用户名: 密码: 验证码:
沙丘草甸区GSPAC系统水分运移机理与SWAP模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国荒漠化地区普遍存在沙丘、草甸组成的内部闭流区,并在系统内部形成区域尺度的水循环过程。但目前对这一具体水文过程中水分运移的机理尚不明确。本文在科尔沁沙地沙丘-草甸地貌区选定典型研究区,以GSPAC (Ground Water-Soil-Plant-Atmosphere Continuum)系统理论为基础,将地下水-土壤-植被-大气作为统一的连续体,利用多年的野外试验数据,研究沙丘、草甸GSPAC系统内植被主要生长期降雨入渗水分运移及凝结水形成的机理,并对沙丘、草甸水分运移进行了SWAP模型模拟。内容及结果摘要如下:
     1.选择代表降雨,通过分析降雨后不同地貌类型下(沙丘、草甸)土壤垂向剖面含水率与基质势的变化,从势能角度进一步研究降雨向土壤水及地下水的转化机理。
     结果表明,对沙丘而言,土壤总体处于较干燥状态,即使发生一定的降雨,基质势最大也不超过-500cm。相对于其它层位,沙丘20-40cm深度处,含水率最大,降雨后变幅也最大,基质势也最大。小于10mm降雨量的情况下,雨前及雨后的大部分时间基本在地面以下20-40cm处形成发散型零通量面,零通量面以上,土壤水分向上运动,消耗于蒸发蒸腾;零通量面之下,水分向下运动,形成入渗向下层排泄。降雨量越大,零通量面随时间下移越明显。经历较大降雨后(如>17.0mm),1d后水分入渗为单一入渗型,降雨3d后在地面以下20cm处形成发散型零通量面,且随着时间零通量面不断下移,雨后8d下移到约地下30cm处。由于A3样地地下水位埋藏较深,在120cm以下,随着深度增加,基质势又不断增加,土壤水分向上运动,在120cm处形成收敛型零通量面。
     草甸地降雨向土壤水运移转化机理较沙丘复杂。降雨前表层0-20cm土壤含水率在接近地表处较小,基质势随深度的减少而降低。地下水在土水势梯度作用下,缓慢向上运动补充土壤水分。降雨开始后,使表层土壤基质势和含水率迅速增加,土壤呈单一下渗型水势分布,水分向下运动,马上补给地下水,但随着土壤和植被的蒸腾作用的进行,土壤表层的含水率与基质势又逐渐减小,水分又向上运动,在20cm处形成发散性零通量面。最终降雨的影响消失,由于蒸腾作用使得表层土壤水分不断减少,等待下次降雨的补给。土壤含水量变化最为显著的是0-20cm的土壤。在较大的降雨(>17.0mm)发生后,土壤含水率的变化的影响达到地面以下100cm左右,此时入渗湿润锋面移至潜水面,发生入渗湿润锋面型补给。
     2.分析降水与地下水位波动的总体响应趋势,分析不同地貌形态下地下水位对降雨的响应,总结不同地貌形态下降水对地下水的补给规律与响应机理。研究表明,无论是地下水埋深较小的草甸地、还是地下水埋深为11m左右的沙丘,受不同级别的降雨影响地下水位均产生波动。这表明降雨后,气压、土壤水势和含水率等发生变化,进而引起的剖面上下复杂的水分运移使得地下水都能够得到一定的补给。草甸地对降雨的响应较积极,受降雨影响的地下水位波动幅度也较沙丘大,草甸地在雨后1d即体现出地下水位的波动,沙丘的波动在雨后2-4d,因此沙丘的滞后作用较明显。草甸地C3在各次代表降雨后地下水位抬升的幅度与降雨量基本呈线性增加趋势。但沙丘由于地下水埋深大,受降雨影响的地下水位波动幅度与降雨量没有很好的相关性。
     3.选取与凝结水量密切相关的MLS变化值为研究对象,结合地温分析、分析凝结水的形成与转化动态。研究表明,土壤凝结水的形成与地温、近地气温、相对湿度、风速等气象要素以及地下水埋深、下垫面条件等因素有着密切关系。沙丘、草甸两种地貌形态日落到日出MLS变化值连通的均比不连通的正值出现的频数高,这说明土壤凝结水中的相当一部分来自土壤下部水汽的向上运移并凝结的水量。A3样地比C3样地MLS变化值出现正值的频数高较多,尤其是不连通的情况下高出2.53倍,说明土壤的性质也直接影响着凝结过程的发生。
     沙丘等地温线呈现较一致的向左凸型,这应该是在3-8月气温与地表温度不断上升的条件下,由于沙地表面存在一定厚度的干沙层,能够蓄积一定热量,而地表温度随昼夜气温的变化而改变,导致地面以下一定深度处的地温最高且高于地表温度的现象;在此处形成热量零通量面,零通量面以上至地表,水汽向上运移,并在有利条件下形成凝结水。对于C3样地,在6、7月,近地表空气相对湿度大,形成凝结水量更多,C3连通的MLS变化值大。这也反映出空气湿度的大小决定着大汽凝结水的多寡。
     4.根据气象、植被、土壤、地下水埋深为数据,将SWAP模型用于科尔沁沙地沙丘草甸水分运移模拟,经率定和检验,结果较可靠,能够揭示研究区GSPAC系统水分运移的各个过程。结果显示,在模拟时段无论降雨量多少,沙丘土壤蒸发量与蒸发过程没有太大变化(由于表面存在干沙层的缘故),与之响应明显的是深层渗漏,次降雨量越大,产生的深层渗漏量越大,因此沙丘有利于涵养水源。在没有植被的情况下,土壤的水分特征曲线参数以及饱和导水率对深层渗漏的而影响较明显;草甸地与沙丘截然不同,水分消耗主要是植被蒸腾,虽然在植物生长中期降雨渗漏补给地下水与地下水向上补给土壤水交替进行,但在植物整个生长期主要体现为地下水向上补给土壤水,进而被植物蒸腾所消耗,模型最敏感的参数是植被最小冠层阻力、消光系数和叶面积指数、最大根深和根系分布等与植被有关的重要参数。
China desertification areas generally exist the internal closed drainage areas composed of meadow dunes, and form a system of regional scale in the process of water cycle. But at present the specific hydrological process of moisture migration and transformation mechanism is still not clear. This article in Horqin sandy dunes-meadow landform area is selected as the typical study area, using GSPAC (Ground Water-Soil-Plant-Atmosphere Continuum) system theory as the foundation, the Ground water-Soil-Plant-Atmosphere as a unified continuum, with years of field test data of sand dunes and meadows, study the main plants growing period rainfall infiltration of soil water movement and the formation of condensation water mechanism in a GSPAC system, and simulate the sand dunes, meadows water transport followed the SWAP model. The content and the results are summarized as follows:
     1.Choose the2009flood period from May to September five times typical rainfall, through the analysis about the different types of Geomorphology (dune, meadow) soil vertical profile in water content and matrix potential changes, further research on rainfall to soil water and groundwater transformation mechanism from the energy angle.
     The results show that, the sand dune, the total soil is in a dry state, even if there is the occurrence of certain rainfall, the maximum of matrix potential is not exceeding-500cm. Relative to the other layer, the depth of dune is about20-40cm, water content is the most, after rainfall the change amplitude is the most, the matrix potential is the largest, too. When the rainfall is less than10mm, most of the time before and after the rainfall below the ground about20-40cm forms a divergent zero flux plane, above the zero flux plane, the soil water moves upwards and consumes in evaporation and transpiration; downward the zero flux plane, water movement is forming infiltration to the lower excretion. The rainfall is stronger, the zero flux plane moves deeper. Experienced a greater rainfall (e.g.>17.0mm),1Day later the infiltration of water is a single type of rainfall infiltration, the3Days later about20cm below the ground forms a divergent zero flux plane, and with the time of zero flux plane moves downward, the8Days moves down to about underground30cm. Because the A3's groundwater is buried below120cm, with the increase of the depth, the matrix potential is increasing; soil water moves upwards, in the120cm forms the convergence of zero flux plane.
     The transformation mechanism of water movement in meadow rainfall is more complex than the soil sand dune. Before the rainfall, the soil moisture of about0-20cm is smaller than the surface, matrix potential decreases with the depth. The ground water is worked by the soil water potential gradient, slowly moves upward to replenish the soil water, when the rainfall stars, the surface soil matrix potential and water content of soil is increased rapidly, the soil plays as the single infiltration type water distribution, the water moves downward, immediately recharge of groundwater, but with soil and vegetation transpiration, soil water content and matrix suction and water content decreases gradually, and the water moves upward again, at20cm forms the divergent zero flux plane. Eventually the rainfall effect disappeared, because the transpiration makes the surface soil moisture decrease ceaselessly, until the next rain supplies. Variation of soil moisture is most notably in0-20cm soil. When the heavier rainfall (>17.0mm) occurs, the soil moisture content changes and influences to the ground below about100cm, the infiltration of wetting moves to exist, it is infiltration surface recharge.
     2.Analysis the2009flood period from May to September the fluctuations of the overall response trend of the rainfall and groundwater level, and the level of groundwater of the different landforms responding to the rainfall, sums up the form of different landforms groundwater recharge rules and response mechanism. Studies show that, no matter the meadow ground which has smaller depth of groundwater or the sand dune that has the depth about11m, are effected by the different levels of rainfall on groundwater level fluctuations. This shows that after the rainfall, the atmospheric pressure, the soil water content and the water potential change, result the profile of the complex water transport can supply the underground water. The meadow responds precipitately to the rainfall, the groundwater level fluctuations is greater than the sand dune, the meadow embodies the groundwater level fluctuation in one day, the fluctuation of sand dunes is in2to4days, so the sand dunes of the hysteresis effect is obvious. The meadow C3is in each representative the groundwater lifting amplitude and rainfall basically linear increase trend after the rainfall. But as a result of the buried depth of groundwater in sand dunes, influences by the rainfall and the groundwater level fluctuation of rainfall was not well correlated.
     3.Selects MLS value (2009May1st to October1st2008, between sunset and sunrise the next day) as the research object that the condensation of water is closely related to the change, combines the analysis of geothermal, analysis of condensate formation and transformation dynamics. Research shows that, the formation of coagulating water of soil are closely related with the soil temperature, air temperature, relative humidity, wind speed near ground etc. meteorological elements and the depth of groundwater, underlying surface conditions and other factors. Sand dunes and meadows these two topography, from the sunset to the sunrise, the MLS values which is connected change has higher frequency than the disconnected, this indicates that a considerable part of soil condensation water is from the lower part of soil moisture migration and condensation water. The A3sample has the higher MLS change values appear than the C3sample in frequency, especially the not connected case it is2.53times higher, it indicates that the soil properties also affects the occurrence of condensation process.
     Dune isogeotherms appears the left convex, this should be in the March to August the air temperature and surface temperature is rising, the sand surface in the presence of a certain thickness of dry sand bed which accumulates a certain quantity of heat, and the surface temperature changes with the circadian temperature, this results phenomenon that is the highest ground temperature in a certain depth below is higher than the surface temperature; here forms the heat zero flux plane, the zero flux plane above to the surface, the water vapor moves upward, and forms the condensation water. For the C3sample, in June to July, near surface air is relatively humidity, forms more condensation water, C3MLS changes greater. This also reflects that the air humidity determines the amount of steam condensation water.
     4.According to the data about2008,2009's weather, plants, soil, the depth of groundwater, SWAP model is used to simulate the water movement in Horqin sandy dunes and meadows, which were calibrated and verified, the results are reliable and can reveal the water transport processes in the study area GSPAC system. The results showed, in the simulated time no matter how much the rainfall was, the sand dune soil evaporation and evaporation process did not have too much change (because of the dry sand bed on surface.), and the response of the deep seepage was more obvious, if the rainfall was heavier the amount of deep seepage produce would be larger, so the sand dune is helpful for water conservation. In the condition of absence vegetation, the soil water characteristic curve parameter and the saturated hydraulic conductivity influence the deep seepage obviously; the meadow soil and the sand dunes are quite different, water consumption is mainly by the vegetation transpiration, although in the medium-term of the plant growth, the rainfall infiltration recharge groundwater and groundwater recharge to soil water alternately, in the whole growth period of plants mainly recharge the groundwater to the soil water, it is consumed by the plant transpiration,1the most sensitive parameters of the mode are the vegetation minimum canopy resistance, the extinction coefficient and the leaf area index, the maximum rooting depth, the root distribution etc the important parameters about vegetation.
引文
1. 国家林业局.2005中国荒漠化和沙化状况公报.2005年6月
    2. 杨俊平,孙保平.中国的沙漠与沙漠化研究发展趋势[J].干旱区资源与环境,2006,20(6):163-168
    3. 刘昌明,于沪宁.土壤-作物-大气系统水分运动实验研究[M].北京:气象出版社,1997,18
    4. Philip J R. Plant water relation some physical aspects Ann Rev[J]. PlantPhysiol, 1966,17:45-269
    5. 康绍忠,熊运章,王振镒.土壤-植物-大气连续体水分运移力能关系的田间试验研究[J].水利学报,1990,(7),21-26
    6. 康绍忠,刘晓明,熊运章.土壤-植被-大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994,122-137
    7. 卢振民等.土壤-作物-大气系统(SPAC)水流动态模拟与实验研究(Ⅰ、Ⅱ)[J].作物与水分关系研究,1992,3:287-1357
    8. 莫兴国.土壤-植物-大气间水分传输模拟与试验[D].1992,中国科学院博士学位论文
    9. 邵明安.土壤水分植被承载力数学模型的初步研究[J].水利学报,2004,10:21-25
    10.刘昌明.SPAC界面水热传输与生态过程的水分耗散[J].土壤-植物-大气系统水分运动实验研究.1997.1-117
    11.刘昌明,王会肖等.土壤-植物-大气界面水分过程与节水调控[D].北京:科学出版社,1999
    12.沈振荣等.水资源科学试验与研究——大气水、地表水、土壤水、地下水相互转化关系[D].北京:科学技术出版社,1992
    13.杨诗秀,雷志栋.均质土壤降雨喷洒入渗模型的数值计算[J].水利学报,1983,5:1-9
    14.杨建锋,李宝庆等.地下水浅埋区土壤水分运动参数田间测定方法探讨[J].水利学报,1999,8:11-14
    15.杨建锋,李宝庆,李颖.潜埋区地下水-土壤水资源动态过程及其调控[J].灌溉排水,2000,2:34-38
    16.杨建锋,刘士平等.地下水浅埋条件下土壤水动态变化规律研究[J].灌溉排水,2001,20(3):25-28
    17. Aboukhaled A, A lfaro A, Amith M.Lysimet'ers Food and Agr Org of the United Nations [J].FAO Irrig snd Drain,1982,39
    18. Howell T A, Schneider A D,Jensen M E History of lysimeter design and use for vapotrans-piration measurements In Proceedings of the Intemational Symposium on Lysimeters for Evapotransoiration and Environmerntal Measurernents eds[J]. IR D iv, ASAE,1991,1-8
    19. Mared T H, et al. Design and construction of large weigh ingmonolithic lysimeters[J]. Trans ASAE,1988,31 (2):477-484
    20.陈建耀,刘昌明.利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散[J].应用生态学报,1999,10(1):45-48
    21.张光辉.试论在我国北方应用零通量面法计算地下水入渗补给量[J].水文地质工程地质,1988,(2):24-27
    22.雷志栋.地下水位埋深类型与土壤水分动态特征[J].水利学报,1992,2:46-51
    23.丘景唐.非饱和土壤零通量面的研究[J].水利学报,1992,5:27-32
    24. Richards L A, Gardners W R, OgataG.. Physical processes detemining water loss from soil[J]. Soil SciSoc AmerProc,1956, (20):310-314
    25.隋洪智,田国良.热惯量方法监测土壤水分[C].黄河流城典型地区遥感动态研究.北京:科学出版社,1990
    26.叶冬梅,秦佳琪,韩胜利等,乌兰布和沙漠流动沙地土壤水分动态[J].土壤水势特征的研究,干旱区资源与环境,2005,19(3):126-130
    27.吴炳方.SEBAL模型及遥感监测ET(蒸发蒸腾量)的应用分析[J].利用遥感技术监测ET技术研究与应用,2003,3:1-7
    28.肖乾广,陈维英,盛永伟等.用气象卫星监测土壤水分的试验研究[J].应用气象学报,1994,5(2):312-317
    29.余涛,田国良.热惯量法在监测土壤表层水分变化中的研究[J].遥感学报,1997,1(1):24-31
    30.刘培君,张琳,艾里西尔·库尔班等.卫星遥感估测土壤水分的一种方法[J].遥感学报,1997,1(2):135-138
    31.金一锷,刘长盛,张文忠.利用气象卫星GMS和AVHRR资料推算地面水分含量的方法[J].应用气象学报,1998,9(2):297-300
    32.陈怀亮.麦田土壤水分NOAA/AVHRR遥感监测方法研究[J].遥感技术与应用,1998,13(4):27-35
    33.郭铌,陈添宇,雷建勤等.用NOW卫星可见光和红外资料估算甘肃省东部农田区土壤湿度[J].应用气象学报,1997,8(2):212-218
    34. Kahle A B, Schneider A D, Howell T A. Themal inert iamapping A new geologicmapping tool[J]. Geophysical Research Leters.1975,3:26-28
    35.陈鸣,潘之棣.用卫星遥感热红外数据估算大面积蒸散量[J].水科学进展,1994,5(2):126-133
    36.田国良,郑柯等.用NOAA. AVHRR数字图像和地面气象站资料估算作物蒸散和土壤水[J].黄河流域典型地区遥感动态研究,1990,161-176
    37.邓孺孺,陈晓翔,何执兼.GIS支持下的深层土壤含水量遥感调查方法[J].中山大学学报(自然科学版),1997,36(3):102-105
    38. Ritchie JT. A user oriented model of the soil water balance in wheat. In:Day W, Atykin RK. eds. Wheat Growth and Modeling. Plenum Press,1985
    39. Bouman BAM, van Keulen H, van Laar HH, Rabbinge R. The 'School of de Wit' crop growth simulation models:a pedigree and historical overview. Agric. Syst.,1996, 152(23):171-198
    40. Ross PJ. SWIM-A simulation model for soil water in filtration and movement: Reference manual. CSIRO Div. of Soils, Townsville, Qld,1990
    41. Evett SR, Lascano RJ. ENWATBAL:A mechanistic evapotranspiration model written in compiled BASIC. Agron. J.,1993,85:763-772
    42. Zeng ZY, Meijerink AMJ. Water yield and sediment yield simulations for Teba catchment in Spain using SWRRB model:I. Model input and simulation experiment. Pedosphere,2002,12 (1):41-48
    43. Seller PJ, Mintz Y. A simple bioshere (SiB) for use within general circulation models. J. Atmos. Sci.,1986,43:505-531
    44. Oltchev A, Constantin J, Gravenhorst G, Ibrom A,Heimann J, Schmidt J, Falk M, Morgenstern K, Richter I,Vygodskaya N. Application of a six-layer SVAT model forsimulation of evapotranspirat ion and water uptake in a spruce forest. Phys. Chem. Earth,1996,21 (3):195-199
    45. De Pury DGG, Farquhar GD. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ.,1997,20 (5):537-557
    46. Tanaka K. Multi-layer model of C02 exchange in a plant community coupled with the water budget of leaf surfaces.Ecol. Model,2002,147 (1):85-104
    47.雷志栋,杨诗秀.非饱和土壤水一维流动的数值计算[J].土壤学报,1982,19(2):141-153,
    48.杨诗秀,雷志栋,谢森传.匀质土壤一维非饱和流动通用程序[J]土壤学报,1985(1):24-34
    49.康绍忠,刘晓明,高新科,熊运章.土壤-植物-大气连续体水分传输的计算机模拟.水利学报,1992,3:1-12
    50.刘昌明,窦清晨.土壤-植物-大气连续体模型中的蒸散发计算.水科学进展,1992,3(4):255-263
    51.刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟.地理学报,1996,51(2):118-126
    52.姚德良,邱克俭,等.在植物耗水条件下土壤水分动态的数值模拟[J].土壤学报,1993,30(1),111-115
    53.莫兴国,土壤-植被-大气系统水分能量传输模拟和验证[J],气象学报,1998,56(3):323-332
    54.孙菽芬,牛国跃,洪钟祥.干旱及半干旱地区土壤水热传输模式研究[J].大气科学,1998,22(1):1-10
    55.罗毅,于强,等.SPAC系统中的水热C02通量与光合作用的综合模型(Ⅰ)模型建立[J],水利学报,2001,(2):90-97
    56.杨诗秀,雷志栋.均质土壤降雨喷洒入渗模型的数值计算[J].水利学报,1983(5),1-9
    57.张思聪,惠士博,雷志栋等.渗灌的非饱和土壤水二维流动的探讨[J].土壤学报,1985,22(3):209-222
    58.张思聪,惠士博,雷志栋等.水平非饱和土壤水二维流动的准解析解[J].水利学报,1986,(3):18-26
    59.张宏仁.有限单元法的水头反常问题[J].水文地质工程地质,1992,5:118-123
    60.张宏仁.有限差分法的改进[J].水文地质工程地质,1994,2:15-21
    61.张建丰,王文焰.利用野外一维垂向入渗试验确定土壤水分运动参数[J].水土保持学报,1994,8(1):69-77
    62.李恩羊.渗灌条件下土壤水分运动的数学模拟[J].水利学报,1982(4):1-10
    63.王同科,孙景生SPAC系统中水热耦合运移方程的有限元迭代算法[J].水利学报,1997,(3):65-69
    64.刘树华,黄子琛,刘立超等.土壤-植被-大气连续体中蒸散过程的数值模拟[J].水利学报,1996,51(2):118-126
    65.万良兴,田军仓,郑艳艳,李全东.土壤中水、热、盐耦合运移机理与模型的研究进[J].节水灌溉,2007,03:18-24
    66.窦建坤,张德生,张耀峰.分层土壤溶质运移的特征有限元数值模型[J].纺织高校基础科学学报,2005,(04):115-120
    67.[苏]H.φ.库里克著,赵兴梁译.干旱地区沙地水分状况与水分平衡[R].内蒙古林学院,1989
    68.郭占荣.西北内陆盆地地下水生态环境效应研究中国地质科学院博士研究生论文[D].中国地质科学院博士研究生论文.2000.10
    69.郭占荣,韩双平.西北干旱地区凝结水试验研究[J].水科学进展,2002,05:34-36
    70.郭占荣,刘建辉,中国干旱半干旱地区土壤凝结水研究综述[J].干旱区研究,2005,22(4):576-580
    71.王积强.关于“土壤凝结水”问题的探讨——与于庆和同志商榷[J].干旱区地理,1993,(02)
    72.蒋瑾,王康富,张维静.沙地凝结水及在水分平衡中作用的研究匀[J].干旱区研究,1993,10(2):1-7
    73.陈荷生,康跃虎.沙坡头地区凝结水及其在生态环境中的意义[J].干旱区资源与环境,1992,6(2):63-71
    74.张兴鲁.干旱地区沙丘水汽凝结及其意义[J].水文地质工程地质,1986,(06)
    75.冯起,高前兆.半湿润沙地凝结水的初步研究[J].干旱区研究,1995,12(3):72-77
    76.冯金朝,刘立超,肖洪浪.沙坡头地区土壤水分吸湿凝结的动态观测与理论计算[J]中国沙漠,1998,18(1):11-15
    77.曹文炳,万力,周训.西北地区沙丘凝结水形成机制及对生态环境影响初步探讨[J].水文地质工程地质.2003,2:6-10
    78.周金龙,艾克口木阿不都拉,董新光.天山北麓平原区凝结水的观测试验分析[J].新疆农业人学学报,2002,25(1):49-53
    79.曾亦键,万力,王旭升,曹文炳.浅层包气带地温与含水量昼夜动态的实验研究[J].地学前缘,2006,(01).
    80.王兴鹏,张维江.风蚀沙化过渡地带沙地凝结水时空变化的初步探讨[J].宁夏大学学报(自然科学版),2006,(03)
    81.王冠丽,刘廷玺等.不同利用方式下沙地土壤凝结水变化规律野外试验分析.中国沙漠,2008(5)
    82.于庆和.塔里木盆地北东缘群克地区上壤凝结水的初步研究[J].干旱区地理,1992,15(3):77-83
    83.李新荣,马凤云.沙坡头地区固沙植被土壤水分动态研究[J].中国沙漠,2001,21(3):218-222
    84.张建山,仵彦卿,李哲.陕北沙漠滩区降水入渗与凝结水补给机理试验研究[J].水土保持学报.2005,19(5):124-126
    85.刘新平,张铜会,赵哈林,何玉惠,云建英,李玉强.流动沙丘干沙层厚度对土壤水分蒸发的影响[J].干旱区地理,2006,Vol.29(4):523-526李惠卓.土壤吸湿水测定方法的改进[J].河北农业大学学报,1996,(03)
    86.蒋瑾,王康富,张维静.沙地凝结水及在水分平衡中作用的研究[J].干旱区研究,1993,(02)
    87.郭占荣,刘建辉.中国干旱半干旱地区土壤凝结水研究综述[J].干旱区研究,2005,(04).
    88.罗玉昌,王哲,赵平和.毛乌素沙地土壤凝结水试验研究[J].内蒙古气象,2007,(04)
    89.张建山,仵彦卿,李哲.陕北沙漠滩区降水入渗与凝结水补给机理试验研究[J].水土保持学报,2005,(05)
    90.张兴兽.干旱地区沙丘水汽凝结及其意义[J].水文地质工程地质,1986(6):39-42
    91.史小红,刘廷玺,李畅游.科尔沁沙地低缓沙丘植物水分动态的空间变化特征[J].内蒙古农业大学学报,2003,24(3):23-29
    92.史小红,李畅游.科尔沁沙地坨甸相间地区土壤水分空间分布特性分析[J].中国沙漠,2007,27(5):837-842
    93.马龙.科尔沁沙地地表环境演变及其与水文气象因子间的响应关系研究[D].内蒙古农业大学博士学位论文,2007
    94.王冠丽.科尔沁沙地坨甸相间地区GSPAC系统水分运移野外试验模拟与分析[D].内蒙古农业大学博士学位论文,2008
    95.胡洋洋.科尔沁沙地坨甸相间地区土壤水分动态试验与模拟[D].内蒙古农业大学硕士学位论文,2009
    96.朱教君,康宏樟,宋立宁,闫巧玲.科尔沁沙地南缘樟子松人工林地下水埋深季节变化[J].生态学杂志,2009,Vol.28(9):1767-1772
    97.王力,科尔沁沙地坨甸相间地区冻融期土壤水热运移野外试验模拟[D].内蒙古农业大学硕士学位论文,2010
    98.段利民.科尔沁沙地沙丘草甸相间地区水文-土壤-植被动态响应关系研究[D].内蒙古农业大学博士毕业论文,2011年
    99.王志强.科尔沁沙地土壤水力特性参数的简易推定[D].硕士学位论文,内蒙古农业大学,2003
    100. Van Dam J. C., Huygen J.,Wesseling J. G., Feddes R. A.,Kabat P., Van Walsum P. E. V.,Groenendi jk P., Van Diepen C. A.,. Theory of SWAP version 2.0(M). Technical Document 45. Wageninggen Agricultural University and DLO Winand Staring Center,1997
    101.Feddes R. A.,Kowalik P.J.,Zaradny H.. Simulation of wanter use ang crop yield. Simulation Monograph(M). PUDOC, Wageningen,1978,189
    102. Belmans C., J. G. Wessling, R. A. Feddes. Simulation of the water balance of a cropped soil:SWATRE. J. Hydrol. (J),1983,63:217-286
    103. Wessel ing, J. C.. Meerjarige simulaties van groungwateronttekking voor verschillende bodemprofielen,groundwatertrappen en gewassen met het model SWATRE(M). Report 152,Winand STARING Centre, Wageningen,1991
    104. Van den Broek B. J., J. C. Van Dam, J. A., Elbers, R. A. Feddes, J. Huygen, P. Kabat, J. G. Wesselling. SWAP 1993:input instructions manula(M). Report 45,Dept.of Water Resources,Wageningen Agricultural University, The Netherlands,1994
    105. Van Genuchten M. Th.. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. (J),1980,44:892-898
    106. MualemY..A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Res. Re. (J),1976,12 (3):513-521
    107. Scott P.S., G. J. Farquhar, N. Kouwen. Hysteretic effect on net infiltyation. In:Advance in inf iltration(M). American Society of Agricultural Engineering. St. Joesph, Mich,1983:163-170
    108. Von Hoyningen-H ii ne J.. Die Intercetion des Niederschlags in landwirtschaftlichen Bestanden. Schriftenreihe des DVWK (J),1983,5:1-57
    109. Smith M. CROPWAT:a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper No.46 (M). Rome, Italy 1992.
    110. Black H.. Gardner W. R., Thurtell G. W.. The prediction of evaporation, drainage and soil water storage for a bare soil. Soil Sci.Soc. Am. J. (J),1969:655-660
    111. Boesten J.J. T. I.,Stroosnijder L.. Simple model for daily evaporation from fallow tilled soil under spring conditions in temperate climate. Neth. J. Agri.Sci. (J),1986,34:75-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700