optimizations and comparisons of pattern recognition methods and the applications to the food industry. The study offers theory and data bases to open up the application ways of artificial taste technique.
     It is necessary for the E-tongue field to introduce novel and more effective pattern recognition methods developed in the machine learning community, in order to overcome the problems of pattern recognition methods usually used. In this paper, for the first time, RF is introduced and investigated for the E-tongue data processing, and the performance of RF in classification (three data sets) and regression (three data sets) will be focused on. Furthermore, the comparisons of the performance of RF with currently more popular methods, BPNN and SVM, have been done. RF with5-fold cross-validation and without data preprocessing or feature selection/extraction, exhibits better classification and prediction performance than other two classical methods—BPNN and SVM, especially for unbalanced, multiclass and small sample data sets. The average correct rates (CR) on CV sets of the three data sets performed by BPNN, SVM and RF were83.35%,58.06%and98.83%, respectively. The average Q2on CV sets of the three data sets performed by BPNN, SVM and RF were0.886,0.353and0.913, respectively. Moreover, for the independent testing sets, RF also gives satisfactory prediction results (average CR and Q2were99.75%and0.932, respectively), which means the prediction models constructed by the E-tongue signal features and RF can actually be employed for the sample inspection.
     Whether the physicochemical indexes of food are correlated with the sensor response signals of the E-tongue is the basis of applying the E-tongue to analyze food. In this paper, the feasibilities of the E-tongue for food quality inspection are studied by using10%orange juices of different brands and Chinese vinegars of different types and different grades as examples through combining the measurement results of the E-tongue and the main physicochemical indexes related with sensory quality (taste quality) of food, with the purpose of offering a feasible assistant means for the sensory evaluation (taste evaluation). The results indicate that:(1) the physicochemical indexes of food are significant correlated with the sensor response signals of the E-tongue, which means the E-tongue can be used to detect the taste quality of foods and the related physicochemical indexes can be used to explain the results obtained by the E-tongue;(2) the E-tongue can differentiate10%orange juices of different brands and Chinese vinegars of different types and different grades;(3) the first principle component can be explained as sweetness in PCA (principle component analysis) and the first and second canonical variables can be explained as sweetness and the ratio of sugar and acid in CDA (canonical discriminant analysis), respectively, besides, these indexes are ranged in an increasing sequence along the positive directions of the coordinates;(4) the E-tongue can predict the class memberships and grades of the unknown samples by constructing models, such as RF classification models;(5) PCA and CDA have some advantages when differentiate samples, but cluster analysis and SIMCA (soft independent modeling of class analogy) have advantages when compare (imitate) the same types of products with competitors and can initially judge whether the diversities exist in the taste quality between products. All these results confirm the E-tongue can be applied for food quality inspection according to the sensory profiles (taste properties) of food, which also prove that the E-tongue has potential for the application to food sensory inspection.
     An analytical method based on artificial taste and random forest has been established and investigated when being applied for food quality control. The investigated cases include the recognition of food geographical origin, the identification of food under different storage conditions, the quality stability study of different batches of food, the quality stability study of food under storage period, the determination of shelf life and storage times of food. The results show'artificial taste technique coupled with different data analysis methods can fulfill all those tasks. These are basic researches for the application of the established analytical method in the food quality control field and open up a new research field for the artificial taste technique. At same time, this established analytical method provides a new means for food research. The methods of the quality control chart plotted based on principle component (PC) and the plot of PC vs time were also proposed in this paper.
引文
[1]中华人民共和国国家标准.食品工业基本术语[s].北京:中国标准出版社,2005.
    [2]杨昌举.食品科学概论[M].北京:中国人民大学出版社,1999.
    [3]周家春.食品感官分析基础[M].北京:中国计量出版社,2006.
    [4]靳敏,夏玉宇.食品检验技术[M].北京:化学工业出版社,2003.
    [5]王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,1999.
    [6]韩雅珊.食品化学[M].北京:中国农业大学出版社,1998.
    [7]Owen R. Fennema著,王璋,许时婴等译.食品化学(第三版)[M].北京:中国轻工业出版社,2003.
    [8]朱红,黄一贞,张弘.食品感官分析入门[M].北京:中国轻工业出版社,1993.
    [9]苏姗娜.尼尔森(S. Suzanne Nielsen)著,杨严俊等译.食品分析(第二版)[M].北京:中国轻工业出版社,2002.
    [10]陈晓平,黄广民.食品理化检验[M].北京:中国计量出版社,2008.
    [11]刘兴友,刁有祥.食品理化检验学[M].北京:中国农业大学出版社,2008.
    [12]朱振中.仪器分析[M].上海:上海交通大学出版社,2000.
    [13]吴谋成.仪器分析[M].北京:科学出版社,2003.
    [14]大连轻工业学院等八大院校编.食品分析[M].北京:中国轻工业出版社,1994.
    [15]Legin, A., Rudnitskaya, A., Vlasov, Y., Di Natale, C., Davide, F., and D'Amico, A., Tasting of beverages using an electronic tongue[J]. Sensors and Actuators B:Chemical,1997,44(1-3): 291-296.
    [16]韩北忠,童华荣.食品感官评价[M].北京:中国林业出版社,2009.
    [17]陈宗道,刘金福,陈绍军.食品质量管理[M].北京:中国农业大学出版社,2003.
    [18]吴广臣.食品质量检验[M].北京:中国计量出版社,2006.
    [19]刘学文.食品科学与工程导论[M].北京:化学工业出版社,2007.
    [20]郑晓冬.食品微生物学[M].杭州:浙江大学出版社,2001.
    [21]张伟,袁耀武.现代食品微生物检测技术[M].北京:化学工业出版社,2007.
    [22]中华人民共和国国家标准.感官分析术语——一般性术语[s].北京:中国标准出版社,1988.
    [23]中华人民共和国国家标准.感官分析方法总论[S].北京:中国标准出版社,1998.
    [24]徐树来,王永华.食品感官分析与实验(第二版)[M].北京:化学工业出版社,2009.
    [25]张剑荣,戚苓方,惠群.仪器分析实验[M].北京:科学出版社,1999.
    [26]王叔淳.食品分析质量保证与实验室认可[M].北京:化学工业出版社,2003.
    [27][荷]卢宁(P. A. Luning)等著,吴广枫主译.食品质量管理[M].北京:中国农业大学出版社,2005.
    [28]周志刚.化学传感器的研究与发展[J].传感器技术学报,1997,(1):62-64.
    [29]Alpha M.O.S. Technical note T-P-02:Similarities between electronic tongue and human tongue,2004.
    [30]王平.人工嗅觉与人工味觉[M].北京:科学出版社,2000.
    [31]李燕,刘清君,徐莹,蔡华,秦利锋,王丽江,王平.味觉传导机理及味觉芯片技术研究 进展[J].科学通报,2005,50(14):1425-1433.
    [32]陈培华,王平.味觉电生理建模和仿真的研究进展[J].国际生物医学工程杂志,2007,30(5):278-282.
    [33]王平,陈裕泉,吕维雪.味觉传感技术的最新发展[J].国外医学生物医学工程分册,1995,18(1):1-5.
    [34]张根华,邓少平.味觉受体第一家族与味觉识别[J].生命的化学,2005,25(3):179-181.
    [35]陈培华,张威,周俊,王平,肖丽丹,杨莫.膜片钳芯片技术及其在细胞电生理分析中的研究进展[J].自然科学进展,2007,17(12):1601-1608.
    [36]王平.人工嗅觉与人工味觉(第二版)[M].北京:科学出版社,2007.
    [37]曾广植,魏诗泰.味觉的分子识别;从味感到简化食物的仿生化学[M].北京:科学出版社,1984.
    [38]刘淼,王俊.山核桃仁碱液浸泡法去皮工艺的研究[J].农业工程学报,2007,23(10):256-261.
    [39]胡洁,李蓉,王平.人工味觉系统——电子舌的研究[J].传感技术学报,2001,14(2):169-179.
    [40]王平.仿生传感技术的研究进展[J].中国医疗器械杂志,2004,28(4):4-7.
    [41]黄赣辉,邓少平.人工智能味觉系统:概念、结构和方法[J].化学进展,2006,18(4):494-500.
    [42]Hayashi, K., Yamanaka, M., Toko, K., and Yamafuji, K. Multichannel taste sensor using lipid membranes[J]. Sensors and Actuators B:Chemical,1990,2(3):205-213.
    [43]Toko, K., Matsuno, T., Yamafuji, K., Hayashi, K., Ikezaki, H., Sato, K., Toukubo, R., and Kawarai, S. Multichannel taste sensor using electric potential changes in lipid membranes[J]. Biosensors and Bioelectronics,1994,9(4-5):359-364.
    [44]Iiyama, S., Ezaki, S., Toko, K., Matsuno, T., and Yamafuji, K. Study of astringency and pungency with multichannel taste sensor made of lipid membranes[J]. Sensors and Actuators B:Chemical,1995,24(1-3):75-79.
    [45]Toko, K. Taste sensor with global selectivity[J]. Materials Science and Engineering:C.,1996, 4(2):69-82.
    [46]Toko, K. Taste sensor[J]. Sensors and Actuators B:Chemical,2000,64(1-3):205-215.
    [47]Vlasov, Y.G., Legin, A.V., Rudnitskaya, A.M., DiNatale, C, and Damico, A. Multisensor system with an array of chemical sensors and artificial neural networks (electronic tongue) for quantitative analysis of multicomponent aqueous solutions[J]. Russian Journal of Applied Chemistry,1996,69(6):848-853.
    [48]Vlasov, Y., Legin, A., and Rudnitskaya, A. Cross-sensitivity evaluation of chemical sensors for electronic tongue:determination of heavy metal ions[J]. Sensors and Actuators B: Chemical,1997,44(1-3):532-537.
    [49]Di Natale, C., Macagnano, A., Davide, F., D'Amico, A., Legin, A., Vlasov, Y, Rudnitskaya, A., and Selezenev, B. Multicomponent analysis on polluted waters by means of an electronic tongue[J]. Sensors and Actuators B-Chemical,1997,44(1-3):423-428.
    [50]Toko, K. Electronic tongue[J]. Biosensors and Bioelectronics,1998,13(6):701-709.
    [51]Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., D'Amico, A., Ubigli, M., Legin, A., Lvova, L., Rudnitskaya, A., and Vlasov, Y. Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine[J]. Sensors and Actuators B-Chemical,2000,69(3):342-347.
    [52]Huang, G.H. and Deng, S.P. The conception, structure and techniques on the artificial intelligent taste system[J]. Progress in Chemistry,2006,18(4):494-500.
    [53]McDevitt, J.T. Solution-based analysis of multiple analytes by a sensor array:Toward the development of an "electronic taste chip"[J]. Abstracts of Papers of the American Chemical Society,2001,221:420-INOR.
    [54]Ali, M.F., Floriano, P.N., Christodoulides, N., Fozdar, D., Chen, S.C., and McDevitt, J.T. Advances in the electronic taste chip technology towards the selective and sensitive detection of DNA oligonucleotides[J]. Abstracts of Papers of the American Chemical Society, 2005,230:176-ANYL.
    [55]邓少平,田师一.电子舌技术背景与研究进展[J].食品与生物技术学报,2007,26(4):110-116.
    [56]Persaud, K. and Dodd, G Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature,1982,299(5881):352-355.
    [57]Ciosek, P. and Wroblewski, W. Sensor arrays for liquid sensing-electronic tongue systems[J]. Analyst,2007,132(10):963-978.
    [58]Vlasov, Y.G., Legin, A.V., Rudnitskaya, A.M., D'Amico, A., and Di Natale, C. "Electronic tongue"-new analytical tool for liquid analysis on the basis of non-specific sensors and methods of pattern recognition[J]. Sensors and Actuators B-Chemical,2000,65(1-3): 235-236.
    [59]Vlasov, Y.G, Ermolenko, Y.E, Legin, A.V., Rudnitskaya, A.M., and Kolodnikov, V.V. Chemical sensors and their systems[J]. Journal of Analytical Chemistry,2010,65(9): 880-898.
    [60]Winquist, F. Voltammetric electronic tongues-basic principles and applications[J]. Microchimica Acta,2008,163(1-2):3-10.
    [61]Otto, M. and Thomas, J.D.R. Model studies on multiple channel analysis of free magnesium, calcium, sodium, and potassium at physiological concentration levels with ion-selective electrodes[J]. Analytical Chemistry,1985,57(13):2647-2651.
    [62]皱小波,赵杰文.农产品无损检测技术与数据分析方法[M].北京:中国轻工业出版社,2008.
    [63]陆华,金利通.化学传感器[J].化学教学,1998,(7):25-27.
    [64]马福昌,吕迎春,李怀恩.电子舌及其应用研究[J].传感器技术,2004,23(9):1-3.
    [65]黄赣辉.味觉传感器阵列构建及其初步应用[D].江西:南昌大学,2006.
    [66]Ciosek, P. and Wroblewski, W. Performance of selective and partially selective sensors in the recognition of beverages[J]. Talanta,2007,71(2):738-746.
    [67]Ciosek, P., Brzozka, Z., Wroblewski, W., Martinelli, E., Di Natale, C., and D'Amico, A. Direct and two-stage data analysis procedures based on PCA, PLS-DA and ANN for ISE-based electronic tongue-Effect of supervised feature extraction [J]. Talanta,2005,67(3): 590-596.
    [68]Ciosek, P., Brzozka, Z., and Wroblewski, W. Classification of beverages using a reduced sensor array[J]. Sensors and Actuators B-Chemical,2004,103(1-2):76-83.
    [69]Ciosek, P., Augustyniak, E., and Wroblewski, W. Polymeric membrane ion-selective and cross-sensitive electrode-based electronic tongue for qualitative analysis of beverages[J]. Analyst,2004,129(7):639-644.
    [70]Ciosek, P., Brzozka, Z., and Wroblewski, W. Electronic tongue for flow-through analysis of beverages[J]. Sensors and Actuators B-Chemical,2006,118(1-2):454-460.
    [71]Ciosek, P., Brudzewski, K., and Wroblewski, W. Milk classification by means of an electronic tongue and Support Vector Machine neural network[J]. Measurement Science & Technology, 2006,17(6):1379-1384.
    [72]Ciosek, P. and Wroblewski, W. The recognition of beer with flow-through sensor array based on miniaturized solid-state electrodes[J]. Talanta,2006,69(5):1156-1161.
    [73]Ciosek, P., Sobanski, T., Augustyniak, E., and Wroblewski, W. ISE-based sensor array system for classification of foodstuffs[J]. Measurement Science & Technology,2006,17(1):6-11.
    [74]Buczkowska, A., Witkowska, E., Gorski, L., Zamojska, A., Szewczyk, K.W., Wroblewski, W, and Ciosek, P. The monitoring of methane fermentation in sequencing batch bioreactor with flow-through array of miniaturized solid state electrodes[J]. Talanta,2010,81(4-5): 1387-1392.
    [75]Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., D'Amico, A., Legin, A., Lvova, L., Rudnitskaya, A., and Vlasov, Y. Electronic nose and electronic tongue integration for improved classification of clinical and food samples[J]. Sensors and Actuators B-Chemical, 2000,64(1-3):15-21.
    [76]Legin, A., Rudnitskaya, A., Lvova, L., Vlasov, Y., D'Amico, A., Di Natale, C., and Paolesse, R. Application of the electronic tongue to milk quality monitoring[J]. Sensors and Microsystems,2000:263-269.
    [77]Legin, A., Rudnitskaya, A., Vlasov, Y., Di Natale, C., Mazzone, E., and D'Amico, A. Application of electronic tongue for qualitative and quantitative analysis of complex liquid media[J]. Sensors and Actuators B-Chemical,2000,65(1-3):232-234.
    [78]Rudnitskaya, A., Ehlert, A., Legin, A., Vlasov, Y., and Buttgenbach, S. Multisensor system on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model groundwater[J]. Talanta,2001,55(2): 425-431.
    [79]Vlasov, Y, Legin, A., and Rudnitskaya, A. Electronic tongues and their analytical application[J]. Analytical and Bioanalytical Chemistry,2002,373(3):136-146.
    [80]Lvova, L., Kim, S.S., Legin, A., Vlasov, Y, Yang, J.S., Cha, G.S., and Nam, H. All-solid-state electronic tongue and its application for beverage analysis[J]. Analytica Chimica Acta,2002, 468(2):303-314.
    [81]Legin, A., Rudnitskaya, A., Lvova, L., Vlasov, Y, Di Natale, C., and D'Amico, A. Evaluation of Italian wine by the electronic tongue:recognition, quantitative analysis and correlation with human sensory perception[J]. Analytica Chimica Acta,2003,484(1):33-44.
    [82]Lvova, L., Legin, A., Vlasov, Y, Cha, G.S., and Nam, H. Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem[J]. Sensors and Actuators B:Chemical,2003,95(1-3):391-399.
    [83]Turner, C., Rudnitskaya, A., and Legin, A. Monitoring batch fermentations with an electronic tongue[J]. Journal of Biotechnology,2003,103(1):87-91.
    [84]Beullens, K., Irudayaraj, J., Nicolai, B.M., Kirsanov, D., Legin, A., and Lammertyn, J. Novel techniques for fast taste profiling of tomatoes[J]. Commun Agric Appl Biol Sci,2004,69(2): 57-60.
    [85]Esbensen, K., Kirsanov, D., Legin, A., Rudnitskaya, A., Mortensen, J., Pedersen, J., Vognsen, L., Makarychev-Mikhailov, S., and Vlasov, Y. Fermentation monitoring using multisensor systems:feasibility study of the electronic tongue[J]. Analytical and Bioanalytical Chemistry, 2004,378(2):391-395.
    [86]Legin, A., Kirsanov, D., Rudnitskaya, A., Iversen, J.J.L., Seleznev, B., Esbensen, K.H., Mortensen, J., Houmoller, L.P., and Vlasov, Y. Multicomponent analysis of fermentation growth media using the electronic tongue (ET)[J]. Talanta,2004,64(3):766-772.
    [87]Legin, A., Rudnitskaya, A., Clapham, D., Seleznev, B., Lord, K., and Vlasov, Y. Electronic tongue for pharmaceutical analytics:quantification of tastes and masking effects[J]. Analytical and Bioanalytical Chemistry,2004,380(1):36-45.
    [88]Legin, A., Makarychev-Mikhailov, S., Kirsanov, D., Mortensen, J., and Vlasov, Y. Solvent polymeric membranes based on tridodecylmethylammonium chloride studied by potentiometry and electrochemical impedance spectroscopy[J]. Analytica Chimica Acta, 2004,514(1):107-113.
    [89]Auger, J., Arnault, I., Legin, A., Rudnitskaya, A., Seleznev, B., Sparfel, G., and Dore, C. Comparison of gas chromatography-mass spectrometry and electronic tongue analysis for the classification of onions and shallots[J]. International Journal of Environmental Analytical Chemistry,2005,85(12-13):971-980.
    [90]Legin, A., Rudnitskaya, A., Seleznev, B., and Vlasov, Y. Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie[J]. Analytica Chimica Acta,2005,534(1): 129-135.
    [91]Soderstrom, C., Rudnitskaya, A., Legin, A., and Krantz-Rulcker, C. Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques [J]. Journal of Biotechnology,2005,119(3):300-308.
    [92]Beullens, K., Kirsanov, D., Irudayaraj, J., Rudnitskaya, A., Legin, A., Nicolai, B.M., and Lammertyn, J. The electronic tongue and ATR-FTIR for rapid detection of sugars and acids in tomatoes [J]. Sensors and Actuators B:Chemical,2006,116(1-2):107-115.
    [93]Rudnitskaya, A., Delgadillo, I., Rocha, S.M., Costa, A.-M., and Legin, A. Quality evaluation of cork from Quercus suber L. by the electronic tongue[J]. Analytica Chimica Acta,2006, 563(1-2):315-318.
    [94]Rudnitskaya, A., Kirsanov, D., Legin, A., Beullens, K., Lammertyn, J., Nicolai', B.M., and Irudayaraj, J. Analysis of apples varieties-comparison of electronic tongue with different analytical techniques[J]. Sensors and Actuators B:Chemical,2006,116(1-2):23-28.
    [95]Mottram, T., Rudnitskaya, A., Legin, A., Fitzpatrick, J.L., and Eckersall, P.D. Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk[J]. Biosensors and Bioelectronics,2007,22(11):2689-2693.
    [96]Rudnitskaya, A., Delgadillo, I., Legin, A., Rocha, S.M., Costa, A.-M., and Simoes, T. Prediction of the Port wine age using an electronic tongue[J]. Chemometrics and Intelligent Laboratory Systems,2007,88(1):125-131.
    [97]Rudnitskaya, A., Evtuguin, D.V., Gamelas, J.A.F., and Legin, A. Multisensor system for determination of polyoxometalates containing vanadium at its different oxidation states[J]. Talanta,2007,72(2):497-505.
    [98]Beullens, K., Meszaros, P., Vermeir, S., Kirsanov, D., Legin, A., Buysens, S., Cap, N., NicolaT, B.M., and Lammertyn, J. Analysis of tomato taste using two types of electronic tongues[J]. Sensors and Actuators B:Chemical,2008,131(1):10-17.
    [99]Rudnitskaya, A. and Legin, A. Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes[J]. Journal of Industrial Microbiology & Biotechnology,2008,35(5):443-451.
    [100]Rudnitskaya, A., Polshin, E., Kirsanov, D., Lammertyn, J., Nicolai, B., Saison, D., Delvaux, F.R., Delvaux, F., and Legin, A. Instrumental measurement of beer taste attributes using an electronic tongue[J]. Analytica Chimica Acta,2009,646(1-2):111-118.
    [101]Rudnitskaya, A., Schmidtke, L.M., Delgadillo, I., Legin, A., and Scollary, G. Study of the influence of micro-oxygenation and oak chip maceration on wine composition using an electronic tongue and chemical analysis[J]. Analytica Chimica Acta,2009,642(1-2): 235-245.
    [102]Mimendia, A., Legin, A., Merkoci, A., and del Valle, M. Use of Sequential Injection Analysis to construct a potentiometric electronic tongue:Application to the multidetermination of heavy metals[J]. Sensors and Actuators B:Chemical,2010,146(2): 420-426.
    [103]Polshin, E., Rudnitskaya, A., Kirsanov, D., Legin, A., Saison, D., Delvaux, F., Delvaux, F.R., NicolaT, B.M., and Lammertyn, J. Electronic tongue as a screening tool for rapid analysis of beer[J]. Talanta,2010,81(1-2):88-94.
    [104]Rudnitskaya, A., Nieuwoudt, H.H., Muller, N., Legin, A., du Toit, M., and Bauer, F.F. Instrumental measurement of bitter taste in red wine using an electronic tongue[J]. Analytical and Bioanalytical Chemistry,2010,397(7):3051-3060.
    [105]Rudnitskaya, A., Rocha, S.M., Legin, A., Pereira, V., and Marques, J.C. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine[J]. Analytica Chimica Acta,2010,662(1):82-89.
    [106]Schmidtke, L.M., Rudnitskaya, A., Saliba, A.J., Blackman, J.W., Scollary, G.R., Clark, A.C., Rutledge, D.N., Delgadillo, I., and Legin, A. Sensory, chemical, and electronic tongue assessment of micro-oxygenated wines and oak chip maceration:assessing the commonality of analytical techniques [J]. Journal of Agricultural and Food Chemistry,2010,58(8): 5026-5033.
    [107]Cartas, R., Mimendia, A., Legin, A., and del Valle, M. Multiway processing of data generated with a potentiometric electronic tongue in a SIA system[J]. Electroanalysis,2011, 23(4):953-961.
    [108]Ciosek, P., Pokorska, B., Romanowska, E., and Wroblewski, W. The recognition of growth conditions and metabolic type of plants by a potentiometric electronic tongue[J]. Electroanalysis,2006,18(13-14):1266-1272.
    [109]Ciosek, P. and Wroblewski, W. The analysis of sensor array data with various pattern recognition techniques[J]. Sensors and Actuators B-Chemical,2006,114(1):85-93.
    [110]Ciosek, P., Maminska, R., Dybko, A., and Wroblewski, W. Potentiometric electronic tongue based on integrated array of microelectrodes[J]. Sensors and Actuators B-Chemical,2007, 127(1):8-14.
    [111]Ciosek, P., Grabowska, I., Brzozka, Z., and Wroblewski, W. Analysis of dialysate fluids with the use of a potentiometric electronic tongue[J]. Microchimica Acta,2008,163(1-2): 139-145.
    [112]Ciosek, P., Kraszewska, Z., and Wroblenski, W. Polyurethane membranes used in integrated electronic tongue for the recognition of tea and herbal products[J]. Electroanalysis,2009, 21(17-18):2036-2043.
    [113]Janczyk, M., Kutyla, A., Sollohub, K., Wosicka, H., Cal, K., and Ciosek, P. Electronic tongue for the detection of taste-masking microencapsulation of active pharmaceutical substances[J]. Bioelectrochemistry,2010,80(1):94-98.
    [114]Gallardo, J., Alegret, S., and del Valle, M. A flow-injection electronic tongue based on potentiometric sensors for the determination of nitrate in the presence of chloride [J]. Sensors and Actuators B:Chemical,2004,101(1-2):72-80.
    [115]Cortina, M., Gutes, A., Alegret, S., and del Valle, M. Sequential injection system with higher dimensional electrochemical sensor signals:Part 2. Potentiometric e-tongue for the determination of alkaline ions[J]. Talanta,2005,66(5):1197-1206.
    [116]Gallardo, J., Alegret, S., and del Valle, M. Application of a potentiometric electronic tongue as a classification tool in food analysis[J]. Talanta,2005,66(5):1303-1309.
    [117]Calvo, D. and del Valle, M. Simultaneous titration of ternary alkaline-earth mixtures employing a potentiometric electronic tongue[J]. Microchemical Journal,2007,87(1):27-34.
    [118]Calvo, D., Duran, A., and del Valle, M. Use of sequential injection analysis to construct an electronic-tongue:Application to multidetermination employing the transient response of a potentiometric sensor array[J]. Analytica Chimica Acta,2007,600(1-2):97-104.
    [119]Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O., and del Valle, M. Application of a potentiometric electronic tongue to fertigation strategy in greenhouse cultivation[J]. Computers and Electronics in Agriculture,2007,57(1):12-22.
    [120]Gutierrez, M., Alegret, S., and del Valle, M. Potentiometric bioelectronic tongue for the analysis of urea and alkaline ions in clinical samples[J]. Biosensors and Bioelectronics,2007, 22(9-10):2171-2178.
    [121]Cortina, M., Ecker, C., Calvo, D., and del Valle, M. Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfactant mixture[J]. Journal of Pharmaceutical and Biomedical Analysis,2008,46(2):213-218.
    [122]Mimendia, A., Gutierrez, J.M., Opalski, L.J., Ciosek, P., Wroblewski, W., and del Valle, M. SIA system employing the transient response from a potentiometric sensor array--Correction of a saline matrix effect[J]. Talanta,2010,82(3):931-938.
    [123]Lvova, L., Martinelli, E., Mazzone, E., Pede, A., Paolesse, R., Di Natale, C., and D'Amico, A. Electronic tongue based on an array of metallic potentiometric sensors[J]. Talanta,2006, 70(4):833-839.
    [124]Verrelli, G., Francioso, L., Paolesse, R., Siciliano, P., Di Natale, C., D'Amico, A., and Logrieco, A. Development of silicon-based potentiometric sensors:Towards a miniaturized electronic tongue[J]. Sensors and Actuators B:Chemical,2007,123(1):191-197.
    [125]Lvova, L., Martinelli, E., Dini, F., Bergamini, A., Paolesse, R., Di Natale, C., and D'Amico, A. Clinical analysis of human urine by means of potentiometric Electronic tongue[J]. Talanta, 2009,77(3):1097-1104.
    [126]Martinez-Manez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibanez, J., and Llobet, E. An "electronic tongue" design for the qualitative analysis of natural waters[J]. Sensors and Actuators B:Chemical,2005,104(2):302-307.
    [127]Barat, J.M., Gil, L., Garcia-Breijo, E., Aristoy, M.C., Toldra, F., Martinez-Manez, R., and Soto, J. Freshness monitoring of sea bream (Sparus aurata) with a potentiometric sensor[J]. Food Chemistry,2008,108(2):681-688.
    [128]Gil, L., Barat, J.M., Garcia-Breijo, E., Ibanez, J., Martinez-Manez, R., Soto, J., Llobet, E., Brezmes, J., Aristoy, M.C., and Toldra, F. Fish freshness analysis using metallic potentiometric electrodes[J]. Sensors and Actuators B:Chemical,2008,131(2):362-370.
    [129]Gil, L., Barat, J.M., Baigts, D., Martinez-Manez, R., Soto, J., Garcia-Breijo, E., Aristoy, M.C., Toldra, F., and Llobet, E. Monitoring of physical-chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue[J]. Food Chemistry,2011,126(3):1261-1268.
    [130]Winquist, F., Wide, P., and Lundstrom, I. An electronic tongue based on voltammetry[J]. Analytica ChimicaActa,1997,357(1-2):21-31.
    [131]Winquist, F., Krantz-Rulcker, C., Wide, P., and Lundstrom, I. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry[J]. Measurement Science & Technology,1998,9(12):1937-1946.
    [132]Winquist, F., Wide, P., and Lundstrom, I. The combination of an electronic tongue and an electronic nose for improved classification of fruit juices[J]. Eurosensors Xii, Vols 1 and 2, 1998:1087-1090.
    [133]Winquist, F., Lundstrom, I., and Wide, P. The combination of an electronic tongue and an electronic nose[J]. Sensors and Actuators B-Chemical,1999,58(1-3):512-517.
    [134]Winquist, F., Holmin, S., Krantz-Rulcker, C, Wide, P., and Lundstrom, I. A hybrid electronic tongue[J]. Analytica Chimica Acta,2000,406(2):147-157.
    [135]Carlsson, A., Krantz-Rulcker, C., and Winquist, F. An electronic tongue as a tool for wet-end monitoring[J]. Nordic Pulp & Paper Research Journal,2001,16(4):319-326.
    [136]Holmin, S., Krantz-Rulcker, C., Lundstrom, I., and Winquist, F. Drift correction of electronic tongue responses[J]. Measurement Science & Technology,2001,12(8): 1348-1354.
    [137]Holmin, S., Spangeus, P., Krantz-Rulcker, C., and Winquist, F. Compression of electronic tongue data based on voltammetry - a comparative study [J]. Sensors and Actuators B-Chemical,2001,76(1-3):455-464.
    [138]Ivarsson, P., Holmin, S., Hojer, N.E., Krantz-Rulcker, C., and Winquist, F. Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms[J]. Sensors and Actuators B-Chemical,2001,76(1-3):449-454.
    [139]Ivarsson, P., Kikkawa, Y., Winquist, F., Krantz-Rulcker, C., Hojer, N.E., Hayashi, K., Toko, K., and Lundstrom, I. Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor[J]. Analytica Chimica Acta,2001,449(1-2):59-68.
    [140]Krantz-Rulcker, C., Stenberg, .M, Winquist, F., and Lundstrom, I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition:a review[J]. Analytica Chimica Acta,2001,426(2):217-226.
    [141]Holmin, S., Bjorefors, F., Eriksson, M., Krantz-Rulcker, C., and Winquist, F. Investigation of electrode materials as sensors in a voltammetric electronic tongue[J]. Electroanalysis, 2002,14(12):839-847.
    [142]Winquist, F., Rydberg, E., Holmin, S., Krantz-Rulcker, C., and Lundstrom, I. Flow injection analysis applied to a voltammetric electronic tongue[J]. Analytica Chimica Acta,2002, 471(2):159-172.
    [143]Soderstrom, C., Boren, H., Winquist, F., and Krantz-Rulcker, C. Use of an electronic tongue to analyze mold growth in liquid media[J]. International Journal of Food Microbiology,2003, 83(3):253-261.
    [144]Soderstrom, C., Winquist, F., and Krantz-Rulcker, C. Recognition of six microbial species with an electronic tongue[J]. Sensors and Actuators B-Chemical,2003,89(3):248-255.
    [145]Holmin, S., Krantz-Rulcker, C., and Winquist, F. Multivariate optimisation of electrochemically pre-treated electrodes used in a voltammetric electronic tongue[J]. Analytica Chimica Acta,2004,519(1):39-46.
    [146]Winquist, F., Krantz-Rulcker, C., and Lundstrom, I. Electronic tongues[J]. Mrs Bulletin, 2004,29(10):726-731.
    [147]Ivarsson, P., Johansson, M., Hojer, N.E., Krantz-Rulcker, C., Winquist, F., and Lundstrom, I. Supervision of rinses in a washing machine by a voltammetric electronic tongue[J]. Sensors and Actuators B-Chemical,2005,108(1-2):851-857.
    [148]Ivarsson, P., Krantz-Rulcker, C., Winquist, F., and Lundstrom, I. A voltammetric electronic tongue[J]. Chemical Senses,2005,30:1258-1259.
    [149]Winquist, F., Bjorklund, R., Krantz-Rulcker, C., Lundstrom, I., Ostergren, K., and Skoglund, T. An electronic tongue in the dairy industry[J]. Sensors and Actuators B-Chemical,2005, 111:299-304.
    [150]Gutes, A., Cespedes, F., del Valle, M., Louthander, D., Krantz-Rulcker, C., and Winquist, F. A flow injection voltammetric electronic tongue applied to paper mill industrial waters[J]. Sensors and Actuators B-Chemical,2006,115(1):390-395.
    [151]Olsson, J., Winquist, F., and Lundstrom, I. A self polishing electronic tongue[J]. Sensors and Actuators B-Chemical,2006,118(1-2):461-465.
    [152]Olsson, J., Ivarsson, P., and Winquist, F. Determination of detergents in washing machine wastewater with a voltammetric electronic tongue[J]. Talanta,2008,76(1):91-95.
    [153]Winquist, F., Krantz-Rulcker, C., and Lundstrom, I. A miniaturized voltammetric electronic tongue[J]. Analytical Letters,2008,41(5):917-924.
    [154]Labrador, R.H., Olsson, J., Winquist, F., Martinez-Manez, R., and Sotoa, J. Determination of Bisulfites in Wines with an Electronic Tongue Based on Pulse Voltammetry[J]. Electroanalysis,2009,21(3-5):612-617.
    [155]Winquist, F., Olsson, J., and Eriksson, M. Multicomponent analysis of drinking water by a voltammetric electronic tongue[J]. Analytica Chimica Acta,2011,683(2):192-197.
    [156]Arrieta, A., Rodriguez-Mendez, M.L., and de Saja, J.A. Langmuir-Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste[J]. Sensors and Actuators B:Chemical,2003,95(1-3):357-365.
    [157]Arrieta, A.A., Apetrei, C., Rodriguez-Mendez, M.L., and de Saja, J.A. Voltammetric sensor array based on conducting polymer-modified electrodes for the discrimination of liquids[J]. Electrochimica Acta,2004,49(26):4543-4551.
    [158]Apetrei, C., Rodriguez-Mendez, M.L., Parra, V, Gutierrez, F., and de Saja, J.A. Array of voltammetric sensors for the discrimination of bitter solutions[J]. Sensors and Actuators B: Chemical,2004,103(1-2):145-152.
    [159]Parra, V, Hernando, T., Rodriguez-Mendez, M.L., and de Saja, J.A. Electrochemical sensor array made from bisphthalocyanine modified carbon paste electrodes for discrimination of red wines[J]. Electrochimica Acta,2004,49(28):5177-5185.
    [160]Parra, V., Arrieta, A.A., Fernandez-Escudero, J.A., Garcia, H., Apetrei, C., Rodriguez-Mendez, M.L., and Saja, J.A.d. E-tongue based on a hybrid array of voltammetric sensors based on phthalocyanines, perylene derivatives and conducting polymers: Discrimination capability towards red wines elaborated with different varieties of grapes[J]. Sensors and Actuators B:Chemical,2006,115(1):54-61.
    [161]Parra, V., Arrieta, A.A., Fernandez-Escudero, J.A., Iniguez, M., Saja, J.A.d., and Rodriguez-Mendez, M.L. Monitoring of the ageing of red wines in oak barrels by means of an hybrid electronic tongue[J]. Analytica Chimica Acta,2006,563(1-2):229-237.
    [162]Apetrei, C., Apetrei, I.M., Nevares, I., del Alamo, M., Parra, V., Rodriguez-Mendez, M.L. and De Saja, J.A. Using an e-tongue based on voltammetric electrodes to discriminate among red wines aged in oak barrels or aged using alternative methods:Correlation between electrochemical signals and analytical parameters[J], Electrochimica Acta,2007,52(7): 2588-2594.
    [163]Parra, V., Arrieta, A.A., Fernandez-Escudero, J.-A., Rodriguez-Mendez, M.L., and De Saja, J.A. Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines[J]. Sensors and Actuators B:Chemical,2006,118(1-2): 448-453.
    [164]Casilli, S., De Luca, M., Apetrei, C., Parra, V., Arrieta, A.A., Valli, L., Jiang, J., Rodriguez-Mendez, M.L., and De Saja, J.A. Langmuir-Blodgett and Langmuir-Schaefer films of homoleptic and heteroleptic phthalocyanine complexes as voltammetric sensors: Applications to the study of antioxidants[J]. Applied Surface Science,2005,246(4): 304-312.
    [165]Apetrei, C., Rodriguez-Mendez, M.L., and de Saja, J.A. Modified carbon paste electrodes for discrimination of vegetable oils[J]. Sensors and Actuators B:Chemical,2005,111-112: 403-409.
    [166]Apetrei, C., Gutierez, F., Rodriguez-Mendez, M.L., and de Saja, J.A. Novel method based on carbon paste electrodes for the evaluation of bitterness in extra virgin olive oils[J]. Sensors and Actuators B:Chemical,2007,121(2):567-575.
    [167]Rodriguez-Mendez, M.L., Apetrei, C., and de Saja, J.A. Evaluation of the polyphenolic content of extra virgin olive oils using an array of voltammetric sensors[J]. Electrochimica Acta,2008,53(20):5867-5872.
    [168]Apetrei, C., Apetrei, I.M., Villanueva, S., de Saja, J.A., Gutierrez-Rosales, F., and Rodriguez-Mendez, M.L. Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness[J]. Analytica Chimica Acta, 2010,663(1):91-97.
    [169]Rodriguez-Mendez, M.L., Gay, M., Apetrei, C., and De Saja, J.A. Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes[J]. Electrochimica Acta,2009, 54(27):7033-7041.
    [170]Arrieta, A.A., Rodriguez-Mendez, M.L., de Saja, J.A., Blanco, C.A., and Nimubona, D. Prediction of bitterness and alcoholic strength in beer using an electronic tongue[J]. Food Chemistry,2010,123(3):642-646.
    [171]Gay, M., Apetrei, C., Nevares, I., del Alamo, M., Zurro, J., Prieto, N., De Saja, J.A., and Rodriguez-Mendez, M.L. Application of an electronic tongue to study the effect of the use of pieces of wood and micro-oxygenation in the aging of red wine[J]. Electrochimica Acta, 2010,55(22):6782-6788.
    [172]Gutes, A., Cespedes, F., Alegret, S., and del Valle, M. Sequential injection system with higher dimensional electrochemical sensor signals:Part 1. Voltammetric e-tongue for the determination of oxidizable compounds[J]. Talanta,2005,66(5):1187-1196.
    [173]Gutes, A., Cespedes, F., Cartas, R., Alegret, S., del Valle, M., Gutierrez, J.M., and Munoz, R. Multivariate calibration model from overlapping voltammetric signals employing wavelet neural networks[J].Chemometrics and Intelligent Laboratory Systems,2006,83(2): 169-179.
    [174]Moreno-Baron, L., Cartas, R., Merkoci, A., Alegret, S., del Valle, M., Leija, L., Hernandez, P.R., and Munoz, R. Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue[J]. Sensors and Actuators B:Chemical,2006,113(1):487-499.
    [175]Gutierrez, J.M., Gutes, A., Cespedes, F., del Valle, M., and Munoz, R. Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds[J]. Talanta,2008,76(2):373-381.
    [176]Campos, I., Gil, L., Martinez-Manez, R., Soto, J., and Vivancos, J.-L. Use of a voltammetric electronic tongue for predicting levels of nerve agent mimics[J]. Procedia Chemistry,2009, 1(1):325-328.
    [177]Campos, I., Masot, R., Alcaniz, M., Gil, L., Soto, J., Vivancos, J.L., Garcia-Breijo, E., Labrador, R.H., Barat, J.M., and Martinez-Manez, R. Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue[J]. Sensors and Actuators B:Chemical,2010,149(1):71-78.
    [178]Labrador, R.H., Masot, R., Alcaniz, M., Baigts, D., Soto, J., Martinez-Manez, R., Garcia-Breijo, E., Gil, L., and Barat, J.M. Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor[J]. Food Chemistry,2010,122(3):864-870.
    [179]Men, H., Zou, S.F., Li, Y., Wang, Y.P., Ye, X.S., and Wang, P. A novel electronic tongue combined ML APS with stripping voltammetry for environmental detection[J]. Sensors and Actuators B-Chemical,2005,110(2):350-357.
    [180]Tian, S.Y., Deng, S.P., and Chen, Z.X. Multifrequency large amplitude pulse voltammetry:A novel electrochemical method for electronic tongue[J]. Sensors and Actuators B-Chemical, 2007,123(2):1049-1056.
    [181]Tian, S.Y., Deng, S.P., and Ding, C.H. Discrimination of red wine age using voltammetric electronic tongue based on multifrequency large-amplitude voltammetry and pattern recognition method[J]. Sensors and Materials,2007,19(5):287-298.
    [182]Zhao, G.Y., Lin, X.N., Dou, W.C., Tian, S.Y., Deng, S.P., and Shi, J.Q. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media[J]. Analytica Chimica Acta,2011,690(2):240-247.
    [183]Wu, J., Liu, J., Fu, M., Li, G, and Lou, Z.G Classification of Chinese yellow wines by chemometric analysis of cyclic voltammogram of copper electrodes[J]. Sensors,2005,5(12): 529-536.
    [184]Martina, V., Ionescu, K., Pigani, L., Terzi, F., Ulrici, A., Zanardi, C., and Seeber, R. Development of an electronic tongue based on a PEDOT-modified voltammetric sensor[J]. Analytical and Bioanalytical Chemistry,2007,387(6):2101-2110.
    [185]Pigani, L., Foca, G., Ulrici, A., Lonescu, K., Martina, V., Terzi, F., Vignali, M., Zanardi, C., and Seeber, R. Classification of red wines by chemometric analysis of voltammetric signals from PEDOT-modified electrodes[J]. Analytica Chimica Acta,2009,643(1-2):67-73.
    [186]Oliveri, P., Baldo, M.A., Daniele, S., and Forina, M. Development of a voltammetric electronic tongue for discrimination of edible oils[J]. Analytical and Bioanalytical Chemistry, 2009,395(4):1135-1143.
    [187]Buratti, S., Benedetti, S., Scampicchio, M., and Pangerod, E.C. Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue[J]. Analytica Chimica Acta,2004,525(1):133-139.
    [188]Scampicchio, M., Benedetti, S., Brunetti, B., and Mannino, S. Amperometric electronic tongue for the evaluation of the tea astringency[J]. Electroanalysis,2006,18(17):1643-1648.
    [189]Buratti, S., Ballabio, D., Benedetti, S., and Cosio, M.S. Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of Genetic Algorithm regression models[J]. Food Chemistry,2007, 100(1):211-218.
    [190]Cosio, M.S., Ballabio, D., Benedetti, S., and Gigliotti, C. Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue[J]. Food Chemistry,2007,101(2):485-491.
    [191]Gutes, A., Cespedes, F., Alegret, S., and del Valle, M. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis[J]. Biosensors and Bioelectronics,2005,20(8):1668-1673.
    [192]Scampicchio, M., Ballabio, D., Arecchi, A., Cosio, S.M., and Mannino, S. Amperometric electronic tongue for food analysis[J]. Microchimica Acta,2008,163(1-2):11-21.
    [193]dos Santos, D.S., Riul, A., Malmegrim, R.R., Fonseca, F.J., Oliveira, O.N., and Mattoso, L.H.C. A layer-by-layer film of chitosan in a taste sensor application[J]. Macromolecular Bioscience,2003,3(10):591-595.
    [194]Ferreira, M., Riul, A., Wohnrath, K., Fonseca, F.J., Oliveira, O.N., and Mattoso, L.H.C. High-performance taste sensor made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex[J]. Analytical Chemistry,2003,75:953-955.
    [195]Riul, A., Malmegrim, R.R., Fonseca, F.J., and Mattoso, L.H.C. An artificial taste sensor based on conducting polymers[J]. Biosensors & Bioelectronics,2003,18(11):1365-1369.
    [196]Riul, A., Soto, A.M.G, Mello, S.V., Bone, S., Taylor, D.M., and Mattoso, L.H.C. An electronic tongue using polypyrrole and polyaniline[J]. Synthetic Metals,2003,132(2): 109-116.
    [197]Borato, C.E., Riul, A., Ferreira, M., Oliveira, O.N., and Mattoso, L.H.C. Exploiting the versatility of taste sensors based on impedance spectroscopy[J]. Instrumentation Science & Technology,2004,32(1):21-30.
    [198]Constantino, C.J.L., Antunes, P.A., Venancio, E.C., Consolin, N., Fonseca, F.J., Mattoso, L.H.C., Aroca, R.F., Oliveira, O.N., and Riul, A. Nanostructured films of perylene derivatives:High performance materials for taste sensor applications[J]. Sensor Letters, 2004,2(2):95-101.
    [199]Riul, A., de Sousa, H.C., Malmegrim, R.R., dos Santos, D.S., Carvalho, A., Fonseca, F.J., Oliveira, O.N., and Mattoso, L.H.C. Wine classification by taste sensors made from ultra-thin films and using neural networks[J]. Sensors and Actuators B-Chemical,2004, 98(1):77-82.
    [200]da Silva, B.A., Antunes, P.A., Pasquini, D., Curvelo, A.A.S., Aroca, R.F., Riul, A., and Constantino, C.J.L. Nanostructured films employed as sensing units in an "electronic tongue" system[J]. Journal of Nanoscience and Nanotechnology,2007,7(2):510-514.
    [201]Aoki, P.H.B., Caetano, W., Volpati, D., Riul, A., and Constantino, C.J.L. Sensor array made with nanostructured films to detect a compound[J]. Journal of Nanoscience and Nanotechnology,2008,8(9):4341-4348.
    [202]Martins, G.F., Pereira, A.A., Straccalano, B.A., Antunes, P.A., Pasquini, D., Curvelo, A.A.S., Ferreira, M., Riul, A., and Constantino, C.J.L. Ultrathin films of lignins as a potential transducer in sensing applications involving heavy metal ions[J]. Sensors and Actuators B-Chemical,2008,129(2):525-530.
    [203]Aoki, P.H.B., Volpati, D., Riul, A., Caetano, W., and Constantino, C.J.L. Layer-by-layer technique as a new approach to produce nanostructured films containing phospholipids as transducers in sensing applications[J]. Langmuir,2009,25(4):2331-2338.
    [204]Olivati, C.A., Riul, A., Balogh, D.T., Oliveira, O.N., and Ferreira, M. Detection of phenolic compounds using impedance spectroscopy measurements[J]. Bioprocess and Biosystems Engineering,2009,32(1):41-46.
    [205]Aoki, P.H.B., Alessio, P., Riul, A., Saez, J.A.D., and Constantino, C.J.L. Coupling surface-enhanced resonance Raman scattering and electronic tongue as characterization tools to investigate biological membrane mimetic systems[J]. Analytical Chemistry,2010,82(9): 3537-3546.
    [206]Moraes, M.L., Maki, R.M., Paulovich, F.V., Rodrigues, U.P., de Oliveira, M.C.F., Riul, A., de Souza, N.C., Ferreira, M., Gomes, H.L., and Oliveira, O.N. Strategies to optimize biosensors based on impedance spectroscopy to detect phytic acid using layer-by-layer films[J]. Analytical Chemistry,2010,82(8):3239-3246.
    [207]Marchetti, A., Ahluwalia, A., Pioggia, G., Serra, G., De Rossi, D., Di Francesco, F., Domenici, C., and Francesconi, R. Development of an impedentiometric electronic tongue[J]. Sensors and Microsystems, Proceedings,2004:328-333.
    [208]Pioggia, G., Di Francesco, F., Ferro, M., Sorrentino, F., Salvo, P., and Ahluwalia, A. Characterization of a carbon nanotube polymer composite sensor for an impedimetric electronic tongue[J]. Microchimica Acta,2008,163(1-2):57-62.
    [209]Pioggia, G., Di Francesco, F., Marchetti, A., Ferro, A., Leardi, R., and Ahluwalia, A. A composite sensor array impedentiometric electronic tongue Part Ⅱ. Discrimination of basic tastes[J]. Biosensors & Bioelectronics,2007,22(11):2624-2628.
    [210]Pioggia, G., Di Francesco, F., Marchetti, A., Ferro, M., and Ahluwalia, A. A composite sensor array impedentiometric electronic tongue Part I. Characterization[J]. Biosensors & Bioelectronics,2007,22(11):2618-2623.
    [211]Cortina-Puig, M., Munoz-Berbel, X., Alonso-Lomillo, M.A., Munoz-Pascual, F.J., and del Valle, M. EIS multianalyte sensing with an automated SIA system--An electronic tongue employing the impedimetric signal[J]. Talanta,2007,72(2):774-779.
    [212]Cortina-Puig, M., Munoz-Berbel, X., del Valle, M., Munoz, F.J., and Alonso-Lomillo, M.A. Characterization of an ion-selective polypyrrole coating and application to the joint determination of potassium, sodium and ammonium by electrochemical impedance spectroscopy and partial least squares method[J]. Analytica Chimica Acta,2007,597(2): 231-237.
    [213]Masot, R., Alcaniz, M., Fuentes, A., Schmidt, F.C., Barat, J.M., Gil, L., Baigts, D., Martinez-Manez, R., and Soto, J. Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy [J]. Sensors and Actuators A:Physical,2010,158(2):217-223.
    [214]Sehra, G., Cole, M., and Gardner, J.W. Miniature taste sensing system based on dual SH-SAW sensor device:an electronic tongue[J]. Sensors and Actuators B-Chemical,2004, 103(1-2):233-239.
    [215]Leonte, II, Sehra, G., Cole, M., Hesketh, P., and Gardner, J.W. Taste sensors utilizing high-frequency SH-SAW devices[J]. Sensors and Actuators B-Chemical,2006,118(1-2): 349-355.
    [216]Kryshtal, R.G. and Medved, A.V. Single-channel shear horizontal surface acoustic wave sensor for the identification of liquid-phase substances[J]. Technical Physics Letters,2010, 36(1):63-65.
    [217]Sun, H., Mo, Z.H., Choy, J.T.S., Zhu, D.R., and Fung, Y.S. Piezoelectric quartz crystal sensor for sensing taste-causing compounds in food[J]. Sensors and Actuators B-Chemical, 2008,131(1):148-158.
    [218]Lan, Y.B., Wang, S.Z., Yin, Y.G., Hoffmann, W.C., and Zheng, X.Z. Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass[J]. Journal of Bionic Engineering,2008,5(3):239-246.
    [219]Lavigne, J.J., Savoy, S., Clevenger, M.B., Ritchie, J.E., McDoniel, B., Yoo, S.J., Anslyn, E.V., McDevitt, J.T., Shear, J.B., and Neikirk, D. Solution-based analysis of multiple analytes by a sensor array:Toward the development of an "electronic tongue"[J]. Journal of the American Chemical Society,1998,120(25):6429-6430.
    [220]Edelmann, A. and Lendl, B. Toward the optical tongue:Flow-through sensing of tannin-protein interactions based on FTIR spectroscopy[J]. Journal of the American Chemical Society,2002,124(49):14741-14747.
    [221]Sohn, Y.S., Goodey, A., Anslyn, E.V., McDevitt, J.T., Shear, J.B., and Neikirk, D.P. A microbead array chemical sensor using capillary-based sample introduction:toward the development of an "electronic tongue"[J]. Biosensors & Bioelectronics,2005,21(2): 303-312.
    [222]Hu, W., Cai, H., Fu, J., Wang, P., and Yang, G. Line-scanning LAPS array for measurement of heavy metal ions with micro-lens array based on MEMS[J]. Sensors and Actuators B-Chemical,2008,129(1):397-403.
    [223]Thete, A.R., Henkel, T., Gockeritz, R., Endlich, M., Kohler, J.M., and Gross, G.A. A hydrogel based fluorescent micro array used for the characterization of liquid analytes[J]. Analytica Chimica Acta,2009,633(1):81-89.
    [224]Chang, K.H., Chen, R.L.C., Hsieh, B.C., Chen, P.C., Hsiao, H.Y., Nieh, C.H., and Cheng, T.J. A hand-held electronic tongue based on fluorometry for taste assessment of tea[J]. Biosensors & Bioelectronics,2010,26(4):1507-1513.
    [225]Yoshikawa, K. and Matsubara, Y. Spontaneous oscillation of pH and electrical potential in an oil-water system[J]. Journal of the American Chemical Society,1983,105(19):5967-9.
    [226]Yoshikawa, K. and Matsubara, Y. Spontaneous oscillation of electrical potential across organic liquid membranes[J]. Biophysical Chemistry,1983,17(3):183-5.
    [227]Yoshikawa, K. and Matsubara, Y. Chemoreception by an excitable liquid membrane: characteristic effects of alcohols on the frequency of electrical oscillation[J]. Journal of the American Chemical Society,1984,106(16):4423-7.
    [228]Yoshikawa, K. and Matsubara, Y. Oscillation of electrical potential across a liquid membrane induced by amine vapor[J]. Langmuir,1985,1(2):230-2.
    [229]Yoshikawa, K., Omochi, T., and Matsubara, Y. Chemoreception of sugars by an excitable liquid membrane[J]. Biophysical Chemistry,1986,23(3-4):211-14.
    [230]Yoshikawa, K., Omochi, T., Matsubara, Y, and Kourai, H. A possibility to recognize chirality by an excitable artificial liquid membrane[J]. Biophysical Chemistry,1986,24(2): 111-19.
    [231]Yoshikawa, K., Sakabe, K., Matsubara, Y, and Ota, T. Oscillation of electrical potential in a porous membrane doped with glycerol alpha -monooleate induced by an sodium/potassium concentration gradient[J]. Biophysical Chemistry,1984,20(1-2):107-9.
    [232]Yoshikawa, K., Sakabe, K., Matsubara, Y., and Ota, T. Self-excitation in a porous membrane doped with sorbitan monooleate (Span-80) induced by an sodium/potassium concentration gradient[J]. Biophysical Chemistry,1985,21(1):33-9.
    [233]Ishii, T., Kuroda, Y, Yoshikawa, K., Sakabe, K., Matsubara, Y, and Iriyama, K. Oscillation of electrical potential in a porous-membrane doped with triolein induced by an sodium-potassium concentration gradient[J]. Biochemical and Biophysical Research Communications,1984,123(2):792-6.
    [234]Toko, K. and Yamafuji, K. Stabilization effect of protons and divalent cations on membrane structures of lipids[J]. Biophysical Chemistry,1981,14(1):11-23.
    [235]Toko, K. and Yamafuji, K. Rote of Ca2+ in the formation of an excitable membrane on the surface of a protoplasmic droplet of nitella[J]. Journal of Theoretical Biology,1982,99(3): 461-478.
    [236]Toko, K., Tsukiji, M., Ezaki, S., and Yamafuji, K. Current-voltage characteristics and self-sustained oscillations in dioleyl phosphate-millipore membranes[J]. Biophysical Chemistry,1984,20(1-2):39-59.
    [237]Toko, K., Nosaka, M, Tsukiji, M., and Yamafuji, K. Dynamic property of membrane formation in a protoplasmic droplet of nitella[J]. Biophysical Chemistry,1985,21(3-4): 295-313.
    [238]Toko, K., Yoshikawa, K., Tsukiji, M., Nosaka, M., and Yamafuji, K. On the oscillatory phenomenon in an oil/water interface[J]. Biophysical Chemistry,1985,22(3):151-158.
    [239]Toko, K., Tsukiji, M., Iiyama, S., and Yamafuji, K. Self-sustained oscillations of electric potential in a model membrane[J]. Biophysical Chemistry,1986,23(3-4):201-210.
    [240]Iiyama, S., Toko, K., and Yamafuji, K. Electric oscillation in an excitable model membrane impregnated with lipid analogues[J]. Biophysical Chemistry,1987,28(2):129-135.
    [241]Hayashi, K., Yamafuji, K., Toko, K., Ozaki, N., Yoshida, T., Iiyama, S., and Nakashima, N. Effect of taste substances on electric characteristics of a lipid cast membrane with a single pore[J]. Sensors and Actuators,1989,16(1-2):25-42.
    [242]Toko, K., Ozaki, N., Iiyama, S., Yamafuji, K., Matsui, Y, Yamafuji, K., Saito, M., and Kato, M. Electrical characteristics in an excitable element of lipid membrane[J]. Biophysical Chemistry,1991,41(2):143-156.
    [243]Iiyama, S., Toko, K., Murata, T., Ichinose, H., Suezaki, Y, Kamaya, H., Ueda, I., and Yamafuji, K. Cutoff effect of n-alkanols in an excitable model membrane composed of dioleyl phosphate[J]. Biophysical Chemistry,1992,45(2):91-100.
    [244]金利通,宋丰斌,柏竹平,方禹之.味觉电化学传感器的研究Ⅰ.甜、酸、苦、咸味物质对模拟生物膜膜电位振动频率的影响[J].分析化学,1993,21(11):1330-1333.
    [245]金利通,孙文梁,孙星炎,方禹之.味觉电化学传感器的研究Ⅱ.苦味物质对模拟生物膜膜电位的影响[J].分析化学,1994,22(1):64-66.
    [246]金利通,毛煜,刘彤.味觉电化学传感器的研究——黄连素对模拟生物膜的响应[J].分析科学学报,1994,10(2):16-20.
    [247]金利通,宋丰斌,柏竹平.味觉电化学传感器的研究——甜味物质对模拟生物膜电位振荡的影响[J].分析试验室,1994,13(4):15-18.
    [248]金利通,孙文梁,柏竹平.味觉电化学传感器的研究——模拟生物膜对甜味物质的响应[J].分析试验室,1994,13(6):8-10.
    [249]金利通,毛煜,刘彤,方禹之.味觉电化学传感器的研究——有味物质对一新液膜振荡体系电位振荡的影响[J].分析科学学报,1995,11(4):11-14.
    [250]金利通,孙文梁,柏竹平,方禹之.味觉电化学传感器的研究——可兴奋性脂膜对有 味物质的响应[J].华东师范大学学报(自然科学版),1996,(2):66-71.
    [251]张文,柏竹平,金利通.味觉传感器的研究——一个新的液膜电位振荡体系对酸、甜、苦、鲜物质的定性识别与定量检测[J].分析试验室,1996,15(6):9-12.
    [252]金利通,张文,柏竹平,赖宗声,胡建.味觉传感器的研究——用计算机对一个新的液膜体系中酸味物质的定量测定[J].化学传感器,1996,16(1):32-35.
    [253]张文,柏竹平,金利通,赖宗声,胡建.味觉传感器的研究——计算机对一个新的液膜体系中酸、甜、苦、咸物质的定性测定[J].华东师范大学学报(自然科学版),1997,(2):56-61.
    [254]胡建,赖宗声,张文,金利通.模糊处理在味觉识别中的应用[J].传感技术学报,1997,(1):1-6.
    [255]赖宗声,胡建,张文.一种新的通用味觉定量测试系统的设计[J].电子测量与仪器学报,1997,11(2):16-21.
    [256]Szpakowska, M., Szwacki, J., and Lisowska-Oleksiak, A. Investigation of some taste substances using a set of electrodes with lipid-modified membranes[J]. Desalination,2004, 163(1-3):55-59.
    [257]Plocharska-Jankowska, E., Szpakowska, M., Matefi-Tempfli, S., and Nagy, O.B. On the possibility of molecular recognition of taste substances studied by Gabor analysis of oscillations[J]. Biophysical Chemistry,2005,114(2-3):85-93.
    [258]Szpakowska, M., Plocharska-Jankowska, E., and Nagy, O.B. On the new possibility of applying oscillating liquid membrane systems for molecular recognition substances responsible for taste[J]. Desalination,2005,173(1):61-67.
    [259]Szpakowska, M., Magnuszewska, A., and Czaplicka, I. Oscillating water-oil-water liquid membrane systems for molecular recognition of substances belonging to different taste classes[J]. Fresenius Environmental Bulletin,2006,15(12B):1574-1577.
    [260]Szpakowska, M., Magnuszewska, A., and Plocharska-Jankowska, E. Possibility of discrimination of sour substances by liquid membrane oscillators[J]. Desalination,2006, 198(1-3):353-359.
    [261]Szpakowska, M., Magnuszewska, A., and Szwacki, J. On the possibility of using liquid or lipid, lipid like-polymer membrane systems as taste sensor[J]. Journal of Membrane Science, 2006,273(1-2):116-123.
    [262]Szpakowska, M. Liquid membrane oscillators [J]. Desalination,2009,241(1-3):349-356.
    [263]Szpakowska, M., Marjanska, E., and Lisowska-Oleksiak, A. Investigation of sour substances by a set of all-solid-state membrane electrodes[J]. Desalination,2009,241(1-3):236-243.
    [264]Hayashi, K., Toko, K., Yamanaka, M., Yoshihara, H., Yamafuji, K., Sato, K., Toukubo, R., and Ikezaki, H. Electric characteristics of lipid-modified monolayer membranes for taste sensors[J]. Sensors and Actuators B:Chemical,1995,23(1):55-61.
    [265]Iiyama, S., Azuma, Y., Nagaishi, M., and Toko, K. Change in electric characteristics of membranes in response to taste stimuli with increasing amount of lipids in membrane matrix of PVC and plasticizer[J]. Biophysical Chemistry,1996,61(1):23-27.
    [266]Oohira, K. and Toko, K. Theory of electric characteristics of the lipid/PVC/DOPP membrane and PVC/DOPP membrane in response to taste stimuli[J]. Biophysical Chemistry, 1996,61(1):29-35.
    [267]Iiyama, S., Kuga, H., Ezaki, S., Hayashi, K., and Toko, K. Peculiar change in membrane potential of taste sensor caused by umami substances[J]. Sensors and Actuators B:Chemical, 2003,91(1-3):191-194.
    [268]Arikawa, Y., Toko, K., Ikezaki, H., Shinha, Y., Ito, T., Oguri, I., and Baba, S. Analysis of sake mash using multichannel taste sensor[J]. Journal of Fermentation and Bioengineering, 1996,82(4):371-376.
    [269]Iiyama, S., Suzuki, Y., Ezaki, S., Arikawa, Y, and Toko, K. Objective scaling of taste of sake using taste sensor and glucose sensor[J]. Materials Science and Engineering:C,1996,4(1): 45-49.
    [270]Imamura, T., Toko, K., Yanagisawa, S., and Kume, T. Monitoring of fermentation process of miso (soybean paste) using multichannel taste sensor[J]. Sensors and Actuators B:Chemical, 1996,37(3):179-185.
    [271]Yamada, H., Mizota, Y, Toko, K., and Doi, T. Highly sensitive discrimination of taste of milk with homogenization treatment using a taste sensor[J]. Materials Science and Engineering:C,1997,5(1):41-45.
    [272]Iiyama, S., Yahiro, M., and Toko, K. Measurements of soy sauce using taste sensor[J]. Sensors and Actuators B:Chemical,2000,66(1-3):205-206.
    [273]Sakai, H., Iiyama, S., and Toko, K. Evaluation of water quality and pollution using multichannel sensors[J]. Sensors and Actuators B:Chemical,2000,66(1-3):251-255.
    [274]Ju, M.-J., Hayama, K., Hayashi, K., and Toko, K. Discrimination of pungent-tasting substances using surface-polarity controlled sensor with indirect in situ modification[J]. Sensors and Actuators B:Chemical,2003,89(1-2):150-157.
    [275]Habara, M., Ikezaki, H., and Toko, K. Study of sweet taste evaluation using taste sensor with lipid/polymer membranes[J]. Biosensors and Bioelectronics,2004,19(12):1559-1563.
    [276]Nagamori, T., Toko, K., Kikkawa, Y., Watanabe, T., and Endou, K. Detection of the suppression of saltiness by umami substances using a taste sensor[J]. Sensors and Materials, 1999,11(8):469-477.
    [277]Takagi, S., Toko, K., Wada, K., and Ohki, T. Quantification of suppression of bitterness using an electronic tongue[J]. Journal of Pharmaceutical Sciences,2001,90(12):2042-2048.
    [278]Shen, H.F., Habara, M., and Toko, K. Development of caffeine detection using taste sensor with lipid/polymer membranes[J]. Sensors and Materials,2008,20(4):171-178.
    [279]Kobayashi, Y, Habara, M., Ikezazki, H., Chen, R.G., Naito, Y, and Toko, K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores[J]. Sensors,2010,10(4):3411-3443.
    [280]Vlasov, Y.G., Bychkov, E.A., and Legin, A.V. Chalcogenide glass chemical sensors-research and analytical applications[J]. Talanta,1994,41(6):1059-1063.
    [281]Di Natale, C., Davide, F., Brunink, J.A.J., D'Amico, A., Vlasov, Y.G., Legin, A.V., and Rudnitskaya, A.M. Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array[J]. Sensors and Actuators B: Chemical,1996,34(1-3):539-542.
    [282]Legin, A.V., Vlasov, Y.G., Rudnitskaya, A.M., and Bychkov, E.A. Cross-sensitivity of chalcogenide glass sensors in solutions of heavy metal ions[J]. Sensors and Actuators B: Chemical,1996,34(1-3):456-461.
    [283]Schubert, J., Schoning, M.J., Schmidt, C., Siegert, M., Mesters, S., Zander, W., Kordos, P., Luth, H., Legin, A., Mourzina, Y.G., Seleznev, B., and Vlasov, Y.G. Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique[J]. Applied Physics a-Materials Science & Processing,1999,69:S803-S805.
    [284]Legin, A., Rudnitskaya, A., Vlasov, Y., Di Natale, C., Mazzone, E., and D'Amico, A. Application of electronic tongue for quantitative analysis of mineral water and wine[J]. Electroanalysis,1999,11(10-11):814-820.
    [285]Legin, A., Smirnova, A., Rudnitskaya, A., Lvova, L., Suglobova, E., and Vlasov, Y. Chemical sensor array for multicomponent analysis of biological liquids[J]. Analytica Chimica Acta,1999,385(1-3):131-135.
    [286]Legin, A.V., Rudnitskaya, A.M., Vlasov, Y.G., Di Natale, C., and D'Amico, A. The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors[J]. Sensors and Actuators B-Chemical,1999,58(1-3):464-468.
    [287]Schoning, M.J., Schmidt, C., Schubert, J., Zander, W., Mesters, S., Kordos, P., Luth, H., Legin, A., Seleznev, B., and Vlasov, Y.G. Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique [J]. Sensors and Actuators B-Chemical,2000,68(1-3):254-259.
    [288]Mortensen, J., Legin, A., Ipatov, A., Rudnitskaya, A., Vlasov, Y., and Hjuler, K. A flow injection system based on chalcogenide glass sensors for the determination of heavy metals[J]. Analytica Chimica Acta,2000,403(1-2):273-277.
    [289]Mourzina, Y.G., Schubert, J., Zander, W., Legin, A., Vlasov, Y.G., Luth, H., and Schoning, M.J. Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions [J]. Electrochimica Acta,2001,47(1-2):251-258.
    [290]Legin, A., Makarychev-Mikhailov, S., Goryacheva, O., Kirsanov, D., and Vlasov, Y. Cross-sensitive chemical sensors based on tetraphenylporphyrin and phthalocyanine[J]. Analytica Chimica Acta,2002,457(2):297-303.
    [291]Toczylowska-Maminska, R., Ciosek, P., Ciok, K., and Wroblewski, W. Development of a miniaturised electrochemical cell integrated on epoxy-glass laminate[J]. Microchimica Acta, 2008,163(1-2):89-95.
    [292]Ciosek, P. and Wroeblewski, W. Miniaturized electronic tongue with an integrated reference microelectrode for the recognition of milk samples[J]. Talanta,2008,76(3):548-556.
    [293]Gallardo, J., Alegret, S., de Roman, M.A., Munoz, R., Hernandez, P.R., Leija, L., and del Valle, M. Determination of ammonium ion employing an electronic tongue based on potentiometric sensors[J]. Analytical Letters,2003,36(14):2893-2908.
    [294]Gallardo, J., Alegret, S., Munoz, R., De-Roman, M., Leija, L., Hernandez, P.R., and del Valle, M. An electronic tongue using potentiometric all-solid-state PVC-membrane sensors for the simultaneous quantification of ammonium and potassium ions in water[J]. Analytical and Bioanalytical Chemistry,2003,377(2):248-256.
    [295]Gallardo, J., Alegret, S., Munoz, R., Leija, L., Hernandez, P.R., and del Valle, M. Use of an electronic tongue based on all-solid-state potentiometric sensors for the quantitation of alkaline ions[J]. Electroanalysis,2005,17(4):348-355.
    [296]Cortina, M., Duran, A., Alegret, S., and del Valle, M. A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination[J]. Analytical and Bioanalytical Chemistry,2006,385(7):1186-1194.
    [297]Duran, A., Cortina, M., Velasco, L., Rodriguez, J.A., Alegret, S., and del Valle, M. Virtual instrument for an automated potentiometric e-tongue employing the SIA technique[J]. Sensors,2006,6(1):19-29.
    [298]Calvo, D., Bartroli, J., and del Valle, M. Multicomponent titration of calcium plus magnesium mixtures employing a potentiometric electronic-tongue [J]. Analytical Letters, 2007,40(8):1579-1595.
    [299]Calvo, D., Grossl, M., Cortina, M., and del Valle, M. Automated SIA system using an array of potentiometric sensors for determining alkaline-earth ions in water[J]. Electroanalysis, 2007,19(6):644-651.
    [300]Calvo, D., Duran, A., and del Valle, M. Use of pulse transient response as input information for an automated SIA electronic tongue[J]. Sensors and Actuators B:Chemical,2008,131(1): 77-84.
    [301]Gutierrez, M., Alegret, S., Caceres, R., Casadesus, J., Marfa, O., and Del Valle, M. Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue[J]. Journal of Agricultural and Food Chemistry,2008,56(6):1810-1817.
    [302]Gutierrez, M., Alegret, S., and del Valle, M. Bioelectronic tongue for the simultaneous determination of urea, creatinine and alkaline ions in clinical samples[J]. Biosensors and Bioelectronics,2008,23(6):795-802.
    [303]Gutierrez, M., Gutierrez, J.M., Alegret, S., Leija, L., Hernandez, P.R., Favari, L., Munoz, R., and Del Valle, M. Remote environmental monitoring employing a potentiometric electronic tongue[J]. International Journal of Environmental Analytical Chemistry,2008,88(2): 103-117.
    [304]Gutierrez, M., Moo, V.M., Alegret, S., Leija, L., Hernandez, P.R., Munoz, R., and del Valle, M. Electronic tongue for the determination of alkaline ions using a screen-printed potentiometric sensor array[J]. Microchimica Acta,2008,163(1-2):81-88.
    [305]Cartas, R., Mimendia, A., Legin, A., and del Valle, M. Two analyte calibrations from the transient response of a single potentiometric sensor employed with the SIA technique[J]. Talanta,2010,80(3):1428-1435.
    [306]Mimendia, A., Gutierrez, J.M., Leija, L., Hernandez, P.R., Favari, L., Munoz, R., and del Valle, M. A review of the use of the potentiometric electronic tongue in the monitoring of environmental systems[J]. Environmental Modelling & Software,2010,25(9):1023-1030.
    [307]Wilson, D., Abbas, M.N., Radwan, A.L.A., and del Valle, M. Potentiometric electronic tongue to resolve mixtures of sulfide and perchlorate anions[J]. Sensors,2011,11(3): 3214-3226.
    [308]D'Amico, A., Di Natale, C., and Paolesse, R. Portraits of gasses and liquids by arrays of nonspecific chemical sensors:trends and perspectives[J]. Sensors and Actuators B:Chemical, 2000,68(1-3):324-330.
    [309]Paolesse, R., Natale, C.D., Burgio, M., Martinelli, E., Mazzone, E., Palleschi, G., and D'Amico, A. Porphyrin-based array of cross-selective electrodes for analysis of liquid samples[J]. Sensors and Actuators B:Chemical,2003,95(1-3):400-405.
    [310]Di Natale, C., Paolesse, R., Burgio, M., Martinelli, E., Pennazza, G., and D'Amico, A. Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine[J]. Analytica Chimica Acta,2004,513(1):49-56.
    [311]Lvova, L., Paolesse, R., Di Natale, C., and D'Amico, A. Detection of alcohols in beverages: An application of porphyrin-based Electronic tongue[J]. Sensors and Actuators B:Chemical, 2006,118(1-2):439-447.
    [312]Martinez-Manez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibanez, J., and Gadea, E. A multisensor in thick-film technology for water quality control[J]. Sensors and Actuators A: Physical,2005,120(2):589-595.
    [313]Gil, L., Garcia-Breijo, E., Ibanez, J., Labrador, R.H., Llobet, E., Martinez-Manez, R., and Soto, J. Electronic tongue for qualitative analysis of aqueous solutions of salts using thick-film technology and metal electrodes[J]. Sensors,2006,6(9):1128-1138.
    [314]Gil, L., Barat, J.M., Escriche, I., Garcia-Breijo, E., Martinez-Manez, R., and Soto, J. An electronic tongue for fish freshness analysis using a thick-film array of electrodes[J]. Microchimica Acta,2008,163(1-2):121-129.
    [315]Labrador, R., Soto, J., Martinez-Manez, R., and Gil, L. An electronic tongue for qualitative and quantitative analyses of anions in natural waters[J]. Journal of Applied Electrochemistry, 2009,39(12):2505-2511.
    [316]Dias, L.A., Peres, A.M., Vilas-Boas, M., Rocha, M.A., Estevinho, L., and Machado, A.A.S.C. An electronic tongue for honey classification[J]. Microchimica Acta,2008, 163(1-2):97-102.
    [317]Dias, L.A., Peres, A.M., Veloso, A.C.A., Reis, F.S., Vilas-Boas, M., and Machado, A.A.S.C. An electronic tongue taste evaluation:Identification of goat milk adulteration with bovine milk[J]. Sensors and Actuators B:Chemical,2009,136(1):209-217.
    [318]Dias, L.G., Peres, A.M., Barcelos, T.P., Sa Morais, J., and Machado, A.A.S.C. Semi-quantitative and quantitative analysis of soft drinks using an electronic tongue[J]. Sensors and Actuators B:Chemical,2011,154(2):111-118.
    [319]Peres, A.M., Dias, L.G., Veloso, A.C.A., Meirinho, S.G., Morais, J.S., and Machado, A.A.S.C. An electronic tongue for gliadins semi-quantitative detection in foodstuffs [J]. Talanta,2011,83(3):857-864.
    [320]Kulapin, A.I., Chernova, R.K., Kulapina, E.G., and Mikhaleva, N.M. Separate detection of homologous surfactants by means of solid-contact unmodified and modified with molecular sieves potentiometric sensors[J]. Talanta,2005,66(3):619-626.
    [321]Kulapina, E.G. and Mikhaleva, N.M. The analysis of multicomponent solutions containing homologous ionic surfactant with sensor arrays[J]. Sensors and Actuators B-Chemical,2005, 106(1):271-277.
    [322]Lomborg, C.J., Wiebe, L., and Esbensen, K.H. At-line determination of octanoic acid in cultivation broth - An electronic tongue (ET) feasibility study[J]. Journal of Biotechnology, 2008,133(1):162-169.
    [323]Kanai, Y., Shimizu, M., Uchida, H., Nakahara, H., Zhou, C.G., Maekawa, H., and Katsube, T. Integrated taste sensor using surface photovoltage technique[J]. Sensors and Actuators B-Chemical,1994,20(2-3):175-179.
    [324]Sasaki, Y., Kanai, Y., Uchida, H., and Katsube, T. Highly sensitive taste sensor with a new differntial LAPS method[J]. Sensors and Actuators B-Chemical,1995,25(1-3):819-822.
    [325]Ipatov, A., Zinoviev, K., Abramova, N., and Bratov, A. Light addressable potentiometric sensor array:a new approach for light beam positioning[J]. Eurosensor Xxiv Conference, 2010,5:625-628.
    [326]李毅,王银瓶,邹绍芳,门洪,王平.海洋环境检测的电子舌研究[A].第九届全国敏感元件与传感器学术会议论文集[C].2005,388-391.
    [327]贺慧琦,李蓉,叶学松,王平,刘振梅,徐志康.基于LB膜的集成味觉LAPS图像传感器(续一)[J].仪表技术与传感器,2001,(9):1-2,41.
    [328]贺慧琦,李蓉,叶学松,王平,刘振梅,徐志康.基于LB膜的集成味觉LAPS图像传感器(续完)[J].仪表技术与传感器,2001,(10):6,15.
    [329]刘大龙,方昉,门洪,韩清鹏,贺慧琦,王平.用于环境检测的电子舌研究[J].传感技术学报,2004,17(1):1-6.
    [330]Gutes, A., Ibanez, A.B., Cespedes, F., Alegret, S., and del Valle, M. Simultaneous determination of phenolic compounds by means of an automated voltammetric "electronic tongue"[J]. Analytical and Bioanalytical Chemistry,2005,382(2):471-476.
    [331]Moreno-Baron, L., Cartas, R., Merkoci, A., Alegret, S., Gutierrez, J.M., Leija, L., Hernandez, P.R., Munoz, R., and del Valle, M. Data compression for a voltammetric electronic tongue modelled with artificial neural networks[J]. Analytical Letters,2005,38(13):2189-2206.
    [332]Gutes, A., Ibanez, A.B., del Valle, M., and Cespedes, F. Automated SIA e-tongue employing a voltammetric biosensor array for the simultaneous determination of glucose and ascorbic acid[J]. Electroanalysis,2006,18(1):82-88.
    [333]Gutes, A., Calvo, D., Cespedes, F., and del Valle, M. Automatic sequential injection analysis electronic tongue with integrated reference electrode for the determination of ascorbic acid, uric acid and paracetamol[J]. Microchimica Acta,2007,157(1-2):1-6.
    [334]Cartas, R., Moreno-Baron, L., Merkoci, A., Alegret, S., del Valle, M., Gutierrez, J.M., Leija, L., Hernandez, P.R., and Munoz, R. Multivariate calibration model for a voltammetric electronic tongue based on a multiple output wavelet neural network[J]. Biologically Inspired Signal Processing for Chemical Sensing,2009,188:137-167.
    [335]Gutierrez, J.M., Moreno-Baron, L., Cespedes, F., Munoz, R., and del Valle, M. Resolution of heavy metal mixtures from highly overlapped ASV voltammograms employing a wavelet neural network[J]. Electroanalysis,2009,21(3-5):445-451.
    [336]Gutierrez, J.M., Moreno-Baron, L., del Valle, M., Leija, L., and Munoz, R. Wavelet neural networks as a multivariate calibration method in voltammetric electronic tongue[J]. Neural Network World,2009,19(1):53-64.
    [337]Gutierrez, J.M., Moreno-Baron, L., Pividori, M.I., Alegret, S., and del Valle, M. A voltammetric electronic tongue made of modified epoxy-graphite electrodes for the qualitative analysis of wine[J]. Microchimica Acta,2010,169(3-4):261-268.
    [338]Ceto, X., Gutierrez, J.M., Moreno-Baron, L., Alegret, S., and del Valle, M. Voltammetric electronic tongue in the analysis of Cava wines[J]. Electroanalysis,2011,23(1):72-78.
    [339]方防,韩清鹏,刘大龙,李悦,俞飞,王平.选择性电极和脉冲伏安法联用检测痕量重金属元素的电子舌研究[A].第八届敏感元件与传感器学术会议论文集[C].2003,726-729.
    [340]邹绍芳,范影乐,王平.基于微电极阵列的自动环境监测电子舌的设计[J].仪器仪表学报,2007,28(9):1641-1645.
    [341]邹绍芳,范影乐,王平.集成多传感器的环境监测电子舌的研究[J].传感技术学报,2007,20(7):1457-1460.
    [342]潘跃峰,吝涛,付静,王平.水污染动态实时监测的便携式电子舌分析仪[J].微纳电子技术,2007,44(7):351-352,362.
    [343]李毅,王银瓶,吝涛,胡卫军,潘跃峰,王平,王正方,吕海燕.船载海洋环境重金属检测的电子舌研究[J].传感技术学报,2007,20(1):32-37.
    [344]田师一,邓少平.多频脉冲电子舌对酒类品种区分与辨识[J].酿酒科技,2006,(11):24-26.
    [345]李华,丁春晖,尹春丽,田师一,邓少平.电子舌对昌黎原产地干红葡萄酒的区分辨识[J].食品与发酵工业,2008,34(3):130-132.
    [346]韩剑众,黄丽娟,顾振宇,田师一,邓少平.基于电子舌的肉品品质及新鲜度评价研究[J].中国食品学报,2008,8(3):125-132.
    [347]韩剑众,黄丽娟,顾振宇,田师一,邓少平.基于电子舌的鱼肉品品质及新鲜度评价[J].农业工程学报,2008,24(12):141-144.
    [348]范佳利,韩剑众,田师一,邓少平.基于电子舌的乳制品品质及新鲜度评价[J].食品与发酵工业,2009,35(6):177-180.
    [349]赵广英,黄建锋,邓少平,田师一.多频脉冲电子舌鉴别食源性致病菌[J].中国食品学报,2009,9(5):184-189.
    [350]钟海军,田师一,邓少平.智能型电子舌的虚拟仪器构建技术[J].仪表技术与传感器,2009,35(10):31-34,38.
    [351]张夏宾,王晓萍.基于调幅脉冲扫描法的电子舌及其在酒类识别中的应用[J].传感技术学报,2007,20(3):489-492.
    [352]林伟欣,田作华,王晓萍.一种基于三电极体系的人工电子舌的实现方法[J].测控技术,2007,26(6):9-11.
    [353]张夏宾,王晓萍,田师一,梁捷.新型伏安型多频脉冲电子舌及其应用[J].浙江大学学报(工学版),2008,42(10):1706-1709,1769.
    [354]吴坚,刘军,傅敏,李光.一种基于电子舌技术的绿茶分类方法[J].传感技术学报,2006,19(4):963-965,969.
    [355]Heras, J.Y., Pallarola, D., and Battaglini, F. Electronic tongue for simultaneous detection of endotoxins and other contaminants of microbiological origin[J]. Biosensors & Bioelectronics, 2010,25(11):2470-2476.
    [356]Heras, J.Y., Rodriguez, S.D., Negri, R.M., and Battaglini, F. Chelating electrodes as taste sensor for the trace assessment of metal ions[J]. Sensors and Actuators B-Chemical,2010, 145(2):726-733.
    [357]Bhondekar, A.P., Dhiman, M., Sharma, A., Bhakta, A., Ganguli, A., Bari, S.S., Vig, R., Kapur, P., and Singla, M.L. A novel iTongue for Indian black tea discrimination[J]. Sensors and Actuators B-Chemical,2010,148(2):601-609.
    [358]郭希山,潘敏,李光,陈裕泉,王立人.基于凝胶与纳米碳管复合体化学传感器的研究及人工味觉应用[J].传感技术学报,2003,(4):447-451.
    [359]郭希山,童基均,杨祥龙,王立人.高聚物碳黑复合体化学传感器的研究及其在电子舌中的应用[J].传感技术学报,2006,19(3):569-572.
    [360]Wang, P., Liu, Q.J., Xu, Y., Cai, H., and Li, Y. Olfactory and taste cell sensor and its applications in biomedicine[J]. Sensors and Actuators a-Physical,2007,139(1-2):131-138.
    [361]Wang, P., Liu, Q.J., Zhang, W., and Cal, H. Design of biomimetic electronic nose and electronic tongue[J]. Sensors and Materials,2007,19(5):309-323.
    [362]Zhang, W., Li, Y, Liu, Q.J., Xu, Y, Cai, H., and Wang, P. A novel experimental research based on taste cell chips for taste transduction mechanism[J]. Sensors and Actuators B-Chemical,2008,131(1):24-28.
    [363]Chen, P.H., Liu, X.D., Wang, B.Q., Cheng, G, and Wang, P. A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation[J]. Sensors and Actuators B-Chemical,2009,139(2):576-583.
    [364]陈培华,张威,陈鹏,周子予,刘清君,王平.基于LAPS芯片的味觉感受细胞敏感和传导的研究[J].中国生物医学工程学报,2010,29(2):265-269.
    [365]Wang, T.H., Hui, G.H., and Deng, S.P. A novel sweet taste cell-based sensor[J]. Biosensors & Bioelectronics,2010,26(2):929-934.
    [366]Rahman, A.S.A., Yap, M.M.S., Shakaff, A.Y.M., Ahmad, M.N., Dahari, Z., Ismail, Z., and Hitam, M.S. A microcontroller-based taste sensing system for the verification of Eurycoma longifolia[J]. Sensors and Actuators B-Chemical,2004,101(1-2):191-198.
    [367]Moreno, L., Merlos, A., Abramova, N., Jimenez, C., and Bratov, A. Multi-sensor array used as an "electronic tongue" for mineral water analysis[J]. Sensors and Actuators B-Chemical, 2006,116(1-2):130-134.
    [368]Moreno i Codinachs, L., Kloock, J.P., Schoning, M.J., Baldi, A., Ipatov, A., Bratov, A., and Jimenez-Jorquera, C. Electronic integrated multisensor tongue applied to grape juice and wine analysis[J]. Analyst,2008,133(10):1440-8.
    [369]Ipatov, A., Abramova, N., Bratov, A., and Dominguez, C. Integrated multisensor chip with sequential injection technique as a base for "electronic tongue" devices[J]. Sensors and Actuators B-Chemical,2008,131(1):48-52.
    [370]Twomey, K., de Eulate, E.A., Alderman, J., and Arrigan, D.W.M. Fabrication and characterization of a miniaturized planar voltammetric sensor array for use in an electronic tongue[J]. Sensors and Actuators B-Chemical,2009,140(2):532-541.
    [371]Paixao, T. and Bertotti, M. Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration[J]. Sensors and Actuators B-Chemical,2009,137(1):266-273.
    [372]胡文蕾,王平.传感器信息融合技术及其在生物医学检测中的应用[J].国外医学生物医学工程分册,1998,21(4):228-237.
    [373]Rong, L., Ping, W., and Wenlei, H. A novel method for wine analysis based on sensor fusion technique[J]. Sensors and Actuators B:Chemical,2000,66(1-3):246-250.
    [374]Gutierrez, M., Llobera, A., Vila-Planas, J., Capdevila, F., Demming, S., Buttgenbach, S., Minguez, S., and Jimenez-Jorquera, C. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine[J]. Analyst,2010,135(7): 1718-1725.
    [375]Bleibaum, R.N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E., and Isz, S. Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices[J]. Food Quality and Preference,2002,13(6):409-422.
    [376]Kantor, D.B., Hitka, G., Fekete, A., and Balla, C. Electronic tongue for sensing taste changes with apricots during storage[J]. Sensors and Actuators B-Chemical,2008,131(1):43-47.
    [377]Chen, Q.S., Zhao, J.W., and Vittayapadung, S. Identification of the green tea grade level using electronic tongue and pattern recognition[J]. Food Research International,2008,41(5): 500-504.
    [378]He, W., Hu, X.S., Zhao, L., Liao, X.J., Zhang, Y., Zhang, M.W., and Wu, J.H. Evaluation of Chinese tea by the electronic tongue:Correlation with sensory properties and classification according to geographical origin and grade level[J]. Food Research International,2009, 42(10):1462-1467.
    [379]Wei, Z.B., Wang, J., and Liao, W.Y. Technique potential for classification of honey by electronic tongue[J]. Journal of Food Engineering,2009,94(3-4):260-266.
    [380]Wei, Z.B. and Wang, J. Discrimination of honeys by electronic tongue and different analytical techniques [J]. Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Vols 1-9,2009:3784-3788.
    [381]Xiao, H. and Wang, J. Discrimination of Xihulongjing tea grade using an electronic tongue[J]. African Journal of Biotechnology,2009,8(24):6985-6992.
    [382]Hruskar, M., Major, N., and Krpan, M. Application of a potentiometric sensor array as a technique in sensory analysis[J]. Talanta,2010,81(1-2):398-403.
    [383]王新宇,陈全胜.利用电子舌识别炒青绿茶的等级[J].安徽农业科学,2007,35(28):8872-8873.
    [384]陈全胜,江水泉,王新宇.基于电子舌技术和模式识别方法的茶叶质量等级评判[J].食品与机械,2008,24(1):124-126.
    [385]张浩玉,张柯,黄星奕.基于电子舌技术的不同口味醋豆的辨别[J].食品科技,2009,34(9):290-294.
    [386]黄星奕,王慧.电子舌技术对香醋发酵过程的监控研究[J].中国酿造,2009,211(10):82-85.
    [387]李阳,陈芹芹,胡雪芳,姜莎,刘远方,冯高迁,李景明,倪元颖.电子舌技术在啤酒口感评价中的应用[J].食品研究与开发,2008,29(11):122-127.
    [388]姜莎,陈芹芹,胡雪芳,杨阳,倪元颖.电子舌在红茶饮料区分辨识中的应用[J].农业工程学报,2009,25(11):345-349.
    [389]贺玮,胡小松,赵镭,廖小军,张燕,吴继红.电子舌技术在普洱散茶等级评价中的应用[J].食品工业科技,2009,30(11):125-127,131.
    [390]鲁小利,王俊.基于遗传优化神经网络的电子舌在黄酒检测中的应用[J].电子技术应用,2009,35(7):91-94.
    [391]王俊,姚聪.基于电子舌技术的葡萄酒分类识别研究[J].传感技术学报,2009,22(8):1088-1093.
    [392]王永维,王俊,朱晴虹.基于电子舌的白酒检测区分研究[A].2009年近代农产品和食 品加工技术及装备学术年会论文集[C].2009,57-61.
    [393]吴从元,王俊,叶盛,沈明卫.电子舌响应信号与牛奶理化指标的典型相关分析[J].传感技术学报,2010,23(1):5-9.
    [394]吴从元,王俊,肖宏,韦真博,于勇.纯牛奶品牌识别中电子舌传感器阵列优化[J].农业机械学报,2010,41(10):138-142+158.
    [395]Robertsson, L., Iliev, B., Palm, R., and Wide, P. Perception modeling for human-like artificial sensor systems[J]. International Journal of Human-Computer Studies,2007,65(5): 446-459.
    [396]Alpha M.O.S. Technical note T-SAS-01:Electrochemical sensors,2002.
    [397]Alpha M.O.S. Technical note T-SAS-02:Electronic tongue sensors detection thresholds, 2003.
    [398]Alpha M.O.S. Technical note T-SAS-04:a-ASTREE Electrochemical sensor technology, 2004.
    [399]Alpha M.O.S. Technical note T-P-01:Electronic tongue technology overview,2002.
    [400]Alpha M.O.S. Starting your ASTREE System procedure,2004.
    [401]阮桂海.SAS统计分析实用大全[M].北京:清华大学出版社,2003.
    [402]刘魁英.食品研究与数据分析[M].北京:中国轻工业出版社,1998.
    [403]王钦德,杨坚.食品试验设计与统计分析[M].北京:中国农业大学出版社,2003.
    [404]梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003.
    [405]殷勇.嗅觉模拟技术[M].北京:化学工业出版社,2005.
    [406]高隽.人工神经网络原理及仿真实例(第二版)[M].北京:机械工业出版社,2007.
    [407][英]韦布(Webb, A. R.)著;王萍等译.统计模式识别(第二版)[M].北京:电子工业出版社,2004.
    [408][希]西奥多里蒂斯(Theodoridis, S.)等著;李晶皎等译.模式识别(第二版)[M].北京:电子工业出版社,2004.
    [409]Ballabio, D., Mauri, A., Todeschini, R., and Buratti, S. Geographical classification of wine and olive oil by means of classification and influence matrix analysis (CAIMAN) [J]. Analytica Chimica Acta,2006,570(2):249-258.
    [410]Forina, M., Casale, M., Oliveri, P., and Lanteri, S. CAIMAN brothers:A family of powerful classification and class modeling techniques[J]. Chemometrics and Intelligent Laboratory Systems,2009,96(2):239-245.
    [411]Kovalishyn, V., Tanchuk, V., Charochkina, L., Semenuta, I., and Prokopenko, V. Predictive QSAR modeling of phosphodiesterase 4 inhibitors[J]. Journal of molecular graphics & modelling,2012,32:32-8.
    [412]Svetnik, V, Wang, T., Tong, C., Liaw, A., Sheridan, R.P., and Song, Q.H. Boosting:An ensemble learning tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Modeling,2005,45(3):786-799.
    [413]Ayyash, M., Tamimi, H., and Ashhab, Y. Developing a powerful In Silico tool for the discovery of novel caspase-3 substrates:a preliminary screening of the human proteome[J]. BMC bioinformatics,2012,13:14.
    [414]Cao, D.-S., Liang, Y.-Z., Xu, Q.-S., Zhang, L.-X., Hu, Q.-N., and Li, H.-D. Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds[J]. Journal of Chemometrics,2011,25(4):201-207.
    [415]刘广军,高洪涛.化学计量学中的主成分分析[J].曲阜师范大学学报,2004,30(3):75-78,81.
    [416]梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法[M].长沙:湖南科学技术出版社,1996.
    [417]朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010.
    [418]黄燕,吴平.SAS统计分析及应用[M].北京:机械工业出版社,2006.
    [419]Vapnik, V.N., Statistical Learning Theory[M].1998, New York:Wiley.
    [420]Cortes, C. and Vapnik, V. SUPPORT-VECTOR NETWORKS[J]. Machine Learning,1995, 20(3):273-297.
    [421]Xu, Y., Zomer, S., and Brereton, R.G. Support Vector Machines:A recent method for classification in chemometrics[J]. Critical Reviews in Analytical Chemistry,2006,36(3-4): 177-188.
    [422]Brereton, R.G. and Lloyd, G.R. Support Vector Machines for classification and regression[J]. Analyst,2010,135(2):230-267.
    [423]Li, H., Liang, Y., and Xu, Q. Support vector machines and its applications in chemistry[J]. Chemometrics and Intelligent Laboratory Systems,2009,95(2):188-198.
    [424]Lopez, J. and Suykens, J.A.K. First and Second Order SMO Algorithms for LS-SVM Classifiers[J]. Neural Processing Letters,2011,33(1):31-44.
    [425]Hsu, C.W. and Lin, C.J. A comparison of methods for multiclass support vector machines[J]. Ieee Transactions on Neural Networks,2002,13(2):415-425.
    [426]Luts, J., Ojeda, F., Van de Plas, R., De Moor, B., Van Huffel, S., and Suykens, J.A.K. A tutorial on support vector machine-based methods for classification problems in chemometrics[J]. Analytica Chimica Acta,2010,665(2):129-145.
    [427]孙烈.随机森林及其在色谱指纹中的应用研究[D].辽宁:大连理工大学,2009.
    [428]Breiman, L. Random forests[J]. Machine Learning,2001,45(1):5-32.
    [429]Breiman, L., Last, M., and Rice, J. Random forests:Finding quasars[J]. Statistical Challenges in Astronomy,2003:243-254.
    [430]刘艳丽.随机森林综述[D].天津:南开大学,2008.
    [431]Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J., Classification and Regression Trees[M].1984, New York:Chapman and Hall.
    [432]Breiman, L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140.
    [433]Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., and Feuston, B.P. Random forest:A classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Computer Sciences,2003,43(6): 1947-1958.
    [434]Liaw, A. and Wiener, M. Classification and Regression by randomForest[J]. R News:The Newsletter of the R Project,2002,2/3:18-22.
    [435]Gurden, S.P., Westerhuis, J.A., Bro, R., and Smilde, A.K. A comparison of multiway regression and scaling methods[J]. Chemometrics and Intelligent Laboratory Systems,2001, 59(1-2):121-136.
    [436]Todeschini, R., Ballabio, D., Consonni, V, Mauri, A., and Pavan, M. CAIMAN (Classification And Influence Matrix Analysis):A new approach to the classification based on leverage-scaled functions[J]. Chemometrics and Intelligent Laboratory Systems,2007, 87(1):3-17.
    [437]Freund, Y. BOOSTING A WEAK LEARNING ALGORITHM BY MAJORITY[J]. Information and Computation,1995,121(2):256-285.
    [438]Cutler, A. and Stevens, J.R. Random forests for microarrays, in DNA Microarrays, Part B: Databases and Statistics[M]. A.O.B. Kimmel, Editor.2006. p.422-+.
    [439]Diaz-Uriarte, R. and de Andres, S.A. Gene selection and classification of microarray data using random forest[J]. Bmc Bioinformatics,2006,7.
    [440]Diaz-Uriarte, R. GeneSrF and varSelRF:a web-based tool and R package for gene selection and classification using random forest[J]. Bmc Bioinformatics,2007,8.
    [441]Statnikov, A., Wang, L., and Aliferis, C.F. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification[J]. Bmc Bioinformatics,2008,9.
    [442]Moorthy, K. and Mohamad, M.S. Random forest for gene selection and microarray data classification[J]. Bioinformation,2011,7(3):142-6.
    [443]Svetnik, V., Liaw, A., Tong, C., and Wang, T., Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules, in Multiple Classifier Systems, Proceedings, F.K.J.W.T. Roli, Editor.2004. p.334-343.
    [444]Bruce, C.L., Melville, J.L., Pickett, S.D., and Hirst, J.D. Contemporary QSAR classifiers compared[J]. Journal of Chemical Information and Modeling,2007,47(1):219-227.
    [445]Cao, D.S., Xu, Q.S., Liang, Y.Z., Chen, X.A., and Li, H.D. Automatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity[J]. Chemometrics and Intelligent Laboratory Systems,2010,103(2):129-136.
    [446]Kovalishyn, V., Aires-de-Sousa, J., Ventura, C., Leitao, R.E., and Martins, F. QSAR modeling of antitubercular activity of diverse organic compounds[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(1):69-74.
    [447]Hancock, T., Put, R., Coomans, D., Vander Heyden, Y., and Everingham, Y. A performance comparison of modem statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies[J]. Chemometrics and Intelligent Laboratory Systems,2005,76(2):185-196.
    [448]Tian, F., Yang, L., Lv, F., and Zhou, P. Predicting liquid chromatographic retention times of peptides from the Drosophila melanogaster proteome by machine learning approaches [J]. Analytica Chimica Acta,2009,644(1-2):10-16.
    [449]Donald, D., Coomans, D., Everingham, Y., Cozzolino, D., Gishen, M., and Hancock, T. Adaptive wavelet modelling of a nested 3 factor experimental design in NIR chemometrics[J]. Chemometrics and Intelligent Laboratory Systems,2006,82(1-2): 122-129.
    [450]Teh, S.K., Zheng, W., Lau, D.P., and Huang, Z. Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques[J]. Analyst,2009,134(6):1232-1239.
    [451]Lin, X, Sun, L., Li, Y., Guo, Z., Li, Y., Zhong, K., Wang, Q., Lu, X., Yang, Y, and Xu, G. A random forest of combined features in the classification of cut tobacco based on gas chromatography fingerprinting[J]. Talanta,2010,82(4):1571-1575.
    [452]Piroonratana, T., Wongseree, W., Assawamakin, A., Paulkhaolarn, N., Kanjanakorn, C., Sirikong, M., Thongnoppakhun, W., Limwongse, C., and Chaiyaratana, N. Classification of haemoglobin typing chromatograms by neural networks and decision trees for thalassaemia screening[J]. Chemometrics and Intelligent Laboratory Systems,2009,99(2):101-110.
    [453]Zheng, L., Watson, D.G, Johnston, B.F., Clark, R.L., Edrada-Ebel, R., and Elseheri, W. A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling[J]. Analytica Chimica Acta,2009,642(1-2):257-265.
    [454]Donald, D., Hancock, T., Coomans, D., and Everingham, Y. Bagged super wavelets reduction for boosted prostate cancer classification of seldi-tof mass spectral serum profiles[J]. Chemometrics and Intelligent Laboratory Systems,2006,82(1-2):2-7.
    [455]Granitto, P.M., Furlanello, C., Biasioli, F., and Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products[J]. Chemometrics and Intelligent Laboratory Systems,2006,83(2):83-90.
    [456]Broseus, J., Vallat, M., and Esseiva, P. Multi-class differentiation of cannabis seedlings in a forensic context[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(2): 343-350.
    [457]Pardo, M. and Sberveglieri, G. Random forests and nearest shrunken centroids for the classification of sensor array data[J]. Sensors and Actuators B-Chemical,2008,131(1): 93-99.
    [458]方匡南,朱建平,谢邦昌.基于随机森林方法的基金收益率方向预测与交易策略研究[J].经济经纬,2010,(2):61-65.
    [459]黄仲华,殷小平.食醋生产问答[M].北京:中国轻工业出版社,2000.
    [460]中华人民共和国国家标准.预包装食品标签通则[S].北京:中国标准出版社,2004.
    [461]M. Cocchi, C. Durante, M. Grandi, P. Lambertini, D. Manzini, A. Marchetti, Simultaneous determination of sugars and organic acids in aged vinegars and chemometric data analysis, Talanta,69 (2006) 1166-1175.
    [462]中华人民共和国国家标准.原产地域产品山西老陈醋[S].北京:中国标准出版社,2005.
    [463]中华人民共和国国家标准.地理标志产品镇江香醋[S].北京:中国标准出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700