用户名: 密码: 验证码:
还原性土壤中镉活性变化及其制约机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,面对全球土壤Cd污染日益严重的现状,国内外的许多专家和学者对土壤中Cd的迁移转化进行了大量的探索和研究。但是,随着研究范围的扩大和方法的改进,有关淹水土壤中Cd活性变化及其制约机理的研究常常出现截然不同甚至相反的报道。在这些报道中,尽管不同的专家和学者对Cd活性的升高和降低都给出了合理的解释,但是,由于淹水土壤类型的繁多、土壤自身性质的复杂性、外界影响因素的多样性以及研究手段的局限性,至今对淹水土壤中Cd活性的变化及其制约机理仍未给出较为直观的证据。
     在淹水土壤中,铁是主要的氧化还原体系之一。铁的氧化还原过程不仅影响着土壤的表面化学性质,而且还带动着其它氧化还原敏感性元素的氧化还原循环。相比较而言,Cd为非变价元素,不参与氧化还原反应。然而,淹水土壤中因氧化还原过程所导致的一系列物理、化学和生物学方面的变化将直接或间接地影响Cd在土壤中的吸附与解吸、沉淀(包括共沉淀)与溶解以及配位与螯合。因此,还原条件下土壤中铁的氧化还原过程很可能是影响Cd活性变化的重要因素。基于这方面的考虑,本文以中国南方两种土壤——红壤和潮黄土为例,首先通过静置培养试验初步研究了淹水和非淹水条件下土壤中Cd的形态转化及其与CAI(Cadmium-availability index,Cd的生物有效性指标)的关系;进而通过淹水通N2试验深入探讨了还原条件下Fe(Ⅱ)的溶解度的变化及其控制矿物;然后在不同的pH和pe+pH值范围内对Cd的溶解度的变化及其制约机理进行深入研究;最后基于土壤固相中Cd形态转化与Fe形态转化之间的关系进一步揭示铁矿物还原溶解对Cd形态转化影响的可能的机理。本研究不仅首次从淹水后土壤的pH和pe+pH值的演变中明确了Cd活性升高和降低的机理,而且更重要的是基于铁的氧化还原过程揭示了淹水土壤中Cd活性变化的制约机理。其研究的成果不仅对淹水土壤的物理化学理论的拓展,还是对Cd污染土壤的修复和治理都有着十分重要的意义。本研究主要的结果如下:
     1)不论红壤还是潮黄土,与非淹水相比,淹水不仅减小了CAI,而且还减小了交换态Cd的含量、增大了碳酸盐结合态Cd和铁锰氧化物结合态Cd的含量。逐步线性回归分析表明,淹水后红壤和潮黄土中交换态Cd的含量与CAI呈显著正相关关系、与铁锰氧化物结合态Cd的含量呈显著负相关关系。由此推测,淹水后红壤和潮黄土中Cd由交换态向铁锰氧化物结合态的转化是导致CAI减小的主要原因。
     2)淹水通N:过程增大了红壤和潮黄土中Fe(Ⅱ)的溶解度。对于红壤,当pH值由5.51升高至5.65、pe+pH值由9.58下降至8.60时,悬液中Fe(Ⅱ)的溶解度由Fe3O4(magnetite)控制;而当pH值由5.70升高至5.82、pe+pH值由8.28下降至7.52时,悬液中Fe(Ⅱ)的溶解度由γ-Fe2O3(maghemite)控制。然而,对于潮黄土,当pH值在7.52~7.56之间、pe+pH值在8.93~8.47之间保持稳定时,Fe3(OH)8(ferrosic hydroxide)控制着悬液中Fe(Ⅱ)的溶解度。
     3)随着还原程度逐渐增强,红壤中Cd的溶解度持续增大,而潮黄土中Cd的溶解度先增大后减小。并且.在不同的pH和pe+pH值范围内,Cd的溶解度的制约机理不同。对于红壤,当pH值从5.61下降至5.51、pe+pH值从11.09下降至9.58时,pH值的下降、锰矿物的还原溶解以及DOC、A13+、K+和Mg2+对土壤表面吸附点位的竞争增大了Cd的溶解度;而当pH值从5.51升高至5.82、pe+pH值从8.91下降至7.52时,DOC的分解、Fe3O44(magnetite)和γ-Fe2O3(maghemite)的还原溶解以及K+、Mg2+对土壤表面吸附点位的竞争是Cd的溶解度增大的重要原因。对于潮黄土,当pe+pH值从11.29下降至9.10时,溶液中Ca2+、K+、Mg2+和Na+对土壤表面吸附点位的竞争和DOC与Cd2+的螯合是Cd的溶解度增大的重要原因;而当pe+pH值在8.93~8.47之间保持稳定时,Cd的溶解度减小的原因在于DOC的分解、新形成的铁矿物表面和碳酸盐表面对Cd2+的吸附。逐步线性回归分析的结果表明:红壤中Cd的溶解度增大的主要原因在于pH值的下降和Fe3O4(magnetite),γ-Fe2O3(magnetite)的还原溶解;而潮黄土中Cd的溶解度先增大后减小的主要原因在于DOC的消长。
     4)随着还原程度逐渐增强,红壤和潮黄土的固相中Cd和Fe的形态都出现了再分配。并且,Cd形态的再分配与Fe形态的再分配存在着密切的关系,这种关系反映了铁矿物还原溶解对土壤固相中Cd形态转化影响的可能的机理:对于红壤,Fe3O4(magnetite)和y-Fe2O3(maghemite)的还原溶解对自身吸附的Cd的释放及其对土壤固相吸附能力的改变导致了Cd由铁锰氧化物结合态向碳酸盐结合态转化;但是,对于潮黄土Fe3(OH)8(ferrosic hydroxide)的还原溶解一方面促进了Fe在碳酸盐表面的吸附以致碳酸盐对Cd的吸附能力增强,另一方面也导致了新的铁矿物表面的形成致使自身对Cd的吸附容量增大,这两方面综合作用的结果则导致了Cd由交换态向碳酸盐结合态和铁锰氧化物结合态转化。
Cadmium contamination in soil has been a world-wide problem in decades. Cadmium activity may vary differently in the submerged soils but the mechanisms underlying these variations have been remained conflicting and ambiguous although numerous studies have been conducted to determine the mobility and transformation of Cd in the past. Although some different and reasonable mechanisms have been concluded in the previous literatures in order to explain the increase or decrease of Cd activity in submerged soils, some more restricted visual evidences have not been provided up to now because of the variety of the submerged soil types, the complexity of the characteristics of the submerged soils, the diversity of the external factors and the limitations of the research techniques.
     In the submerged soils.the iron system is one of the main redox systems. The redox process of iron not only influences the changes in soil surface characteristics, but also brings along the other redox-sensitive elements'redox cycles. In comparison, the change in the valence state as a result of Eh changes and the redox reaction in natural submerged soils are not observed for Cd. Nevertheless, a series of physical, chemical and biological changes as a result of the redox processes in submerged soils will influence directly or indirectly the mobility and transformation of Cd, including adsorption-desorption, precipitation (or co-precipitation)-dissolution, coordination and chelation. Therefore, the redox process of iron under the reductive conditions is likely to be an important factor affecting the activity of Cd. Based on these considerations, two typical soils from the southern China, a red soil and a fluvo-aquic soil, were sampled to investigate the mobility and transformation of Cd under the reductive conditions.
     Firstly, the relationship between the different fractions of Cd among soil solid phases and the CAI (Cadmium-availability index) after flooding was examined through the static incubation experiment. Secondly, the continuous N2bubbling experiment was conducted to study the variations of Cd activity and investigate the mechanisms underlying these variations within the different ranges of pH and pe+pH values, as well as the minerals controlling the solubility of Fe (Ⅱ). Finally. the possible mechanisms controlling the transformation of Cd among several different soil solid phases were elucidated on the basis of the relationship between the Fe distribution and the Cd distribution. On one hand, the mechanisms controlling the solubility of Cd were investigated and elucidated according to the different ranges of pH and pe+pH values. On the other hand, the mechanisms controlling the transformation among the soil solid phases of Cd were speculated through the iron-based redox processes for the first time. Therefore, the results of this study not only extend the basic theory of soil chemistry, but also are of great significance for the remediation of the Cd contaminated soil. The major experimental results were summarized below:
     1) Compared to nonflooding. flooding of the red and fluvo-aquic soils not only decreased the CAI, but also decreased the exchangeable Cd concentration and increased the carbonate-and Fe-Mn oxides-bound Cd concentrations significantly. Stepwise linear regression analysis for the CAI and the different fractions of Cd among solid phases of the flooded red and fluvo-aquic soils showed that the exchangeable Cd concentration correlated positively with the CAI and did negatively with the Fe-Mn oxides-bound Cd concentration, respectively, indicating that the Cd transformation from the exchangeable fraction to the Fe-Mn oxides-bound fraction was the main reason for the CAI decrease after flooding of the red and fluvo-aquic soils.
     2) The Fe (Ⅱ) solubility increased during the continuous N2bubbling experiment of the red or fluvo-aquic soil. For the red soil, the reductive dissolution of Fe3O4(magnetite) took place when pH increased from5.51to5.65and pe+pH decreased from9.58to8.60, whereas the reductive dissolution of γ-Fe2O3(maghemite) did when pH increased from5.70to5.82and pe+pH decreased from8.28to7.52. However, for the fluvo-aquic soil, the Fe3(OH)8(ferrosic hydroxide) begun to dissolve reductively when pH fluctuated between7.52and7.56and pe+pH did between8.93-8.47.
     3) As the degree of reduction increased, the solubility of Cd in the red soil increased continuously, while in the fluvo-aquic soil increased first and then decreased. More importantly, whether the red soil or the fluvo-aquic soil, the mechanisms controlling the Cd solubility were different within the different ranges of pH and pe+pH values. For the red soil, the decrease of pH. the reductive dissolution of Mn minerals and the competitive adsorption of DOC,Al3+, K+and Mg2+for the soil surface adsorptive positions led to the increase of the Cd solubility when pH decreased from5.61to5.51and pe+pH did from11.09to9.67, whereas the decomposition of DOC. the reductive dissolutions of Fe3O4(magnetite),γ-Fe2O3(maghemite) and Mn minerals and the competitive adsorptions of Mg2+and K+for the soil surface adsorptive positions accelerated the release of Cd to the soil solution when pH increased from5.51to5.82and pe+pH decreased from8.91to7.52. In comparison, the competitive adsorption of Ca2+, K+, Mg2+and Na+for the soil surface adsorptive positions and the chelation of DOC with Cd2+increased the solubility of Cd when pe+pH decreased from11.29to9.10, whereas the solubility of Cd decreased due to the decomposition of DOC and the adsorption of Cd2+onto the surfaces of neoformed Fe and carbonates minerals when pe+pH fluctuated between8.93-8.47. The results of stepwise linear regression analysis showed the decrease of pH and the reductive dissolutions of Fe3O4(magnetite) and γ-Fe2O3(maghemite) were the major mechanisms leading to the increase of Cd solubility in the red soil, whereas the increase and decrease of Cd solubility in the fluvo-aquic soil were primarily due to the release and decomposition of DOC.
     4) Whether in the red soil or the fluvo-aquic soil, the Fe redistribution and the Cd redistribution among the soil solid phases took place when soil became more reducing. And. the mechanisms controlling the transformation of Cd among several chemical fractions were speculated on the basis of the relationship between the Fe redistribution and the Cd redistribution. For the red soil, the reductive dissolutions of Fe3O4(magnetite) and γ-Fe2O3(maghemite) and their impacts on the soil surface chemical properties resulted in the transformation of Cd from the Fe-Mn oxides-bound fraction to the carbonate-bound fraction. However, for the fluvo-aquic soil, the readsorptions of Cd onto the carbonates surface covered by Fe resulting from the reductive dissolution of Fe3(OH)8(ferrosic hydroxide) and onto the neoformed surfaces of Fe minerals induced the transformation of Cd from the exchangeable fraction to the carbonate-and Fe-Mn oxides-bound fractions.
引文
[1]Sparks DL. Elucidating the fundamental chemistry of soils:past and recent achievements and future frontiers [J]. Geoderma,2001,100:303-319
    [2]赵其国.郑茂坤.“未来土壤学”一书翻译伞文[J].土壤.2007.39(1):94-152
    [3]Hutchinson TC. Meema KM. Lead. Mercury. Cadmium and Arsenic in the Environment [M]. New York:John Wiley & Sons,1987.119-146
    [4]赵其国.城市生态环境保护与可持续发展[J].土壤.2003,35(6):441-449
    [5]段学军.淹水稻田土壤微生物对镉污染毒性的生理生态反应及其抗性czcC基因的克隆与表达[D].浙江:浙江大学,2004.3
    [6]宋正国.共存阳离子对土壤镉有效性影响及其机制[D].北京:中国农业科学院.2006.1
    [7]Randall SR,Sherman DM, Ragnarsdottir KV. et al. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals [J]. Geochimica et Cosmochimica Acta,1999. 63(19/20):2971-2987
    [8]刘凡,谭文峰.刘桂秋.等.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型[J].土壤学报.2002.39(5):699-706
    [9]McBride MB. Chemisorption of Cd2-on calcite surfaces [J]. Soil Science Society of America Journal.1980.44:26-28
    [10]Kashem MA. Singh BR. Metal availability in contaminated soils:Ⅰ. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd. Ni and Zn [J]. Nutrient Cycling in Agroecosystems,2001,61:247-255
    [11]Boulegue J. Equilibria in sulfide-rich water from Enghien-les-Bains. France [J]. Geochimica et Cosmochimica Acta,1977,41:1751-1758
    [12]Mortimer RJG. Rae JE. Metal speciation (Cu. Zn. Pb, Cd) and organic matter in oxic to suboxic salt marsh sediments,Severn Estuary,Southwest Britain [J]. Marine Pollution Bulletin,2000,40(5): 377-386
    [13]Morse JW, Luther III GW. Chemical influences on trace metal-sulfide interactions in anoxic sediments [J]. Geochimica et Cosmochimica Acta,1999,63(19/20):3373-3378
    [14]Lindsay WL. Chemical Equilibria in Soils [M]. New York:John Wiley & Sons,1979:316-327
    [15]Chubin RG, Street JJ. Adsorption of cadmium on soil constituents in the presence of complexing ligands [J]. Journal of Environmental Quality,1981,10(2):225-228
    [16]Davranche M, Bollinger JC, Bril H. Effect of reductive conditions on metal mobility from wasteland solids:An example from the Mortagne-du-Nord site (France) [J]. Applied Geochemistry, 2003,18:383-394
    [17]Du Laing G, Rinklebe J, Vandecasteele B, et al. Trace metal behaviour in estuarine and riverine floodplain soils and sediments:A review [J]. Science of the Total Environment,2009,407: 3972-3985
    [18]Eggleton J, Thomas KV. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events [J]. Environment International,2004,30:973-980
    [19]Kuo S, Baker AS. Sorption of copper, zinc, and cadmium by some acid soils [J]. Soil Science Society of America Journal,1980.44.969-974.
    [20]Du Laing G. De Grauwe P, Moors W. et al. Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt [J]. Journal of Environmental Monitoring,2007,9:449-455
    [21]Du Laing G. Vos De R. Vandecasteele B. et al. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary [J]. Estuarine. Coastal and Shelf Science, 2008.77:589-602
    [22]Hatjie V. Payne TE, Hill DM. et al. Kinetics of trace element uptake and release by particles in estuarine waters:effects of pH, salinity, and particle loading [J]. Environment International,2003, 29:619-629
    [23]Lamy I, Bourgeois S, Bermond A. Soil cadmium mobility as a consequence of sewage sludge disposal [J]. Journal of Environmental Quality,1993,22:931-937
    [24]Shuman LM, Wang J. Effect of rice variety on zinc, cadmium, iron and manganese content in rhizosphere and non-rhizosphere soil fractions [J]. Communications in Soil Science and Plant Analysis,1997,28:23-26
    [25]Lovley DR. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction [J]. Microbiological Reviews,1991,55: 259-287
    [26]于天仁.等.水稻土的物理化学[M].北京:科学出版社.1983,17
    [27]Favre F. Tessier D. Abdelmoula M. et al. Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil [J]. European Journal of Soil Science,2002,53:175-183
    [28]Stumm W, Sulzberger B. The cycling of iron in natural environments:considerations based on laboratory studies of heterogeneous redox processes [J]. Geochimica et Cosmochimica Acta,1992. 56: 3233-3257
    [29]Davidson EA, Chorover J, Dail BD. A mechanism of abiotic immobilization of nitrate in forest ecosystem: the ferrous wheel hypothesis [J]. Global Change Biology,2003,9:228-236
    [30]Ma S. Luther Ⅲ G W, Keller J. et al. Solid-state Au/Hg microelectrode for the investigation of Fe and Mn cycling in a freshwater wetland:implications for methane production [J]. Electroanalysis, 2008,20(3):233-239
    [31]葛滢.李义纯,周权锁,等.淹水还原作用下土壤镉的吸附与解吸特征的初步探讨[J].生态环境,2006,15(4):730-734
    [32]Schwab AP. Lindsay WL. Effect of redox on the solubility and availability of iron [J]. Soil Science Society of America Journal,1983,47:201-205
    [33]Brennan EW, Lindsay WL. The role of pyrite in controlling metal ion activities in highly reduced soils [J]. Geochimica et Cosmochimica Acta,1996,60(19):3609-3618
    [34]Guo T, Delaune RD. Patrick Jr WH. Chemistry on solubility/Chemically active forms of selected metals in bottom sediment receiving produced water discharge [J]. Spill Science & Technology Bulletin,1997,4(3):165-175
    [1]陈怀满.环境土壤学[M].北京:科学出版社.2005.1-56
    [2]Ponnamperuma FN. The chemistry of submerged soils [J]. Advances in Agronomy,1972,24:29-96
    [3]于天仁,等.水稻土的物理化学[M].北京:科学出版社.1983,1-234
    [4]李庆逵.中国水稻土[M].北京:科学出版社.1992.1-161
    [5]朱鹤健.水稻土[M].北京:农业出版社.1985,1-2
    [6]于天仁,刘志光.水稻土的氧化还原过程及其与水稻生长的关系[J].士壤学报.1964,12(4):380-389
    [7]Fiedler S. Vepraskas MJ, Richardson JL. Soil redox potential:importance, field measurements, and observations [J]. Advances in Agronomy,2007,94:1-54
    [8]刘志光.于天仁.水稻土中氧化还原过程的研究(V)还原性物质的测定[J].土壤学报.1962.10(1):13-28
    [9]潘淑贞.不同潜育化土壤中还原物质的变化[J].土壤通报,1996,27(4):158-161
    [10]Achtnich C, Bak F. Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil [J]. Biology and Fertility of Soils, 1995,19:65-72
    [11]Peters V, Conrad R. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils [J]. Soil Biology & Biochemistry,1996,28(3):371-382
    [12]Lovley DR. Microbial reduction of iron, manganese, and other metals [J]. Advances in Agronomy, 1995,54:175-231
    [13]曲东.贺江舟.孙丽蓉.不同水稻土中氧化铁的微生物还原特征[J].西北农林科技大学学报(自然科学版),2005,33(4):97-101
    [14]Begg CBM. Kirk GJD. Mackenzie AF, et al. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere [J]. New Phytologist,1994.128:469-477
    [15]Wang XC, Yan WD. An Z, et al. Status of trace elements in paddy soil and sediment in Taihu Lake region [J]. Chemosphere,2003,50:707-710
    [16]杨春刚,廖西元,章秀福.等.不同基因型水稻籽粒对镉积累的差异[J].中国水稻科学,2006,20(6):660-662
    [17]李鱼.王晓丽,陈听,等.湿地水环境中表层沉积物吸附铅、镉能力的研究[J].吉林大学学报(地球科学版),2005,35(2):231-235
    [18]郑习键.珠江广州河段底泥中汞铜铅的污染及其与有机硫化物积累的关系[J].热带亚热带土壤科学,1994,3(3):132-137
    [19]吴丰昌,万国江,蔡玉蓉.沉积物-水界面的生物地球化学作用[J].地球科学进展,1996.11(2):191-197
    [20]Wang FY. Chen JS, Chen JL. et al. Surface properties of natural aquatic sediment [J]. Water Research,1997,31(7):1796-1800
    [21]Daskalakis KD, O'Connor TP. Distribution of chemical concentrations in US coastal and estuarine sediment [J]. Marine Environmental Research,1995.40:381-398
    [22]Zheng N, Wang Q, Liang Z, et al. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City. Northeast China [J]. Environmental Pollution,2008,154: 135-142
    [23]Calmano W, Hong J,Forstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential [J]. Water Science and Technology,1993.28:223-235
    [24]Eggleton J, Thomas KV. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events [J]. Environment International,2004,30:973-980
    [25]Gambrell RP. Trace and toxic metals in wetlands-A review [J]. Journal of Environmental Quality, 1994.23:883-891
    [26]Du Laing G, Rinklebe J, Vandecasteele B, et al. Trace metal behaviour in estuarine and riverine floodplain soils and sediments:A review [J]. Science of the Total Environment,2009,407: 3972-3985
    [27]周怀东,彭文启,等.水污染与水环境修复[M].北京:化学工业出版社,2005,15-16
    [28]朱广伟,陈英旭,周根娣,等.运河(杭州段)沉积物中重金属分布特征及变化[J].中国环境科学,2001,21(1):65-69
    [29]Meng W, Qin Y, Zheng B, et al. Heavy metal pollution in Tianjin Bohai Bay, China [J]. Journal of Environmental Sciences,2008,20:814-819
    [30]何江.王新伟,李朝生,等.黄河包头段水-沉积物系统中重金属的污染特征[J].环境科学学报,2003,23(1):53-57
    [31]Yao Z, Bao Z, Gao P. Environmental assessments of trace metals in sediments from Dongting Lake, Central China [J]. Journal of China University of Geosciences,2006,17(4):310-319
    [32]Greenwood DJ. The effect of oxygen concentration on the decomposition of organic materials in soil [J]. Plant and Soil,1961,14:360-376
    [33]Callebaut F, Gabriels D. Redox potential, oxygen diffusion rate, and soil gas composition in relation to water table level in two soils [J]. Soil Science,1982,134(3):149-156
    [34]Stumm W. Sulzberger B. The cycling of iron in natural environments:considerations based on laboratory studies of heterogeneous redox processes [J]. Geochimica et Cosmochimica Acta,1992, 56:3233-3257
    [35]Nevin KP, Lovley DR. Mechanisms for Fe(Ⅲ) oxide reduction in sedimentary environments [J]. Geomicrobiology Journal,2002,19:141-159
    [36]Delaune RD, Reddy CN, Patrick Jr WH. Organic matter decomposition in soil as influenced by pH and redox xonditions [J]. Soil Biology & Biochemistry,1981,13:533-534
    [37]Sahrawat KL. Organic matter accumulation in submerged soils [J]. Advances in Agronomy,2004. 81:169-201
    [38]Ratering S. Schnell S. Nitrate-dependent iron(Ⅱ) oxidation in paddy soil [J]. Environmental Microbiology,2001,3(2):100-109
    [39]Bartlett RJ, James BR. Redox chemistry of soils [J]. Advances in Agronomy,1993,50:151-208
    [40]Bjerre GK, Schierup HH. Influence of waterlogging on availability and uptake of heavy metals by oat grown in different soils [J]. Plant and Soil,1985,88:45-56
    [41]Grybos M, Davranche M. Gruau G. et al. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? [J]. Journal of Colloid and Interface Science,2007,314:490-501
    [42]Mansfeldt T. Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron. and sulfate in two Gley soils [J]. Journal of Plant Nutrition and Soil Science,2004,167:7-16
    [43]杨长明,杨林章,颜廷梅,等.不同养分和水分管理模式对水稻土质量的影响及其综合评价[J].生态学报.2004,24(1):63-70
    [44]刘凡,谭文峰,王贻俊.土壤中氧化锰矿物的类型及其与土壤环境条件的关系[J].土壤通报,2002,33(3):175-180
    [45]唐罗忠,生原喜久雄,户田浩人等.湿地林土壤的Fe2+,Eh及pH值的变化[J].生态学报,2005,25(1):103-107
    [46]Unger IM. Muzika RM, Motavalli PP, et al. Evaluation of continuous in situ monitoring of soil changes with varying flooding regimes [J]. Communications in Soil Science and Plant Analysis. 2008.39:1600-1619
    [47]Davison W. Iron and manganese in lakes [J]. Earth-Science Reviews,1993,34:119-163
    [48]Lee KK, Holst RW, Watanabe I, et al. Gas transport through rice [J]. Soil Science & Plant Nutrition. 1981.27(2):151-158
    [49]Begg CBM, Kirk GJD, Mackenzie AF, et al. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere [J]. New Phytologist,1994,128:469-477
    [50]Frenzel P, Bosse U. Janssen PH. Rice roots and methanogenesis in a paddy soil:ferric iron as an alternative electron acceptor in the rooted soil [J]. Soil Biology & Biochemistry,1999.31:421-430
    [51]Sand-Jensen K. Oxygen release from roots of submerged aquatic macrophytes [J]. Oikos,1982,38: 349-354
    [52]Weiss JV, Emerson D. Patrick Megonigal J. Geochemical control of microbial Fe(Ⅲ) reduction potential in wetlands:comparison of the rhizosphere to non-rhizosphere soil [J]. FEMS Microbiology Ecology,2004.48:89-100
    [53]Narteh LT. Sahrawat K.L. Influence of flooding on electrochemical and chemical properties of West African soils [J]. Geoderma,1999,87:179-207
    [54]Genon JG. de Hepcee N, Delvaux B. et al. Redox conditions and iron chemistry in highland swamps of Burundi [J]. Plant and Soil,1994,166:165-171
    [55]赵兴青,杨柳燕.于振洋,等.太湖沉积物理化性质及营养盐的时空变化[J].湖泊科学,2007.19(6):698-704
    [56]莫美仙,张世涛,叶许春,等.云南高原湖泊滇池和星云湖pH值特征及其影响因素分析[J].农业环境科学学报,2007.26(增刊):269-273
    [57]Bohn HL. Soil Chemistry [M]. Canada: John Wiley & Sons.1985.90-97
    [58]Chimmer RA. Cooper DJ. Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study [J]. Soil Biology & Biochemistry,2003.35:345-351
    [59]Iu KL, Pulford ID, Duncan HJ. Influence of waterlogging and lime or organic matter additions on the distribution of trace metals in an acid soil [J]. Plant and Soil,1981,59:317-326
    [60]Kashem MA, Singh BR. Metal availability in contaminated soils:Ⅰ. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn [J]. Nutrient Cycling in Agroecosystems,2001,61:247-255
    [61]Ssjwan KS, Lindsay WL. Effects of redox on Zn deficiency in paddy rice [J]. Soil Science Society of America Journal,1986,50:1264-1269
    [62]于天仁,李松华.水稻土中氧化还原过程的研究Ⅰ.影响氧化还原电位的条件[J].土壤学报,1957,5(1):97-100
    [63]Patrick Jr WH, Jugsujinda A. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil [J]. Soil Science Society of America Journal.1992.56:1071-1073
    [64]Alewell C. Paul S. Lischeid G, et al. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability? [J]. Science of the Total Environment,2008,404:335-342
    [65]Postma D. Jakobsen R. Redox zonation:equilibrium constraints on the Fe(Ⅲ)/SO4-reduction interface [J]. Geochimica et Cosmochimica Acta,1996,60(17):3169-3175
    [66]Lovley DR, Phillips EJP. Co,petitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction sediments [J]. Applied and Environmental Microbiology,1987.53:2636-2641
    [67]Achtnich C. Bak F, Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil [J]. Biology and Fertility Soils. 1995.19:65-72
    [68]Bohn HL, McNeal BL. O'Connor GA. Soil Chemistry [M]. Canada: John Wiley & Sons,1985: 262-290
    [69]熊毅.土壤胶体研究法[M].北京:科学出版社.1985,23-24
    [70]Lindsay WL. Chemical Equilibria in Soils [M]. New York: John Wiley & Sons,1979:1-328
    [71]陈家坊,何群,邵宗臣.土壤中氧化铁的活化过程的探讨[J].土壤学报,1983,20(4):387-393
    [72]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.1999.60-65
    [73]保学明,刘志光,吴沟.等.水稻土中氧化还原过程的研究Ⅶ.亚铁的存在形态[J].土壤学报.1964,12(3):297-306
    [74]保学明,刘志光.于天仁.水稻土中氧化还原过程的研究Ⅸ.水溶态亚铁的存在形态[J].土壤学报,1978,15(2):174-181
    [75]Morse JW, Millero FJ, Cornwell JC. et al. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters [J]. Earth-Science Reviews,1987,24:1-42
    [76]王飞越,汤鸿霄.水体沉积物中的酸挥发性硫化物(AVS)及其对沉积物环境质量的影响[J].环境科学进展,1997,5(1):1-8
    [77]Di Joro DM, Mahony JD, Hansen DJ. Toxicity of cadmium in sediments:the role of acid volatile sulfide [J]. Environmental Toxicology & Chemistry,1990,9:1487-1502
    [78]Gagnon C, Mucci A, Pelletier E. Anomalous accumulation of acid-volatile sulfides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada [J]. Geochimica et Cosmochimica Acta,1995.59: 2663-2675
    [79]Gotoh S. Patrick Jr WH. Transformation of iron in a waterlogged soil as influenced by redox potential and pH [J]. Soil Science Society of America Proceedings,1974,38:66-71
    [80]Ponnamperuma FN, Tianco EM, Loy T. Redox equilibria in flooded soils:I. the iron hydroxide systems [J]. Soil Science,1967,103(6):374-382
    [81]Brennan EW, Lindsay WL. The role of pyrite in controlling metal ion activities in highly reduced soils [J]. Geochimica et Cosmochimica Acta,1996,60(19):3609-3618
    [82]Schwab AP. Lindsay WL. Effect of redox on the solubility and availability of iron [J]. Soil Science Society of America Journal,1983,47:201-205
    [83]Brennan EW, Lindsay WL. Reduction and oxidation effect on the solubility and transformation of iron oxides [J]. Soil Science Society of America Journal.1998.62:930-937
    [84]Lindsay WL, Sadiq M. Use of pe-pH to predict and interpret metal solubility relationships in soils [J]. Science of the Total Environment,1983.28:169-178
    [85]Lovley DR. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction [J]. Microbiological Reviews,1991,55: 259-287
    [86]Lovley DR. Dissimilatory metal reduction:from early life to bioremediation [J]. ASM News,2002, 68(5):231-237
    [87]Kumar S. Changes in some physico-chemical properties and activities of iron and zinc on submergence of some rice soils [J]. Journal of the Indian Society of Soil Science,1981,29:204-207
    [88]苏玲,林咸永.章永松,等.水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响[J].浙江大学学报(农业与生命科学版),2001,27(2):124-128
    [89]Davis JA, Leckie JO. Surface ionization and complexation at the oxide/water interface Ⅱ. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions [J]. Journal of Colloid and Interface Science,1978,67(1):90-107
    [90]Favre F. Tessier D, Abdelmoula M, et al. Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil [J]. European Journal of Soil Science,2002,53:175-183
    [91]Stucki JW, Golden DC, Roth CB. Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites [J]. Clays and Clay Mineral,1984,32(5): 350-356
    [92]Jones JM, Richards BN. Effect of reforestation on turnover of 15N-labelled nitrate and ammonium in relation to changes in soil microflora [J]. Soil Biology & Biochemistry,1977,9:383-392
    [93]Rice CW, Tiedje JM. Regulation of nitrate assimilation by ammonium in soils and isolated soil microorganisms [J]. Soil Biology & Biochemistry,1989,21:597-602
    [94]Zak DR, Groffman PM, Pregitzer KS. et al. The vernal dam:plant-microbe competition for nitrogen in northern hardwood forests [J]. Ecology,1990,71(2):651-656
    [95]Davidson EA, Hart SC, Firestone MK. Internal cycling of nitrate in soils of a mature coniferous forest [J]. Ecology,1992,73:1148-1156
    [96]Stark JM. Hart SC. High rates of nitrification and nitrate turnover in undisturbed coniferous forest [J]. Nature,1997,385:61-74
    [97]Berntson GM, Aber JD. Fast nitrate immobilization in N saturated temperate forest soils [J]. Soil Biology & Biochemistry,2000.32:151-156
    [98]Johnson DW, Cheng W, Burke IC. Biotic and abiotic nitrogen retention in a variety of forest soils [J]. Soil Science Society of America Journal.2000.64:1503-1514
    [99]Dail BD, Davidson EA, Chorover J. Rapid abiotic transformation of nitrate in an acid forest soil [J]. Biogeochemistry,2001,54:131-146
    [100]Perakis SS. Hedin LO. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile [J]. Ecology,2001,82(8):2245-2260
    [101]Lovley DR, Coastes JD, Blunt-Harris EL, et al. Humic substances as electron acceptors for microbial respiration [J]. Nature,1996,382:445-448
    [102]Scott DT. McKnight DM. Blunt-Harris EL,et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics reducing microorganisms [J].Environmental Science and Technology,1998.32:2984-2989
    [103]Davidson EA. Chorover J, Dail BD. A mechanism of abiotic immobilization of nitrate in forest ecosystem:the ferrous wheel hypothesis [J]. Global Change Biology,2003,9:228-236
    [104]Weiss JV, Emerson D. Patrick Megonigal J. Geochemical control of microbial Fe(Ⅲ) reduction potential in wetlands:comparison of the rhizosphere to non-rhizosphere soil [J]. FEMS Microbiology Ecology,2004,48:89-100
    [105]Ma S, Luther Ⅲ GW, Keller J. et al. Solid-state Au/Hg microelectrode for the investigation of Fe and Mn cycling in a freshwater wetland:implications for methane production [J]. Electroanalysis. 2008,20(3):233-239
    [106]Wersin P, Hohener P. Giovanoli R, et al. Early diagenetic influences on iron transformations in a freshwater lake sediment [J]. Chemical Geology,1991,90:233-252
    [107]Thamdrup B, Fossing H, Jφrgensen BB. Manganese, iron, and sulfur cycling in a coastal marine sediment. Aarhus Bay, Denmark [J]. Geochimica et Cosmochimica Acta,1994,58(23):5115-5129
    [108]Postma D, Jakobsen R. Redox zonation:Equilibrium constraints on the Fe(ΔⅢ)/SO4-reduction interface [J]. Geochimica et Cosmochimica Acta,1996,60(17):3169-3175
    [109]陈怀满.土壤圈物质循环系列专著:土壤-植物系统中的重金属污染[M].北京:科学出版社.1996.7-113
    [110]鲁如坤,熊礼明,时正元.关于土壤-作物生态系统中镉的研究[J].土壤.1992.24(3):129-132
    [111]张彦.张惠文.苏振成.等.污水灌溉对土壤重金属含量、酶活性和问生物类群分布的影响[J].安全与环境学报,2006,6(6):44-50
    [112]李航.肖唐付,双燕.等.云南金顶超大型铅锌矿区镉的水地球化学研究[J].地球化学,2007.36(6):633-637
    [113]凌其聪,严森,鲍征宇.大型冶炼厂重金属环境污染特征及其生态效应[J].中国环境科学.2006.26(5):603-608
    [114]Hutchinson TC. Meema KM. Lead. Mercury. Cadmium and Arsenic in the Environment [M]. New York:John Wiley & Sons,1987,119-146
    [115]曹志洪.施肥与土壤健康质量——论施肥对环境的影响[J].土壤,2003,35(6):450-455
    [116]刘昌玲,张经.颗粒态重金属通过河流与大气向海洋输送[J].海洋环境科学,1996,15(4):68-76
    [117]王凯荣.农田生态系统镉污染研究[D].武汉:华中农业大学.2004:25-36
    [118]崔玉静.赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响[J].生态学报.2003.23(10):2133-2]43
    [119]Basta NT, Raun WR. Gavi F. Wheat grain cadmium under long-term fertilization and continuous winter wheat production [J]. Better Crops,1998,82:14-15
    [120]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及影响因素[J].生态环境,2005.14(2):282-286
    [121]俞慎,何振立.黄昌勇.重金属协迫下土壤微生物和微生物过程研究进展[J].应用生态学报,2003.14(4):618-622
    [122]Khan KS. Effects of cadmium, lead, and zinc pollution on microbial biomass in red soil [D]. Zhejiang:Zhejiang Agricultural University,1998.1-206
    [123]吴建军,蒋艳梅,吴愉萍,等.重金属复合污染对水稻土微生物生物量和群落结构的影响[J].土壤学报,2008,45(6):1102-1109
    [124]李兆君,马国瑞,徐建民.等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):234-238
    [125]徐正浩,沈国军,诸常青,等.植物镉忍耐的分子机理[J].应用生态学报,2006,17(6):1112-1116
    [126]McLaren RG. Backes CA, Rate AW, et al. Cadmium and cobalt desorption kinetics from soil clays: effect of sorption period [J]. Soil Science Society of America Journal,1998,62:332-337
    [127]Naidu R, Kookana RS, Sumner ME, et al. Cadmium sorption and transport in variable charge soil: a review [J]. Journal of Environmental Qualilty,1996,26:602-617
    [128]Temminghoff EJM, Van der Zee SEATM, De Haan FAM. Speciation and calcium competition effects on cadmium sorption by sandy soil at various pHs [J]. European Journal of Soil Science. 1995,46:649-655
    [129]Christensen TH. Cadmium soil sorption at low concentrations:Ⅷ. Correlation with soil papameters [J]. Water, Air. and Soil Pollution,1989,44:71-82
    [130]梁晶,徐仁扣.蒋新,等.不同pH下两种可变电荷土壤中Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)吸附与解吸的比较研究[J].土壤.2007,39(6):992-995
    [131]廖敏,谢正苗.黄昌勇.镉在土水系统中的迁移特征[J].土壤学报.1998,35(2):179-185
    [132]胡宁静,骆永明,宋静.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J].土壤学报,2007,44(3):437-443
    [133]陈怀满.土壤对镉的吸附与解吸Ⅰ.土壤组份对镉的吸附与解吸的影响[J].土壤学报,1988,25(1):66-74
    [134]Vega FA. Covelo EF, Andrade ML. Competitive sorption and desorption of heavy metals in mine soils:Influence of mine soil characteristics [J]. Journal of Colloid and Interface Science,2006,298: 582-592
    [135]Appel C. Ma L. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils [J]. Journal of Environmental Quality,2002.31:581-589
    [136]Sastre J. Rauret G, Vidal M. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils [J]. Environmental Pollution,2006.140:322-339
    [137]Kuo S, Baker AS. Sorption of copper, zinc, and cadmium by some acid soils [J]. Soil Science Society of America Journal.1980.44,969-974.
    [138]Krishnamurti GSR, Naidu R. Solid-solution equilibria of cadmium in soils [J]. Geoderma,2003. 113:17-30
    [139]Du Laing G, De Grauwe P, Moors W. et al. Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt [J]. Journal of Environmental Monitoring,2007,9:449-455
    [140]Miao S, DeLaune RD, Jugsujinda A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake [J]. Science of the Total Environment,2006,371:334-343
    [141]Favre F, Tessier D. Abdelmoula M, et al. Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil [J]. European Journal of Soil Science,2002,53:175-183
    [142]Favre F, Bogdal C. Gavillet S. et al. Changes in the CEC of a soil smectite-kaolinite clay fraction as induced by structural iron reduction and iron coatings dissolution [J]. Applied Clay Science,2006, 34:95-104
    [143]Pedersen HD. Postma D. Jakobsen R, et al. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II) [J]. Geochimica et Cosmochimica Acta,2005,69(16):3967-3977
    [144]陈宗团.徐立,洪华生.河口沉积物-水界面重金属生物地球化学研究进展[J].地球科学进展.1997,12(5):434-439
    [145]李仁英,杨浩.Cd和Zn在滇池沉积物中的吸附-解吸特征[J].土壤,2007,39(2):274-278
    [146]Hatjie V, Payne TE. Hill DM, et al. Kinetics of trace element uptake and release by particles in estuarine waters:effects of pH, salinity, and particle loading [J]. Environment International,2003, 29:619-629
    [147]Paalman MAA. Van Der Weijden CH. Loch JPG. Sorption of cadmium on suspended matter under estuarine conditions: competition and complexation with major sea-water ions [J]. Water,Air. and Soil Pollution,1994,73:49-60
    [148]何江.李朝生,王新伟.等.黄河沉积物对Cd2+的吸附及其形态转化影响的实验研究[J].农业环境科学学报.2003.22(2):134-137
    [149]Millward GE. Liu YP. Modelling metal desorption kinetics in estuaries [J]. Science of the Total Environment,2003,314-316:613-623
    [150]葛滢,李义纯.周权锁,等.淹水还原作用下土壤镉的吸附与解吸特征的初步探讨[J].生态环境,2006.15(4):730-734
    [151]Evans LJ. Chemistry of metal retention by soils [J]. Environmental Science & Technology,1989, 23:1046-1056
    [152]Dong D, Nelson YM. Lion LW. et al. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions:new evidence for the importance of Mn and Fe oxides [J]. Water Research,2000,34:427-436
    [153]李义纯,葛滢.淹水还原条件下土壤铁氧化物对镉活性制约机理的研究进展[J].土壤,2009,41(2):160-165
    [154]Bolton KA, Evans LJ. Cadmium adsorption capacity of selected Ontario soils [J]. Canadian Journal of Soil Science,1996,76:183-189
    [155]Mustafa G, Singh B, Kookana RS. Cadmium adsorption and desorption behaviour on goethite atlow equilibrium concentrations:Effects of pH and index cations [J]. Chemosphere,2004,57: 1325-1333
    [156]Mustafa G, Kookana RS, Singh B. Desorption of cadmium from goethite:Effects of pH, temperature and aging [J]. Chemosphere,2006,64:856-865
    [157]Randall SR, Sherman DM, Ragnarsdottir KV, et al. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals [J]. Geochimica et Cosmochimica Acta,1999. 63(19/20):2971-2987
    [158]Palumbo B. Bellanca A. Neri D. et al. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy [J]. Chemical Geology,2001.173:257-269
    [159]刘凡,谭文峰,刘桂秋,等.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型[J].土壤学报.2002,39(5):699-706
    [160]冯雄汉,翟丽梅,谭文峰,等.几种氧化锰矿物的合成及其对重金属的吸附和氧化特性[J].岩石矿物学杂志,2005,24(6):531-538
    [161]鲁安怀,卢晓英,任子平,等.天然铁锰氧化物及氢氧化物环境矿物学研究[J].地学前缘.2000,7(2):473-483
    [162]Chuan MC, Shu GY, Liu JC. Solubility of heavy metals in a contaminated soil:Effects of redox potential and pH [J]. Water. Air. and Soil Pollution,1996,90:543-556
    [163]Davranche M, Bollinger JC. Release of metals from iron oxyhydroxides under reductive conditions:Effect of metal/solid interactions [J]. Journal of Colloid and Interface Science,2000,232: 165-173
    [164]Davranche M, Bollinger JC. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides:Effect of reductive conditions [J]. Journal of Colloid and Interface Science.2000,227:531-539
    [165]Davranche M, Bollinger JC, Bril H. Effect of reductive conditions on metal mobility from wasteland solids:An example from the Mortagne-du-Nord site (France) [J]. Applied Geochemistry, 2003.18:383-394
    [166]Charlatchka R, Cambier P. Influence of reducing conditions on solubility of trace metals in contaminated soils [J]. Water, Air, and Soil Pollution,2000,118:143-167
    [167]魏世强.青长乐,木志坚.模拟淹水条件下紫色土镉的释放特征及影响因素[J].环境科学学报,2002,22(6):690-700
    [168]张大庚,依艳丽,李亮亮,等.水分和有机物料对土壤锌-镉形态及化学性质的影响[J].农业环境科学学报.2006,25(4):939-944
    [169]郑绍建,胡霭堂.淹水对污染土壤镉形态转化的影响[J].环境科学学报,1995,15(2):142-147
    [170]Kashem MA. Singh BR. Transformations in solid phase species of metals as affected by flooding and organic matter [J]. Communications in Soil Science and Plant Analysis,2004,35(9/10): 1435-1456
    [171]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002,283-307
    [172]王凡,朱云集,路玲.土壤中的硫素及其转化研究综述[J].中国农学通报,2007,23(5):249-253
    [173]郝庆菊,王起超,王跃思.三江平原典型湿地土壤中硫的分布特征[J].土壤通报.2004,35(3):331-335
    [174]麦家隆,姚素平,丁海.滨海红树林泥炭沉积物中硫的赋存特点及其控制因素[J].高校地质学报.2008.14(4):620-630
    [175]Oeham NJ, Luben TJ. Ostrofsky ML. Spatial distribution of acid volatile sulfur in the sediments of Canadohta Lake PA [J]. Hydrobiologia,1997,345:79-85
    [176]Morse JW. Millero FJ, Cornwell JC. et al. The chemistry of hydrogen sulfide and iron sulfide systems in natural waters [J]. Earth-Science Reviews,1987.42:1-42
    [177]刘景春.严重玲.胡俊.水体沉积物中酸可挥发性硫化物(AVS)研究进展[J].生态学报,2004,24(4):812-818
    [178]胡正义,夏旭.吴丛杨慧,等.硫在稻根微域中化学行为及其对水稻吸收重金属的影响机理[J].土壤.2009,41(1):27-31
    [179]Miguel AH. Richard C. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments [J]. Applied Geochemistry,1998,13:213-233
    [180]Di Joro DM, Mahony JD. Hansen DJ. Toxicity of cadmium in sediments:the role of acid volatile sulfide [J]. Environmental Toxicology & Chemistry,1990,9:1487-1502
    [181]梁涛,陶澎.林建枝,等.沉积物中酸挥发性硫对上覆水中重金属含量的影响[J].环境化学1998,17(3):212-217
    [182]马德毅,王菊英,闫启仑,等.酸溶硫化物(AVS)对沉积物-孔隙水系统中二价有毒金属化学活动性的影响[J].海洋学报.1997,19(5):83-90
    [183]Boulegue J. Equilibria in sulfide-rich water from Enghien-les-Bains. France [J]. Geochimica et Cosmochimica Acta,1977,41:1751-1758
    [184]Morse JW, Luther Ⅲ GW. Chemical influences on trace metal-sulfide interactions in anoxic sediments [J]. Geochimica et Cosmochimica Acta,1999,63(19/20):3373-3378
    [185]Billon G, Ouddane B, Laureyns J. et al. Chemistry of metal sulfides in anoxic sediments [J]. Journal of Physical Chemistry,2001,3:3586-3592
    [186]Otero XL, Sanchez JM, Macias F. Bioaccumulation of heavy metals in Thionic Fluvisols by a marine polychaete:The role of meral sulfides [J]. Journal of Environmental Quality,2000,29: 1133-1241
    [187]Cornu JY, Denaix L, Schneider A. Pellerin S. Temporal evolution of redox processes and free Cd dynamics in a metal-contaminated soil after rewetting [J]. Chemosphere,2007,70:306-314
    [188]Kitagishi K. Yamane I. Heavy Pollution in Soils of Japan [M]. Tokyo:Japan Science Society Press. 1981,302
    [189]Maes A. Vanthuyne M. Cauwenberg P, et al. Metal partitioning in a sulfidic canal sediment:metal solubility as a function of pH combined with EDTA extraction in anoxic conditions [J]. Science of the Total Environment,2003,312:181-193
    [190]Eggleton J, Thomas KV. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events [J]. Environment International,2004,30:973-980
    [191]李红阳.牛树根.常见硫化物的氧化作用及其环境效应[J].北京地质,2001,13(2):6-11
    [192]Naidu R. Kookana RS. Sumner ME, et al. Cadmium sorption and transport in variable charge soils: A review [J]. Journal of Environmental Quality,1997,26,602-617
    [193]廖敏.黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报.1999.19(1):81-86
    [194]Zwolsman John JG, Van Eck Bert TM, Van Der Weijden Cornelis H. Geochemistry of dissolved trace metals (cadmium, copper, zinc) in the Scheldt estuary, southwestern Netherlands:Impact of seasonal variability [J]. Geochimica et Cosmochimica Acta,1997,61(8):1635-1652
    [195]Cantwell MG, Burgess RM. Kester DR. Release and phase partitioning of metals from anoxic estuarine sediments during periods of simulated resuspension [J]. Environmental Science & Technology,2002,36:5328-5334
    [196]Street JJ. Solubility and plant uptake of cadmium in soils amended with cadmium and sewage sludge [J]. Journal of Environmental Quality,1977,6:72-77
    [197]McBride MB. Chemisorption of Cd2+ on calcite surfaces [J]. Soil Science Society of America Journal.1980.44:26-28
    [198]Papadopoulos P, Rowell DL. The reactions of cadmium with calcium carbonate surfaces [J]. Journal of Soil Science,1988.39(1):23-36
    [199]Zachara JM, Cowan CE, Resch CT. Sorption of divalent metals on calcite [J]. Geochimica et Cosmochimica Acta,1991,55(9):1249-1562
    [200]邵孝侯,侯文华,邢光熹.土壤固相不同组成对铜锌的吸持研究[J].环境化学,1994,13(4):340-345
    [201]吴大清,彭金莲,刁桂仪,等.沉积CaCO3与金属离子界面反应动力学研究[J].地球化学,2000.29(1):56-61
    [202]Guo T, DeLaune RD. Patrick Jr WH. The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment [J]. Environment International.1997.23(3):305-316
    [203]Mortimer RJG, Rae JE. Metal speciation (Cu. Zn, Pb. Cd) and organic matter in oxic to suboxic salt marsh sediments, Severn Estuary, Southwest Britain [J]. Marine Pollution Bulletin,2000,40(5): 377-386
    [204]Calmano W, Hong J. Forstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential [J]. Water Science and Technology,1993,28:223-235
    [205]薛红喜,何江,樊庆云,等.黄河包头段沉积物组成对重金属形态分布的影响研究[J].农业环境科学学报,2008,27(2):716-720
    [206]Van den Berg GA. Loch JPG. Decalcification of soils subject to periodic waterlogging [J]. European Journal of Soil Science,2000,51:27-33
    [207]Blake L, Johnston AE. Goulding KWT. Mobilization of aluminium in soil by acid deposition and its uptake by grass cut for hay-a Chemical Time Bomb [J]. Soil Use and Management,1994,10: 51-55
    [208]徐明岗,刘平,宋正国,等.施肥对污染土壤中重金属行为影响的研究进展[J].农业环境科学学报,2006,25(增刊):328-333
    [209]李法虎,黄冠华,邓健.污水灌溉对土壤浸提液元素浓度变化影响的田间试验研究[J].农业工程学报,2005,21(11):124-129
    [210]Du Laing G, Vos De R. Vandecasteele B. et al. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary [J]. Estuarine. Coastal and Shelf Science. 2008.77:589-602
    [211]Gerringa LJA. de Baar HJW, Nolting RF, et al. The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary [J]. Journal of Sea Research,2001,46:201-211
    [212]McLaughlin MJ, Andrew SJ, Smart MK. et al. Effects of sulfate on cadmium uptake by Swiss chard:I. Effects of complexation and calcium competition in nutrient solutions [J]. Plant and Soil, 1998,202:211-216
    [213]依纯真,付桂平,张福锁,等.施用钾肥(KC1)的土壤对作物吸收累积镉的影响[J].中国农业大学学报,1996,1(5):65-70
    [214]Greger M, Kautsky L, Sandberg T. A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity [J]. Environmental and Experimental Botany,1995,35:215-255
    [215]王芳,郑瑞伦,何刃,等.氯离子和乙二胺四乙酸对镉的植物有效性的影响[J].应用生态学报,2006,17(10):1953-1957
    [216]Wershaw, RL. Model for humus in soils and sediments [J]. Environmental Science & Technology. 1993,27:814-816
    [217]Alvim Ferraz MCM, Lourenco JCN. The influence of organic matter content of contaminated soils on the leaching rate of heavy metals [J]. Environmental Progress,2000,19:53-58
    [218]Kashem MA. Singh BR. Metal availability in contaminated soils:I. Effects of flooding and organic matter on changes in Eh. pH and solubility of Cd. Ni and Zn [J]. Nutrient Cycling in Agroecosystems,2001,61:247-255
    [219]余涛,杨忠芳,钟坚.等.土壤中重金属元素Pb、Cd地球化学行为影响因素研究[J].地学前缘,2008,15(5):67-73
    [220]高山,陈建斌,王果.淹水条件下有机物料对潮土外源镉形态及化学性质的影响[J].植物营养与肥料学报,2003,9(1):102-105
    [221]薛红喜,何江,樊庆云,等.黄河包头段沉积物组成对重金属形态分布的影响研究[J].农业环境科学学报,2008,27(2):716-720
    [222]Baham J, Sposito G. Chemistry of water-soluble, metal-complexing ligands extracted from an anerobically-digested sewage sludge [J]. Journal of Environmental Quality,1983,12(1):96-100
    [223]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报.2004,15(6):1083-1087
    [224]黄浑春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报.2002.22(2):259-269
    [225]Grybos M, Davranche M. Gruau G, Petitjean P. Is trace metal release in wetland soils controlled by organic matter mobility of Fe-oxyhydroxides reduction? [J]. Journal of Colloid and Interface Science,2007,314:490-501
    [226]Guggenherger G, Zech W. Composition and dynamics of dissolved organic carbohydrates and lignin degradation products in two coniferous forests, N. E. Bavaria. Germany [J]. Soil Biology & Biochemistrv,1994,26:19-27
    [227]Chow AT, Tanji KK. Gao S, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils [J]. Soil Biology & Biochemistry, 2006,38:477-488
    [228]林滨,陶澎,刘晓肮.土壤与沉积物中水溶性有机物释放动力学研究[J].环境科学学报,1997,17(1):8-13
    [229]Komada T, Reimers CE, Luther Ⅲ GW, et al. Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments [J]. Geochimica et Cosmochimica Acta,2004,68(20): 4099-4111
    [230]Lundquist EJ. Jackson LE, Scow KM. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils [J]. Soil Biology & Biochemistry,1999,31:1030-1038
    [231]Chefetz B, Hatcher PG Hadar Y, et al. Characterization of dissolved organic matter extracted from composted municipal solid waste [J]. Soil Sci Society of America Journal,1998,62:326-332
    [232]Temminghoff EJM, Van der Zee SEATM, De Haan FAM. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter [J]. Environmental Science & Techology,1997,31(4):1109-1115
    [233]Shuman LM, Wang J. Effect of rice variety on zinc, cadmium, iron and manganese content in rhizosphere and non-rhizosphere soil fractions [J]. Communications in Soil Science and Plant Analysis,1997,28:23-26
    [234]王艮梅,周立祥,占新华,等.水田土壤中水溶性有机物的产生动态及对土壤中重金属活性的影响:田间微区试验[J].环境科学学报,2004,24(5):858-864
    [235]单玉华,李昌贵,陈晨.施用秸秆对淹水土壤镉、铜溶出的影响[J].生态学杂志,2008,27(8):1362-1366
    [236]Lamy I, Bourgeois S, Bermond A. Soil cadmium mobility as a consequence of sewage sludge disposal [J]. Journal of Environmental Quality,1993,22:931-937
    [237]Moore TR. Souza WD. Koprivnjak JF. Control on the sorption of dissolved organic carbon by soil [J]. Soil Science,1992,154(2):120-129
    [238]Chubin RG, Street JJ. Adsorption of cadmium on soil constituents in the presence of complexing ligands [J]. Journal of Environmental Quality,1981,10(2):225-228
    [239]徐建明,蒋新,刘凡.等.中国土壤化学的研究与展望[J].土壤学报,2008,45(5):817-829
    [240]曲东,张一平.Schnell S.等.水稻土中铁氧化物的厌氧还原及其对微生物过程的影响[J].土壤学报,2003,40(6):858-863
    [241]Nevin KP. Lovley DR. Mechanisms for Fe(Ⅲ) oxide reduction in sedimentary environments [J]. Geomicrobiology Journal,2002,19:141-159
    [242]Schwertmann U. Solubility and dissolution of iron oxides [J]. Plant and Soil.1991.130:1-25
    [243]Hiemstra T, Van Riemsdijk WH. A surface structural approach to ion adsorption:the charge distribution (CD) model [J]. Journal of Colloid and Interface Science,1996,179:488-508
    [244]Wang FY, Chen JS. Modeling sorption of trace metals on natural sediments by surface complexation model [J]. Environmental Science & Technology,1997,31:448-453
    [245]Davranche M, Bollinger JC. A desorption-dissolution model for metal release from polluted soil under reductive conditions [J]. Journal of Environmental Quality,2001,30:1581-1586
    [246]Ge Y. Hendershot W. Modeling sorption of Cd, Hg and Pb in soils by the NICA-Donnan Model [J]. Soil & Sediment Contamination,2005,14:53-69
    [247]Michel K, Roose M, Ludwing B. Comparison of different approaches for modeling heavy metal transport in acidic soils [J]. Geoderma,2007,140:207-214
    [1]Das AK, Chakraborty R, Cervera ML. et al. Metal speciation in solid matrices [J]. Talanta,1995,42: 1007-1030
    [2]邵孝侯,侯文华,邢光熹.用连续提取法研究土壤对镉和锌的吸持特性[J].土壤.1994,(2):77-79
    [3]Gleyzes C. Tellier S, Michel A. Fractionation studies of trace elements in contaminated soils and sediments:a review of sequential extraction procedures [J]. Trends in analytical chemistry,2002,21: 451-467
    [4]Tessier A, Campbell PGC. Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry,1979,51 (7):844-851
    [5]Nirel PMV, Morel FMM. Pitfalls of sequential extractions [J]. Water Research,1990,24(8): 1055-1056
    [6]黄丹丹,葛滢,周权锁.淹水条件下土壤还原作用对镉活性消长行为的影响[J].环境科学学报,2009,29(2):373-380
    [7]Wear JI, Evans CE. Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants [J]. Soil Science Society of America Journal,1968,32:543-546
    [8]Trierweiler JF. Lindsay WL. EDTA-ammonium carbonate soil test for zine [J]. Soil Science Society of America Journal.1969.33:49-54
    [9]Lindsay WL. Norwell WA. Development of a DTPA soil test for zinc. iron, manganese, and copper [J]. Soil Science Society of America Journal,1978,42:421
    [10]John MK. VanLaerhoven CJ. Chuah HH. Factors affecting plant uptake and phytotoxicity of cadmium added to soils [J]. Environmental Science & Technology,1972,6(12):1005-1009
    [11]Onyatta JO, Huang PM. Chemical speciation and bioavailability index of cadmium for selected tropic soils in Kenya [J]. Geoderma,1999,91:87-101
    [12]Jackson AP, Alloway BJ. The bioavailability of cadmium to lettuce and cabbage in soils previously treated with sewage sludges [J]. Plant and Soil,1991,132:179
    [13]熊礼明,鲁如坤.土壤有效Cd浸提剂对Cd的浸提机制[J].环境化学,1992,11(3):41-47
    [14]章明奎,方利平.周翠.污染土壤重金属的生物有效性和移动性评价:四种方法比较[J].应用生态学报,2006,17(8):1501-1504
    [15]Hong J, Wang T. Transformation of chemical elements in controlled pH-Eh system [J]. Environmental Information Science,1984,6:48-56
    [16]Calmano W, Hong J, Forstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential [J]. Water Science and Technology,1993,28(8-9): 223-235
    [17]鲁如坤.土壤农业化学分析方法[M].北京:农业科技出版社.2000.12-110
    [18]Tessier A, Rapin F, Carignan R. Trace metals in oxic lake sediments:possible adsorption onto iron oxyhydroxides [J]. Geochimica et Cosmochimica Acta,1985.49:183-194
    [19]Chuan MC, Shu GY, Liu JC. Solubility of heavy metals in a contaminated soil:Effects of redox potential and pH [J]. Water, Air, and Soil Pollution,1996,90:543-556
    [20]Davranche M, Bollinger J. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides:effects of reductive conditions [J]. Journal of Colloid and Interface Science,2000,227:531-539
    [21]Davranche M. Bollinger J. Release of metals from iron oxyhydroxides under reductive conditions: effect of metal/solid interactions [J]. Journal of Colloid and Interface Science.2000,232:165-173
    [22]Pickering WF. Metal ion speciation-soils and sediments (a review) [J]. Ore Geology Reviews, 1986,1:83-146
    [23]Luoma SN. A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants [J]. Science of the Total Envieonment,1981.17:165-196
    [24]Kashem MA. Singh BR. Transformations in solid phase species of metals as affected by flooding and organic matter [J]. Communications in Soil Science and Plant analysis,2004,35(9&10): 1435-1456
    [25]郑绍建,胡霭堂.淹水对污染土壤Cd形态转化的影响[J].环境科学学报,1995,15(2):142-147
    [26]McBride MB. Chemissorption of Cd2+ on calcite surfaces [J]. Soil Science Society of America Journal.1980.44:26-28
    [27]Kostka JE. Wu J, Nealson KH, et al. Effects of microbial reduction on physical and chemical properties of clay minerals [J]. Geochimica Cosmochimica Acta,1999,63:3705-3713
    [28]Favre F, Bogdal C, Gavillet S. et al. Changes in the CEC of a soil smectite-kaolinite clay fraction as induced by structural iron reduction and iron coatings dissolution [J]. Applied Clay Science,2006, 34:95-104
    [29]Gambrell RP. Wiesepape JB, Patrick Jr WH. Duff MC. The effects of pH. redox and salinity on metal release from a contaminated sediment [J]. Water. Air. and Soil Pollution,1991,57-58:359-367
    [30]朱嬿婉,沈壬水,钱饮文.土壤中金属元素的五个组分的连续提取法[J].土壤.1989,21(3):163-166.
    [31]Gambrell RP. Trace and toxic metals in wetlands-A review [J]. Journal of Environmental Quality, 1994,23:883-891
    [32]张丽娜.宗良纲,付世景,等.水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响[J].安全与环境学报.2006,6(5):49-52
    [33]Bjerre GK. Schierup H. Influence of waterlogging on availability and uptake of heavy metals by oat grown in different soils [J]. Plant and Soil.1985.88:45-56
    [1]于天仁.水稻土的物理化学[M].北京:科学出版社.1983,1-238
    [2]Ponnamperuma FN. The chemistry of submerged soils [J]. Advances in Agronomy,1972,24:29-96
    [3]Narteh LT, Sahrawat KL. Influence of flooding on electrochemical and chemical properties of West African soils [J]. Geoderma,1999,87:179-207
    [4]Bohn HL, McNeal BL, O'Connor GA. Soil Chemistry [M]. Canada: John Wiley & Sons.1985, 262-290
    [5]Lindsay WL, Sadiq M. Use of pe+ pH to predict and interpret metal solubility relationships in soil [J]. Science of the Total Environment,1983.28:169-178
    [6]Lindsay WL. Chemical equilibria in soils [M]. New York:John Wiley & Sons,1979,1-160
    [7]Schwab AP, Lindsay WL. Effect of redox on the solubility and availability of iron [J]. Soil Science Society of America Journal,1983.47:201-205
    [8]Brennan EW, Lindsay WL. The role of pyrite in controlling metal ion activities in highly reduced soils [J]. Geochimica et Cosmochimica Acta,1996,60:3609-3618
    [9]Hendershot WH, Duquette M. A simple barium chloride method for determining cation exchange capacity and exchangeable cations [J]. Soil Science Society of America Journal,1986,50:605-608
    [10]鲁如坤.土壤农业化学分析方法[M].北京:农业科技出版社,2000,12-110
    [11]Gambrell RP, Wiesepape JB, Patrick WH, et al. The effects of pH, redox. and salinity on metal release from a contaminated sediment [J]. Water. Air, and Soil Pollution,1991,57-58:359-367
    [12]Gambrell RP, Khalid RA. Patrick Jr WH. Chemical availability of mercury, lead, and zinc in mobile bay sediment suspensions as affected by pH and oxidation-reduction conditions [J]. Environmental Science & Technology,1980,14(4):431-436
    [13]Chuan MC. Shu GY, Liu JC. Solubility of heavy metals in a contaminated soil:effects of redox potential and pH [J]. Water. Air. and Soil Pollution,1996,90:543-556
    [14]Wilde FD, ed., chapter sections variously dated, Field measurements:U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6,2005, accessed_date_at http://pubs.water.usgs.gov/twri9A6/
    [15]Gotoh S, Patrick Jr WH. Transformation of manganese in a waterlogged soil as affected by redox potential and pH [J]. Soil Science Society of America Proceedings,1972,36:738-742
    [16]Adams F, Wear JI. Manganese toxicity and soil acidity in relation to crinkle leaf of cotton [J]. Soil Science Society of America Proceedings,1957,21:305-308
    [17]Schwab AP. Lindsay WL. The effect of redox on the solubility and availability of manganese in a calcareous soil [J]. Soil Science Society of America Journal,1983,47:217-220
    [18]Moore TR. The spectrophotometric determination of dissolved organic carbon in peat waters [J]. Soil Science Society of America Journal,1985.49:1590-1592
    [19]陈书涛,古敏,贾刘敏.等.冬小麦返青-拔节期土壤的自养和异养呼吸研究[J].环境科学学报,2008.28(5):937-944
    [20]Liao YH, Zhou LX, Liang JR, et al. Biosynthesis of schwertmannite by acidithiobacillus ferrooxidans cell suspensions under different pH condition [J]. Materials Science and Engineering, 2009. C29:211-215
    [21]Bjerre GK, Schierup HH. Influence of waterlogging on availability and uptake of heavy metals by oat grown in different soils [J]. Plant and Soil,1985.88:45-56
    [22]Grybos M, Davranche M, Gruau G, et al. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? [J]. Journal of Colloid and Interface Science,2007,314:490-501
    [23]Sahrawat KL. Organic matter accumulation in submerged soils [J]. Advances in Agronomy,2004. 81:169-201
    [24]Patrick Jr WH, Jugsujinda A. Sequential reduction and oxidation of inorganic nitrogen, manganese. and iron in flooded soil [J]. Soil Science Society of America Journal,1992,56:1071-1073
    [25]Alewell C, Paul S, Lischeid G. et al. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability? [J]. Science of the Total Environment,2008,404:335-342
    [26]Postma D, Jakobsen R. Redox zonation:equilibrium constraints on the Fe(Ⅲ)/SO4-reduction interface [J]. Geochimica et Cosmochimica Acta,1996,60(17):3169-3175
    [27]Peters V, Conrad R. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils [J]. Soil Biology & Biochemistry,1996,28(3):371-382
    [28]徐华,蔡祖聪.李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响[J].农业环境保护.1999,18(4):145-149
    [29]Wang ZP. Delaune RD, Masschelegn PH. et al. Soil redox and pH effects on methane production in flooded rice soils [J]. Soil Science Society of America Journal,1993,57:382-385
    [30]Delaune RD, Reddy CN, Patrick Jr WH. Organic matter decomposition in soil as influenced by pH and redox xonditions [J]. Soil Biology & Biochemistry,1981,13:533-534
    [31]Gustafsson JP. VisualMINTEQ, version 2.53,2007 http://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm.
    [32]于天仁,凌云霄,牟润生.等.土壤酸度对锰的活动性的影响[J].土壤专报,1958,33:16-30
    [33]刘鑫,朱端卫,雷宏军,等.酸性土壤活性锰与pH、Eh关系及其生物反应[J].植物营养与肥料学报,2003.9(3):317-323
    [34]Takai Y. The reduction of paddy soils and microbial metabolism [J]. Technics for Agriculture,1961, 16:213-216
    [35]Patrick Jr WH, Turner FT. Effect of redox potential on manganese transformation in waterlogged soil [J]. Nature,1968,220:476-478
    [36]Mansfeldt T. Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gley soils [J]. Journal of Plant Nutrition and Soil Science,2004,167:7-16
    [37]杨长明,杨林章,颜廷梅,等.不同养分和水分管理模式对水稻土质量的影响及其综合评价[J].生态学报,2004.24(1):63-70
    [38]Bartlett RJ, James BR. Redox chemistry of soils [J]. Advances in Agronomy,1993,50:151-208
    [39]Favre F, Boivin P. Wopereis MCS. Water movement and soil swelling in a dry, cracked Vertisol [J]. Geoderma,1997,78:113-123
    [40]凌云霄,于天仁.土壤酸度与代换性氢、铝的关系[J].土壤学报.1957,5(3):234-245
    [41]Ratering S, Schnell S. Localization of iron-reducing activity in paddy soil by profile studies [J]. Biogeochemistry,2000,48:341-365
    [42]张效年.蒋能慧,邵宗臣,等.土壤电化学性质的研究:Ⅵ.红壤对离子的吸附特点与其电荷性质的关系[J].土壤学报,1979,16:145-56
    [43]Naidu R, Kookana RS, Eumner ME. et al. Cadmium sorption and transport in variable charge soils: a review [J]. Journal of Environmental Quality,1997,26:602-617
    [44]Kennedy IR. Acid soil and acid rain:the impact on the environment of nitrogen and sulphur cycling [M]. England:Research Studies Press Ltd.1986,155-157
    [45]Stumm W. Sulzberger B. The cycling of iron in natural environments:considerations based on laboratory studies of heterogeneous redox processes [J]. Geochimica et Cosmochimica Acta,1992, 56:3233-3257
    [46]Guo T, Delaune RD. Patrick Jr WH. The effect of sediment redox chemistry on solubility/chemically active forms of selected metals in bottom sediment receiving produced water discharge [J]. Spill Science & Technology Bulletin,1997,4(3):165-175
    [47]Thibodeaux LJ, Aguilar L. Kinetics of peat soil dissolved organic carbon release to surface water. Part 2. A chemodynamic process model [J]. Chemosphere,2005,60:1190-1196
    [48]Chow AT, Tanji KK, Gao S, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils [J]. Soil Biology & Biochemistry. 2006,38:477-488
    [49]Romkens PF, Bril J, Salomons W. Interaction between Ca2+ and dissolved organic carbo implications for metal mobilization [J]. Applied Geochemistry,1996,11:109-115
    [50]Boivin P, Favre F, Hammecker C, et al. Processes driving soil solution chemistry in a flooded rice-cropped vertisol:analysis of long-time monitoring data [J]. Geoderma,2002,110:87-107
    [51]Lindsay WL, Sajwan KS. Effects of redox on zinc deficiency in paddy rice [J]. Soil Science Society of America Journal,1986,50:1264-1269
    [52]Brennan EW, Lindsay WL. Reduction and oxidation effect on the solubility and transformation of iron oxides [J]. Soil Science Society of America Journal,1998.62:930-937
    [1]于天仁.水稻土的物理化学[M].北京:科学出版社.1983,1-235
    [2]Ponnamperuma FN. The chemistry of submerged soils [J]. Advances in Agronomy,1972,24:26-96
    [3]Fiedler S, Vepraskas MJ, Richardson JL. Soil redox potential:importance, field measurements, and observations [J]. Advances in Agronomy,2007,94:1-54
    [4]Du Laing G, Rinklebe J, Vandecasteele B, et al. Trace metal behaviour in estuarine and riverine floodplain soils and sediments:A review [J]. Science of the Total Environment,2009,407: 3972-3985
    [5]Brennan EW, Lindsay WL. The role of pyrite in controlling metal ion activities in highly reduced soils [J]. Geochimica et Cosmochimica Acta,1996,60(19):3609-3618
    [6]Gustafsson JP. VisualMINTEQ, version 2.53,2007
    http://www.lwr.kth.se/Englisri/OurSoftware/vminteq/index.htm
    [7]Yuan G. Lavkulich LM. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties [J]. Communications in Soil Science and Plant Analysis,1997,28(6): 571-587
    [8]Temminghoff EJM, Van der zee SEATM, De haan FAM. Speciation and calcium competition effects on cadmium sorption by sandy soil at various pHs [J]. European Journal of Soil Science.1995,46: 649-655
    [9]徐明岗,张青,李菊梅.不同pH下黄棕壤镉的吸附-解析特征[J].土壤肥料,2004,5:3-5
    [10]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999.19(1):81-86
    [11]Naidu R. Bolan NS. Kookana RS. Tiller KG. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils [J]. European Journal of Soil Science,1994,45:419-429
    [12]Naidu R, Kookana RS. Eumner ME. et al. Cadmium sorption and transport in variable charge soils: a review [J]. Journal of Environmental Quality,1997,26:602-617
    [13]Boekhold AE. Temminghoff EJM, Van der Zee SEATM. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil [J]. Journal of Soil Science,1993,44:85-96
    [14]Bolton KA. Evans LJ. Cadmium adsorption capacity of selected Ontario soils [J]. Canadian Journal of Soil Science,1996,76:183-189
    [15]Mustafa G. Singh B, Kookana RS. Cadmium adsorption and desorption behaviour on goethite atlow equilibrium concentrations:Effects of pH and index cations [J]. Chemosphere,2004,57:1325-1333
    [16]Mustafa G. Kookana RS. Singh B. Desorption of cadmium from goethite:Effects of pH, temperature and aging [J]. Chemosphere,2006,64:856-865
    [17]Randall SR, Sherman DM, Ragnarsdottir KV, et al. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals [J]. Geochimica et Cosmochimica Acta,1999, 63(19/20):2971-2987
    [18]Palumbo B, Bellanca A, Neri D, et al. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy [J]. Chemical Geology,2001,173:257-269
    [19]刘凡,谭文峰,刘桂秋,等.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型[J].土壤学报,2002.39(5):699-706
    [20]冯雄汉,翟丽梅,谭文峰,等.几种氧化锰矿物的合成及其对重金属的吸附和氧化特性[J].岩石矿物学杂志,2005,24(6):531.538
    [21]Davis JA, Leckie JO. Surface ionization and complexation at the oxide/water interface:Ⅱ. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions [J]. Journal of Colloid and Interface Science,1978.67(1),90-107
    [22]Venema P, Hiemstra T, Van Riemsdijk WH. Multisite adsorption of cadmium on goethite [J]. Journal of Colloid and Interface Science,1996,183:515-527
    [23]Davranche M. Bollinger JC. Release of metals from iron oxyhydroxides under reductive conditions: Effect of metal/solid interactions [J]. Journal of Colloid and Interface Science,2000,232:165-173
    [24]Davranche M, Bollinger JC. Heavy metals desorption from synthesized and natural iron and manganese oxvhydroxides:Effect of reductive conditions [J]. Journal of Colloid and Interface Science,2000,227:531-539
    [25]Davranche M, Bollinger JC, Bril H. Effect of reductive conditions on metal mobility from wasteland solids:An example from the Mortagne-du-Nord site (France) [J]. Applied Geochemistry, 2003,18:383-394
    [26]Chuan MC. Shu GY, Liu JC. Solubility of heavy metals in a contaminated soil:Effects of redox potential and pH [J]. Water, Air, and Soil Pollution,1996,90:543-556
    [27]魏世强,青长乐,木志坚.模拟淹水条件下紫色土镉的释放特征及影响因素[J].环境科学学报,2002.22(6):690-700
    [28]Thibodeaux LJ, Aguilar L. Kinetics of peat soil dissolved organic carbon release to surface water. Part 2. A chemodynamic process model [J]. Chemosphere,2005,60:1190-1196
    [29]Chow AT. Tanji KK, Gao S. Dahlgren RA. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils [J]. Soil Biology & Biochemistry,2006,38:477-488
    [30]王艮梅,周立祥,黄焕忠.水溶性有机物在土壤中的吸附及对Cu沉淀的抑制作用[J].环境 科学.2006,27(4):754-759
    [31]Temminghoff EJM, van der Zee SEATM, de Haan FAM. Copper mobility in a copper contaminated sandy soil as affected by pH, and solid and dissolved organic matter [J]. Environmental Science & Technology,1997,31:1109-1115
    [32]Lamy I, Bourgeois S, Bermond A. Soil cadmium mobility as a consequence of sewage sludge disposal [J]. Journal of Environmental Quality,1993,22:931-937
    [33]Romkens PF, Bril J. Salomons W. Interaction between Ca2+ and dissolved organic carbon: implications for metal mobilization [J]. Applied Geochemistry,1996,11:109-115
    [34]Bartlett RJ, James BR. Redox chemistry of soils [J]. Advances in Agronomy,1993,50:151-208
    [35]Sahrawat KL. Organic matter accumulation in submerged soils [J]. Advances in Agronomy,2004, 81:169-201
    [36]Favre F. Boivin P, Wopereis MCS. Water movement and soil swelling in a dry, cracked Vertisol [J]. Geoderma,1997,78:113-123
    [37]Narteh LT, Sahrawat KL. Influence of flooding on electrochemical and chemical properties of West African soils [J]. Geoderma,1999,87:179-207
    [38]张效年.蒋能慧,邵宗臣,等.土壤电化学性质的研究:Ⅵ.红壤对离子的吸附特点与其电荷性质的关系[J].土壤学报,1979,16:145-56
    [39]Lagerwerff JV. Brower DL. Exchange adsorption of trace quantities of cadmium in soils treated with chlorides of aluminum, calcium and sodium [J]. Soil Science Society of America Proceedings, 1972,36:734-737
    [40]Kuo S, Baker AS. Sorption of copper, zinc, and cadmium by some acid soils [J]. Soil Science Society of America Journal.1980.44.969-974
    [41]Kookana RS, Naidu R. Effect of soil solution composition on cadmium transport through variable charge soils [J]. Geoderma,1998.84:235-248
    [42]Sastre J. Rauret G, Vidal M. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils [J]. Environmental Pollution,2006,140:322-339
    [43]Hatjie V. Payne TE, Hill DM. et al. Kinetics of trace element uptake and release by particles in estuarine waters:effects of pH, salinity, and particle loading [J]. Environment International,2003, 29:619-629
    [44]Paalman MAA. Van Der Weijden CH. Loch JPG. Sorption of cadmium on suspended matter under estuarine conditions; competition and complexation with major sea-water ions [J]. Water. Air. and Soil Pollution,1994,73:49-60
    [45]Kennedy IR. Acid soil and acid rain:the impact on the environment of nitrogen and sulphur cycling [M]. England:Research Studies Press Ltd.1986,155-157
    [46]Lindsay WL. Chemical equilibria in soils [M]. New York:John Wiley & Sons.1979,34-327
    [47]Shuman LM, Wang J. Effect of rice variety on zinc, cadmium, iron and manganese content in rhizosphere and non-rhizosphere soil fractions [J]. Communications in Soil Science and Plant Analysis,1997,28:23-26
    [48]王艮梅,周立祥,占新华.等.水田土壤中水溶性有机物的产生动态及对土壤中重金属活性的影响:田间微区试验[J].环境科学学报,2004,24(5):858-864
    [49]单玉华,李昌贵,陈晨.施用秸秆对淹水土壤镉、铜溶出的影响[J].生态学杂志,2008,27(8):1362-1366
    [50]Grybos M, Davranche M. Gruau G. et al. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? [J]. Journal of Colloid and Interface Science,2007,314:490-501
    [51]Ratering S. Schnell S. Localization of iron-reducing activity in paddy soil by profile studies [J]. Biogeochemistry,2000,48:341-365
    [52]Stumm W, Sulzberger B. The cycling of iron natural environments:consideriations based on laboratory studies of heterogeneous redox processes [J]. Geochimica et Cosmochimica Acta.1992, 56:3233-3257
    [53]Guo T, Delaune RD. Patrick Jr WH. The effect of sediment redox chemistry on solubility/chemically active forms of selected metals in bottom sediment receiving produced water discharge [J]. Spill Science & Technology Bulletin,1997,4(3):165-175
    [54]McBride MB. Chemisorption of Cd2+ on calcite surfaces [J]. Soil Science Society of America Journal.1980.44:26-28
    [55]Papadopoulos P, Rowell DL. The reactions of cadmium with calcium carbonate surfaces [J]. Journal of Soil Science.1988,39(1):23-36
    [56]Zachara JM. Cowan CE, Resch CT. Sorption of divalent metals on calcite [J]. Geochimica et Cosmochimica Acta,1991,55(9):1249-1562
    [57]邵孝侯,侯文华,邢光熹.土壤固相不同组成对铜锌的吸持研究[J].环境化学.1994.13(4):340-345
    [58]吴大清,彭金莲,刁桂仪.等.沉积CaCO3与金属离子界面反应动力学研究[J].地球化(?)2000,29(1):56-61
    [59]郑绍建,胡霭堂.淹水对污染土壤镉形态转化的影响[J].环境科学学报,1995,15(2):142-147
    [60]Kashem MA. Singh BR. Transformations in solid phase species of metals as affected by flooding and organic matter [J]. Communications in Soil Science and Plant Analysis,2004,35(9/10): 1435-1456
    [61]Gambrell RP, Wiesepape JB, Patrick WH, et al. The effects of pH, redox, and salinity on metal release from a contaminated sediment [J]. Water, Air, and Soil Pollution,1991.57-58:359-367
    [62]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社.1996,119-120
    [63]Morse JW, Luther Ⅲ, GW. Chemical influences on trace metal-sulfide interactions in anoxic sediments [J]. Geochimica et Cosmochimica Acta,1999,63(19/20):3373-3378
    [64]Maes A, Vanthuyne M, Cauwenberg P, et al. Metal partitioning in a sulfidic canal sediment:metal solubility as a function of pH combined with EDTA extraction in anoxic conditions [J]. Science of the Total Environment,2003,312:181-193
    [65]朱娥婉,沈壬水,钱钦文.土壤中金属元素的五个组分的连续提取法[J].土壤,1989,21(3):163-166
    [66]陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸附Cd的影响及其机制[J].环境科学学报,2002,22(2):150-155
    [67]Zhou HN, Thompson PL. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids [J]. Journal of Environmental Quality,1999,28(3):939-944
    [68]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].2004,15(6):1083-1087
    [69]Jardine PM, Weber NL, McCarthy JF. Mechanisms of dissolved organic matter carbon adsorption on soil [J]. Soil Science Society of America Journal,1989,53:1378-1385
    [70]Moore TR, Souza W, Koprivnjak JF. Controls on the sorption of dissolved organic carbon by soils [J]. Soil Science,1992,154(2):120-129
    [71]Donald RG, Anderson DW, Stewart JWB. Potential role of dissolved organic carbon in phosphorus transport in forested soils [J]. Soil Science Society of America Journal,1993,57:1611-1618
    [1]张大庚,依艳丽,李亮亮,等.水分和有机物料对土壤锌-镉形态及化学性质的影啊[J].农业环境科学学报,2006.25(4):939-944
    [2]郑绍建,胡霭堂.淹水对污染土壤镉形态转化的影响[J].环境科学学报,1995,15(2):142-147
    [3]Kashem MA,Singh BR. Transformations in solid phase species of metals as affected by flooding and organic matter [J]. Communications in Soil Science and Plant Analysis,2004,35(9&10):1435-1456
    [4]Monimer RJG. Rae JE. Metal speciation (Cu. Zn. Pb. Cd) and organic matter in oxic to suboxic salt marsh sediments, Severn Estuary, Southwest Britain [J]. Marine Pollution Bulletin,2000.40(5): 377-386
    [5]Davranche M Bollinger JC. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides:effect of reductive conditions [J]. Journal of Colloid and Interface Science,2000,227:531-539
    [6]Schwab AP. Lindsay WL. Effect of redox on the solubility and availabilty of iron [J]. Soil Science Society of America Journal,1983,47:201-205
    [7]Brennan EW. Lindsay WL. Reduction and oxidation effect on the solubility and transformation of iron oxides [J]. Soil Science Society of America Journal,1998,62:930-937
    [8]Iu KL. Pulford ID. Duncan HJ. Influence of waterloggina and lime or organic matter additions on the distribution of trace metals in an acid soil. I. Manganese and Iron [J]. Plant and Soil,1981,59: 317-326
    [9]Guo T, DeLaune RD, Patrick, Jr WH. The effect of sediment redox chemistry on solubility/chemically active forms of selected metals in bottom sediment receiving produced water discharge [J]. Spill Science & Technology Bulletin,1997,4(3):165-175
    [10]Atta SK, Mohammed SA, Van Cleemput O, et al. Transformations of iron and manganese under controlled Eh. Eh-pH conditions and addition of organic matter. Soil Technology,1996,9:223-237
    [11]苏玲,林咸永,章永松,等.水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响[J].浙江大学学报(农业与生命科学版),2001,27(2):124-128
    [12]Stucki JW, Golden DC, Roth CB. Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites [J]. Clays and Clay Mineral,1984,32(5): 350-356
    [13]Favre F, Tessier D, Abdelmoula M, et al. Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil [J]. European Journal of Soil Science,2002,53:175-183
    [14]Tipping E, Hetherington NB, Hilton J. Artifacts in the use of selective chemical extraction to determine distributions of metals between oxides of manganese and iron [J]. Analytical Chemistry. 1985.57:1944-1946
    [15]Rapln F, Tessier A, Campbell PGC, et al. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure [J]. Environmental Science & Technology,1986,20:836-840
    [16]Kelderman P, Osman AA. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands) [J]. Water Research,2007,41:4251-4261
    [17]Hong J, Wang T. Transformation of chemical elements in controlled pH-Eh system [J]. Environmental Information Science,1984,6:48-56
    [18]Calmano W, Hong J. Forstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential [J]. Water Science and Technology,1993,28(8-9): 223-235
    [19]黄丹丹,葛滢,周权锁.淹水条件下土壤还原作用对镉活性消长行为的影响[J].环境科学学报,2007,29(2):373-380
    [20]Pickering WF. Metal ion speciation-soils and sediments (a review) [J]. Ore Geology Reviews 1986. 1:83-146
    [21]Gleyzes C. Tellier S, Astruc M. Fractionation studies of trace elements in contaminated soils and sediments:a review of sequential extraction procedures [J]. Trends in Analytical Chemistry,2002. 21:451-467
    [22]Lindsay WL. Chemical equilibria in soils [M]. New York: John Wiley & Sons.1979,14-327
    [23]McBride MB. Chemisorption of Cd2+ on calcite surfaces [J]. Soil Science Society of America Journal.1980.44:26-28
    [24]Luoma SN. A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants [J]. Science of the Total Envieonment,1981.17:165-196
    [25]Gambrell RP. Trace and toxic metals in wetlands- A review [J]. Journal of Environmental Quality, 1994,23:883-891
    [26]Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry,1979,51 (7):844-851
    [27]Bjerre GK, Schierup HH. Influence of waterlogging on the availability and uptake of heavy metals by oat grown in different soils [J]. Plant and Soil,1995,88:45-56
    [28]Qiang T, Xiao-quan S. Zhe-ming N. Evaluation of a sequential extraction procedure for the fractionation of amorphous iron and manganese oxides and organic matter in soils [J]. Science of the Total Environment 1994,151:159-165
    [29]Randall SR, Sherman DM, Ragnarsdottir KV, et al. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals [J]. Geochimica et Cosmochimica Acta,1999, 63(19/20):2971-2987
    [30]曹升赓.土壤微形态[J].土壤.1980.4:155-160
    [31]McKenzie RM. Minerals in soil environments [M]. USA:SSSA Book Ser.1, SSSA Madson WI., 1989,439-465
    [32]黄丽.亚热带典型七壤铁锰胶膜的微形态与化学特性[D].武汉:华中农业大学,2004,22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700