用户名: 密码: 验证码:
杭州承压水地基深基坑降压关键技术及环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层建筑、地铁工程等随着城市建设的发展大量涌现,使得超深基坑大量出现,因此承压水对基坑工程的影响凸显。本文围绕杭州庆春路过江隧道工程中遇到的承压水问题,对杭州地区的古河道承压含水层特性、承压水渗流计算、潮汐对承压水地基突涌稳定的影响、基坑承压水处理措施、承压水降压的环境效应等方面展开研究。本文主要作了以下工作:
     1、通过大量地质、历史资料调查,研究了杭州地区钱塘江古河道承压水的特性。阐明了钱塘江水系的形成发育过程;通过对钱塘江水系历史变迁的研究,分析了杭州地区钱塘江古河道的平面分布情况。通过相关水文地质资料的研究,阐明了古河道承压含水层与钱塘江的水力联系;通过总结分析杭州庆春路钱塘江过江隧道的地质勘察以及抽水试验等资料,对钱塘江古河道承压含水层的纵向分布、土层特性和孔隙承压水水位动态等进行了研究。综合了国内已有工程实例报道中,承压水问题突出的其他四个大中城市,对杭州和其他四城市的承压含水层特性以及相应处理工程措施进行了横向对比和总结。
     2、根据Darcy定律和质量守恒原理所揭示的水量、水头变化的关系,建立了不变形多孔介质的渗流连续方程和可压密介质中的渗流连续方程,并在此基础上推导了承压水二维和三维渗流偏微分方程。对庆春路过江隧道工程江南工作井做水文地质抽水试验,通过上述渗流方程反演确定了承压层的水文地质参数,并确定孔隙潜水含水层与孔隙承压含水层之间的水力联系特征。
     3、总结了现有承压水基坑抗突涌稳定计算方法及其优缺点;分析了在一定潮汐变化值作用下,影响承压层水头变化值的因素;分析了承压水潮汐效应对突涌计算的影响,通过阐述浙江海岸的潮汐特征以及钱塘大潮产生的原因和特点,阐明了强潮河段应考虑承压水潮汐效应的影响。
     4、以庆春路过江隧道工作井基坑为例,分析了基坑降压降水的必要性;对基坑底板加固、基坑注水开挖、全降水等处理方式在该工程的适应性进行了分析,选定了适用该工程的承压水处理方案,通过现场试验检验该实施方案的效果;并对承压水地基中超深地下连续墙施工关键技术进行了阐述。
     5、将承压水降压引起的沉降变形分为初始沉降和固结沉降两部分。结合承压含水层完整井的稳定渗流计算,提出了反映承压水降压作用的附加应力公式,引入Mindlin解计算附加作用力产生的沉降量。同时借助算例分析了土层各参数对上覆土层沉降量的影响。讨论了上覆土层厚度、弹性模量、承压水水头降深和导水系数对沉降的影响。推导了上覆土层为弱透水层,不考虑潜水位变化时,越流引起的上覆层固结沉降。
A large number of super deep foundation pit appeared in the projects like tall buildings, subway project during the development of city construction, therefore the efffect of confined water to pit engineering was highlighted. This paper focused on the confined water encountered in Hangzhou Qingchun river tunnel project, we did some study on the characteristics of this ancient channel confine aquifer, confined water seepage calculation, effects of tide on pit Inrushing, treatment measures of confined water pressure, environmental effect during the process of dewatering and other aspects. In this paper, the author made the following work:
     1. Through a large number of geological investigation and historical data collection, confined water features of Qiantang ancient river in hangzhou city and the formation of which was Illustrated; based on study of the historical changes of the Qiantang River, plane distribution of Qiantang River paleochannel in Hangzhou region was analysed. Through the study of hydrogeological data, hydraulic connection between the paleochannel confined aquifer and the Qiantang River was illustrated; through the summary analysis of the geological survey of the Hangzhou Qingchun Road and pumping test of Qiantang river tunnel, the vertical distribution of pressure aquifer, soil characteristics and pore confined water level dynamics was studied. According to a combination of domestic engineering instance, the problem of confined water in four other large and medium-sized cities, comprehensive measures of Hangzhou and four other cities in the confined aquifer characteristics and the corresponding treatment works were compared and summaried.
     2. According to relations between water quantity and head change revealed by the Darcy law and mass conservation principle,non-deformable porous medium seepage continuity equation and pressure dense medium seepage continuity equation were established,also based on that confined water of two-dimensional and three-dimensional seepage partial differential equation were derived. On the qinchun road crossing river tunnel project Jiangnan working well was done for hydrogeologic pumping test, conmbined with the seepage equation above,the hydrogeological parameters of confined aquifer was deducted,meanwhile hydraulic connection between Phreatic aquifer and confined aquifer was determined.
     3. The advantages and disadvantages of existing Anti-heave piping calculation method of confined aquifer foundation pit was summarized; the factor which affect water head variation value in certain tidal variation was analysed, also confined water tidal effect on the calculation of heave piping was considered, through the description of tidal characteristics and cause of Zhejiang coast and the Qian Tang tide,the conclusion that the tide effect to confined aquifer should be considered in Strong tidal reaches was made.
     4. Taken the Qinchun crossing river tunnel pit excavation as an example, the necessity of reducing precipitation was analysed; also the adaptability of pit foundation reinforcement,pit foundation excavation,the precipitation water injection mode of processing in the engineering were analyzed,based on that,the applicable method was used in this project and field test was done to inspect the effect of it,also the key construction technology about super deep underground continuous wall was described in detail.
     5. The settlement caused by precipitation of confined aquifer was divided into initial settlement and consolidation settlement,Combined the complete well theory,additional stress formula which reflected the confined water of hypotensive effect was derived,the settlement formula was deducted with the introduction of Mindlin solution. Meanwhile,soil parameters effected on the overburden settlement was analysed with the help of example calculation. The influence of overburden thickness,modulus of elasticity,water pressure drawdown and water conduction coefficient to ground settlement were discussed. Also the consolidation settlement of overlying aquitard layer caused by cross flow was Derivated,which did not consider the change of potential water level.
引文
[1]Mahdi S-Hantush, Flow to Wells in Aquifers Separated by a Semipervious Layer, Journal of Geophysical Research,1967,72(6).
    [2]Mohamed M-Hantush and Miguel A-Marino, Continuous Time Stochastic Analysis of Groundwater Flow in Heterogeneous Aquifers, Water Resources Research,1995,31(3).
    [3]Brutsaet W-and M·Y·Corapcioglu, Pumping of Aquifer with Viscoelastic Properties, Pros.ASCE,1976,102(HY11).
    [4]Neuman S·P·andP·A·Witherspoon, Theory of Flow in Confined Two Aquifer system, Water Resources Research,1969,5(4).
    [5]Neuman S·P·, Theory of Flow in Unconfined Aquifer Considering Delayed Research of Water Table, Water Resources Research,1972,8(4).
    [6]Neuman S P. Saturated-unsaturated seepage by finite elements. Journal of the Hydraulics Division, ASCE,1973,99(12):2233-2250.
    [7]Bathe K J, Khoshgoftan M R. Finite element for surface seepage analysis without mesh iteration. Int. J. Num. Anal. Methods in Geomechanics,1979,3(1):3-22
    [8]Desai C S, Li G C. A residual flow procedure and application for free surface flow in porous media. Advances in Water Resources,1983,6:27-35.
    [9]Desai C S. Finite element residual schemes for unconfined flow. Int. J. Num. Meth. Engng., 1976,10:1415-1418.
    [10]Bear J. Dynamics of fluids in porous media, American Elsevier Publishing Company, New York,1972.
    [11]朱庭祜,盛莘夫,何立贤.钱塘江下游地质之研究,建设月刊,1946,1-2(2).
    [12]严钦尚,浙江省钱塘江及太湖流域地貌发展过程,华东师范大学地理集刊,1958.1.
    [13]钱塘江志编纂委员会编.钱塘江志.北京:方志出版社,1998.
    [14]浙江省地质矿产局编.浙江省区域地质志.北京:地质出版社,1989.
    [15]江苏、上海、浙江地质矿产局、地矿海洋地质调查局.长江三角洲地区水文地质工程地质综合评价报告.1974.
    [16]徐柔远.钱塘江水系的形成和变迁.地质研究,1995,11(2).
    [17]恽才兴,陈希海.杭州湾南岸边滩的演变.河口与海岸工程,1981.
    [18]严驰,冯海涛,李亚坡.深基坑开挖中坑内降承压水的有限元模拟分析.西安石油大学学报(自然科学版),2007,22(2):29-33.
    [19]严驰,李学山,杨毅秋.微承压水作用下深基坑稳定的有限元分析.勘察科学技术,2006,2:3-7.
    [20]刘国彬,王洪新.上海浅层粉砂地层承压水对基坑的危害及治理,岩土工程学报.2002,24(6):790-792.
    [21]孙仲明.古河道的类别、成因与研究意义.灌溉排水学报,1984,02:起页码-止页码.
    [22]吴忱.论“古河道学”的研究对象、内容与方法.地理学与国土研究,2002,18(4):82-85.
    [23]吴孟杰.浙江省杭州市区域水文地质调查报告.杭州:浙江省地质环境监测总站,1999.
    [24]魏志范,杭州市庆春路过江隧工程岩土工程勘察报告.杭州:浙江省工程勘察院,2005.
    [25]韩美,李道高,赵明华.莱州湾南岸平原地面古河道研究.地理科学,1999,19(5):451-456.
    [26]刘恩峰,张祖陆,沈吉,等.晚更新世以来潍河古河道沉积及其对现代咸水入侵的控制.高校地质学报,2003,9(1):47-53.
    [27]李道高,赵明华,韩美,等.莱州湾南岸平原浅埋古河道带研究.海洋地质与第四纪地质,2000,20(1):23-29.
    [28]吴林高.工程降水设计施工与基坑渗流理论.北京:人民交通出版社,2003.
    [29]薛禹群.地下水动力学原理.北京:地质出版社,1986.
    [30]金小荣,俞建霖,祝晓晨,等.基坑降水引起周围土体沉降性状分析.岩土力学,2005,26(10):1575-1581.
    [31]骆冠勇,潘泓,曹洪,等.承压水减压引起的沉降分析.岩土力学,2004,25(2):196-200.
    [32]Bear J多孔介质流体动力学.李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
    [33]Mindlin R.D. Force at a point in the interior of a semi-infinite solid, Proc. First Midwestern Conf.1953,56-59.
    [34]戴斌,王卫东.受承压水影响深基坑工程的若干技术措施探讨.岩土工程学报,2006,28(S1):1659-1663.
    [35]张瑛颖.杭州地区粉砂土中基坑降水面的数值模拟.杭州:浙江大学,2006.
    [36]高月虹.杭州地区深基坑围护合理型式的选用.杭州:浙江大学,2005.
    [37]丁晓勇.钱塘江河道形成及古河道承压水性状研究.杭州:浙江大学,2008.
    [38]上海市地质调查研究院.1:25万上海市幅区域地质调查.2004.
    [39]刘军,潘延平.轨道交通工程承压水风险控制指南.上海:同济大学出版社,2008.
    [40]翁其平,王卫东.深基坑承压水控制的设计方法与工程应用.岩土工程学报,2008,30(S0):343-348.
    [41]彭易华.武汉地区深基坑施工中地下水的处理.武汉:冶金工业部武汉勘察研究院,1996.
    [42]张云,梁永然.基于BP神经网络的基坑突涌分析.工程勘察,2001,(2):22-25.
    [43]唐传政,彭晓秋.武汉轨道交通二号线一期车站基坑支护方案探讨.岩土工程学报,2008,30(S0):597-602.
    [44]付刚.北京地铁降水方法研究与应用.长春:吉林大学,2005.
    [45]宋龙喜,叶锋,周训.北京地铁施工中若干地下水处理方法.工程勘察,2006(05):19-22.
    [46]刘予,叶超,贾三满.北京市平原地面沉降区含水岩组和可压缩层划分.城市地质,2007(01):12-17.
    [47]张志林,何运晏.国家大剧院深基坑地下水控制设计及施工技术.水文地质工程地质,2005(03):113-116.
    [48]焦莹,刘玉琦,杨建民,等.天津站交通枢纽基坑降水工程策略.岩土工程学报,2008,30(S0):299-305.
    [49]杨建民.基于水文地质的天津市区基坑降水设计及地面沉降分析.天津:天津大学,2006.
    [50]杨建民,郑刚,焦莹.天津站抽水试验分析.土木工程学报,2008,41(7).
    [51]杨毅秋.微承压水作用下深基坑稳定的有限元分析.天津:天津大学,2005.
    [52]张斗斗.天津基坑工程的研究.天津:天津大学,2002.
    [53]朱川鄂.天津地铁基坑支护结构研究.西南交通大学,2005.
    [54]王大纯.水文地质学基础.北京:地质出版社,1995:160.
    [55]纪政.承压水影响基坑支护结构及地面沉降的有限元分析.天津:天津大学,2005.12.
    [56]李学山.微承压水作用下基坑渗流场计算方法的研究.天津:天津大学,2005.
    [57]胡琦.超深基坑水、土与围护结构相互作用及设计方法研究.杭州:浙江大学,2008.
    [58]丁晓勇.钱塘江河道形成及古河道承压水性状研究.杭州:浙江大学,2008.
    [59]梁勇然.条形基坑的突涌分析.岩土工程学报,1996.1,1(18).
    [60]李建交,屠厚泽.关于矩形基坑中突涌问题的分析与探讨.地质科技情报,1998,3(17).
    [61]杜贵成.改进的条形基坑突涌判别式.辽宁工程技术大学学报(自然科学版),1998,5(17).
    [62]谭松林.考虑土体强度的建筑基坑突涌问题分析.地球科学—中国地质大学学报,2002,2(27).
    [63]张云,梁勇然.基于BP神经网络的基坑突涌分析.工程勘察,2001,2.
    [64]刘国彬,王洪新.上海浅层粉砂地层承压水对基坑的危害及治理.岩土工程学报,2002,6(24).
    [65]蒋红星,李龙,冯芳.深基坑支护工程中的地下水防治问题研究.中国煤田地质.2003,1(15).
    [66]郑剑升,张克平,章立峰.承压水地层基坑底部突涌及解决措施.隧道建设,2003,5(23).
    [67]马石城,印长俊,邹银生.抗承压水基坑底板的厚度分析与计算.工程力学,2004,2(21).
    [68]葛孝椿.用覆盖层土的浮重与渗透力计算基坑下承压水降深.水利水电科技进展,2004,4(24).
    [69]宫全美,丁春林,许恺,周顺华.抗突涌安全系数对地铁车站基坑变形的影响.地下空间与工程学报,2005,5(1).
    [70]宫全美,许凯,周顺华.承压水隔层对某地铁车站基坑降水效果的影响.城市轨道交通,2006,4.
    [71]李琳,杨敏,张慧.承压水作用下圆形基坑底板突涌的临界厚度计算公式.勘察科学技术,2006,5.
    [72]丁春林,孟晓红.缺失第⑥硬土隔水层的深基坑承压水处理技术研究.地下空间与工程学报,2006,5(2).
    [73]丁春林.软土地区承压水基坑突涌稳定计算法研究综述.地下空间与工程学报,2007,2(3).
    [74]潘泓,曹洪,谭泽新,尹小玲.基坑抗突涌计算方法的对比分析及应用探讨.岩石力学与工程学报,2006,增2(25).
    [75]毛献忠,龚春生.钱塘江涌潮影响因素分析.水力发电学报,2011,30(4):109-116.
    [76]陈娟,李玉茹.潮汐对沿海潜水水位的影响研究.水利科技与经济,2005,11(12):708-710.
    [77]苏芳珍,刘雅君,白少民.潮汐现象的物理本质.延安大学学报(自然科学版),2001,20(2):47-49.
    [78]陈倩,黄大吉,章本照.浙江近海潮汐潮流的数值模拟.海洋学报,2003,25(5):9-20.
    [79]高峻.高承压水地基深基坑支护设计及隔渗施工技术研究.杭州:浙江大学,2008.
    [80]董天乐,张迪,朱丹.庆春路过江隧道江南工作井降水设计与施工.岩土工程界,2007,10(7):78-83.
    [81]万山.当雄特大桥承压水地带钻孔桩成孔施工技术.企业技术开发,2006.11(25):28-29.
    [82]宁晋生,郭建国,习胜强.承压水地层钻孔灌注桩施工工艺浅析.探矿工程,2003.6:8-9.
    [83]王平,程功文.地下承压水对钻孔灌注桩桩身质量的影响与加固.浙江水利科技,2001.6,41-42.
    [84]张杰青,陈海兵,施木俊,唐传政.基坑地下承压水的控制设计及抢险方法.岩石力学与工程学报,2000.6(19):1108-1110.
    [85]肖为民,罗挺,马刚.承压水下水泥搅拌桩施工工艺及质量控制.工程技术与管理,2005.7:9-10.
    [86]陈幼雄.井点降水设计与施工,上海:上海科学普及出版社.2003.
    [87]陈万吉,汪自力.瞬态有自由面渗流分析的不动网格-高斯点有限元法[J].大连理工大学学报,1991,31(5):537-543.
    [88]丁洲祥,俞建霖,龚晓南,金小荣.改进Biot固结理论移动网格有限元分析[J],浙江大学学报(工学版),2005,39(9):1387-1391.
    [89]丁洲祥,俞建霖,祝哨晨,龚晓南.土水势方程对Biot固结FEM的影响研究[J].浙江大学学报(理学版),2004,31(6):716-720.
    [90]丁洲祥,龚晓南,唐启.从Biot固结理论认识渗透力[J].地基处理,2004,15(3):3-6.
    [91]龚晓南,高有潮.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998.
    [92]龚晓南,俞建霖,丁洲祥等.基坑降水的环境效应及防治方法研究[R].杭州:浙江大学岩土工程研究所,2005.
    [93]吕向东,张世奎.杭州钱塘江六桥基础施工[C].中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集,2002年:508-521.
    [94]龚晓南,谢康和,徐日庆等.软土地基基坑工程环境效应和控制方法[R].杭州:浙江大学岩土工程研究所,2001.
    [95]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [96]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000:32-91.
    [97]黄春娥.考虑渗流作用的基坑稳定分析[D].杭州:浙江大学,2001.
    [98]介玉新,揭冠周,李广信.用适体坐标变换方法求解渗流[J].岩土工程学报,2004,26(1):52-56.
    [99]李春华.稳定渗流有限元计算时采用固定网格法的初步研究[A].第三届全国渗流力学学术讨论会论文汇编(3)[C].长江科学院,1986.
    [100]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [101]凌道盛.有自由面渗流分析的虚节点法[J].浙江大学学报(工学版),2002,36(3):243-246.
    [102]卢艳梅.抽、灌作用下土体变形机理的研究及其在基坑工程中的应用[D].上海:同济大学,1994.
    [103]罗晓辉.深基坑性状的有限变形时空效应研究[D].武汉:中国科学院武汉岩土力学研究所,2002.
    [104]罗晓辉.深基坑开挖渗流与应力耦合分析[J].工程勘察,1997,37-41.
    [105]速宝玉,郭洪兴,詹美礼.非稳定渗流用截止负压法求解的研究[J].岩土工程学报,1999,21 (6):711-714.
    [106]速宝玉,沈振中,赵坚.基于变分不等式理论的截止负压法[J].水利学报,1997,(3):22-29.
    [107]速宝玉,朱岳明.不变网格确定渗流自由面的节点虚流量法[J].河海大学学报,1991,19(5):113-117.
    [108]王贤能,黄润秋.有自由面渗流分析的高斯点法[J].水文地质工程地质,1997,24(6):1-4.
    [109]王媛.求解有自由面渗流问题的初流量法的改进[J].水利学报,1998,(3):68-73.
    [110]吴梦喜,张学勤.有自由面渗流分析的虚单元法[J].水利学报,1994,(8):67-70.
    [111]杨志锡.各向异性饱和软土的渗流耦合分析及其工程应用[D].上海:同济大学,2001.
    [112]叶为民.软土地层的渗流特征与深基坑开挖的耦合分析研究[D].上海:同济大学,2000.
    [113]应宏伟.软土地基深基坑工程性状研究[D].杭州:浙江大学,1997.
    [114]俞建霖.软土地基深基坑工程数值分析研究[D].杭州:浙江大学,1997.
    [115]张有天,陈平,王镭.有自由面渗流分析的初流量法[J].水利学报,1988,(8):18-26.
    [116]周创兵,熊文林,梁业国.求解无压渗流场的一种新方法[J].水动力学研究与进展,1996,A辑1l(5):528-534.
    [117]徐良英,杭州市庆春路过江隧道工作井承压水处理及盾构进出洞施工技术研究[D].上海:同济大学,2008.
    [118]张雪婵,张杰等.典型城市承压含水层区域性特性[J].浙江大学学报(工学版),2010,44(10):1998-2004。
    [119]张杰,龚晓南.杭州城区古河道承压含水层特性研究[J].科技通报,2009,25(5):643-648.
    [120]龚晓南,张杰.承压水降压引起的上覆土层沉降分析[J].岩土工程学报,2011,33(1):145-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700